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Abstract. Quantum computers are expected to handle hard compu-
tational problems and provide unbreakable security protocols. Among
different quantum computer implementations, those based on quantum
optics and nuclear magnetic resonance show good advancement in build-
ing large scale machines. However, the involvement of optical and nu-
clear techniques makes their development very critical. This motivates
us to apply formal techniques, in particular theorem proving, in quan-
tum circuits analysis. In this work, we present the formalization of multi-
inputs/multi-outputs quantum gates (technically called multi-modes op-
tical circuits). This requires the implementation of tensor product over
complex-valued functions. Firstly, we build a formal model of single op-
tical beams and then extend it to cover circuits of multi optical beams,
with the help of the developed tensor product algebra. As an application,
we formally verify the behavior of the optical quantum CNOT gate and
Mach-Zehnder interferometer.

Keywords: Quantum computing · Multi-modes · Tensor product ·
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1 Introduction

Quantum computers implemnt algorithms that would outperform classical ma-
chines, in particular for solving hard problems: a well known example is Shor’s
algorithm for integer factorization [10]. The new machine capabilities also offer
powerful unbreakable security systems, e.g., [2]. Similar to classical machines,
quantum ones consist of a new notion of a bit, called quantum bit (abbreviated
as qbit), and a set of universal quantum gates, e.g., the Controlled NOT (the
quantum counterpart of the classical NOT gate) [18]. The implementation of
the quantum machine has been carried out in small scales using different means
and technologies, such as ion traps [6] and quantum dots [11]. Many efforts are
being invested for large scale machines [9], where optical circuits with the help
of Nuclear Magnetic Resonance [20] and Optical Nuclear Coupling [7] are more
reliable to implement such large scale computers.
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The analysis and verification of this kind of optical quantum circuits and gates
is very critical and faces some difficulties since traditional analysis techniques
are ineffective. For instance, it has been proved that the simulation of a single
time instance of a quantum system requires solving an exponential number of
differential equations [4]. This motivates us to apply formal methods in this
area, since the latter has enabled significant advancements took place in many
engineering areas, e.g., analog systems designs [22], information theory [17], and
sensor networks [3].

Recently, some developments for the formal verification of quantum optics has
been conducted in higher-order logic (HOL) theorem proving [12] [14]. The main
reason behind the choice of HOL is because of the high expressiveness it offers.
Definitely, this comes at the expense of the full automation that HOL provers do
not offer. However, HOL theorem proving still provides a good compromise com-
pared to other automated formal techniques, such as model checking [1], that are
unable to deal with the details of quantum systems. The application of abstrac-
tion techniques is not of much help as it would implicitly converge a quantum
system to a classical one [21]. Frst-order logic is not suitable either since in most
of the targeted quantum definitions and theorems there are quantifications over
functions and predicates.

Based on [14], the formal model of one of the quantum computer gates, namely
the optical flip gate, has been developed along with its verification [13]. How-
ever, the existing work is limited to single-input/single-output optical systems,
which is technically called the single-mode optical beams theory. In this paper,
we tackle the formalization of tensor product for complex-valued functions in
order to allow the analysis of multi-inputs/multi-outputs systems, which is tech-
nically called multi-mode optical beams theory. As an application, we apply the
multi-mode theory in the analysis of two quantum optical circuits: the Mach-
Zehnder interferometer [16] and the Controlled NOT gate [19]. The former is
a common circuit in quantum computing and quantum optics. The latter is a
larger circuit, which is one of the universal gates of quantum computers. This
shows the effectiveness of formal methods, especially in the case of complicated
circuits with multiple connections. The verification of the two circuits is han-
dled by two tactics that automatize most of the process, which removes a lot of
burden from the interactive user, typically a system designer.

The rest of the paper is organized as follows: Section 2 briefly summarizes
some basics of quantum optics. Section 3 deals with the formalization of L2

space and single-mode theory. Section 4 contains the formalization of multi-
mode and tensor product. Then, Section 5 discusses the formalization of the
CNOT gate and the Mach-Zehnder interferometer and their verification, along
with more elaboration about the tactics involved. Finally, we conclude the paper
in Section 6 and provide hints to future work.

Note: the whole formalization presented here is implemented using the HOL
Light theorem prover, and is freely available at [15].
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2 Background

Any physical system has a mathematical model that describes its state. In clas-
sical physics, a system state can be deterministically evaluated at any time.
However, in quantum theory, a system state has a probabilistic nature. In other
words, a quantum state of a system, written as |ψ〉 [5], acts as a probability
density function. Accordingly, the system state should satisfy the normalization
condition (i.e., its integration over the real line is equal to one). In particu-
lar, in quantum optics theory, a state of an optical beam ψ(q) is of type real
−→ complex and satisfy the following condition:

∫ ∞

−∞
ψ∗(q) ψ(q)dq = 1 (1)

where q, in some physics interpretations, refers to the electric charges inside the
optical beam [16].

A collection of such quantum states forms an inner product space, equipped
with the Lebesgue integral as the inner product function. Formally, the inner
product of two quantum states f and g is denoted as 〈f |g〉, and it is equal to∫∞
−∞ f∗(q) g(q)dq. A major consequence of this mathematical formalization of an
optical beam is the consideration of light as a stream of particles, called photons,
instead of the ray or wave nature as was believe in the classical theory.

Since quantum states form a linear function space, then there exists an infinite
basis that spans such a space. In case of an optical beam, so-called fock states
form the basis states, i.e., any |ψ〉 can be written as follows:

|ψ〉 =
∑
n

cn
∣∣n〉

where cn’s are complex numbers such that
∑

n cn = 1, and
∣∣n〉 is a fock state

representing the existence of n photons inside the optical beam. Note that
∣∣0〉

is called the vacuum state, and describes the case of zero photons.
For a fock state, we are interested in a number of operations. An operator â

is called the annihilation operator and another operator written â† is called the
creation operator. These operators are adjoints of each other, i.e., 〈â n1|n2〉 =
〈n1|â† n2〉, and their commutation is equal to 1, i.e., â ∗ ∗ a† − â† ∗ ∗ â = I
(note that I is the unity function, and the multiplication ∗∗ is point-wise mul-
tiplication). The effect of these operators on fock states is described as follows:

â
∣∣n〉 = √

n
∣∣n− 1

〉
and â†

∣∣n〉 = √
n+ 1

∣∣n+ 1
〉
. (2)

Another important operator is the number operator N̂ = â† ∗∗ â, which returns
the number of photons:

N̂ |n〉 = n ∗ |n〉
This shows that fock states are eigenvectors of the number operator.

Based on photon number operator, we can define the energy operator Ĥ =
1
2�ω(N̂+ I), where ω is called the mode resonance frequency and � is the planck
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constant. The operator returns the amount of energy in a light beam. This
formalization of energy inside an optical beam leads to the existence of energy
in the vacuum state, i.e., in the absence of photons, the main source of energy
in a beam. This is one of the interesting results in the quantum paradigm that
does not have a classical counterpart.

All the above mentioned definitions, formulas and equations form the single-
mode optical beams theory. This theory is suitable as long as we are dealing
with systems that involve no more than one single beam. In order to tackle more
general systems with multiple optical beams, we should consider the theory of
multi-modes. The core idea is how to consider two independent optical beams
(or particles), given that one has the individual physical description of each. For
this purpose, we utilize the mathematical tool of tensor product. Let us assume
the existence of two beams with quantum states

∣∣ψ1

〉
and

∣∣ψ2

〉
, then we have

a new quantum state
∣∣ψ1 ⊗ ψ2

〉
that describes both beams simultaneously. The

new state satisfies the following properties:

∣∣c ∗ ψ1 ⊗ ψ2

〉
= c ∗ ∣∣ψ1 ⊗ ψ2

〉
and

∣∣ψ1 + ψ2 ⊗ ψ3

〉
=

∣∣ψ1 ⊗ ψ3

〉
+
∣∣ψ2 ⊗ ψ3

〉
For this kind of states, we need to develop suitable operators based on the

existing ones. For instance, for two annihilation operators we will have a new ten-
sor product operator â1 ⊗ â2, where subscripts refer to the modes to which they
belong. This operator when it is applied to

∣∣ψ1 ⊗ ψ2

〉
, results in

∣∣â1ψ1 ⊗ â2ψ2

〉
.

It also satisfies similar properties such as tensor product of states, e.g., (â†1 +

â1)⊗ â†2 = â†1 ⊗ â†2 + â1 ⊗ â†2.
In the following sections, we will present the formal aspects of the theories

presented in Section 2, where we elaborate more on the details of the higher-order
logic implementation.

3 Single-Mode Formalization

As we described in Section 2, the set of quantum states lies in the inner product
space of square Lebesgue integrable functions. In [14], the quantum states space
was defined axiomatically as an inner product space of the functions of type
A −→ complex. In this formalization, we instantiate A to be real, since the electric
charge q is of type real. Thus, we define a new type bqs : real −→ complex which
stands for beam quantum state. Based on the new type, we can then define the
notion of space of complex-valued square integrable functions L2.

We start by formally defining the notion of the set of square integrable
complex-valued functions, namely sq integrable:
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Definition 1.
new specification [“sq integrable”]

∀f. f ∈ sq integrable⇔
1 f complex measurable on (: real) ∧
2 (λx. ||f x|| 2) real integrable on (: real)

Since we are dealing with complex-valued functions then the square of a function
f means the multiplication of f(x) by its conjugate f(x)∗. This is equivalent to
the norm square of f(x), as presented in Line 2. There is another mandatory
condition to form a subspace of these functions, which is the complex measura-
bility [8]:

Definition 2.
f complex measurable on s ⇔

(λx. Re (f x)) real measurable on s ∧
(λx.Im (f x)) real measurable on s

Note here that the measurability and integrability are over the whole real line
(i.e., from −∞ to ∞). We refer the reader to [8], where more information about
measure theory can be found. Next, we define the inner product function over
the elements of space sq integrable as follows:

Definition 3.
r inprod f g =
1 complex(real integral (: real) (λx : real. Re((f x)∗ ∗ (g x))),
2 real integral (: real) (λx.Im ((f x)∗ ∗ (g x))))

The above definition states that the inner product of two square integrable func-
tions f and g is a complex value, whose real part is the real integral of the real
part of f ∗ g (see Line 1), and its imaginary part is the real integral of the
imaginary part of f ∗ g (see Line 2).

Now, we move to the most important step, namely to prove that these def-
initions form a linear space and the associated r inprod function is its inner
product. Formally, we need to prove the following set of properties according
to [12]:

Theorem 1.
is cfun subspace sq integrable ∧ ∀x. x ∈ sq integrable⇒
real (r inprod x x) ∧ 0 ≤ real of complex (r inprod x x) ∧
(r inprod x x = Cx(0) ⇔ x = cfun zero) ∧
∀y. y ∈ sq integrable⇒ cnj (rinprod y x) = r inprod x y ∧
(∀a. r inprod x (a%y) = a ∗ (r inprod x y)) ∧
∀z. z ∈ sq integrable ⇒ r inprod (x+ y) z = r inprod x z+ r inprod y z

where cfun zero is a function that always returns zero regardless of the input
parameter, % refers to scalar multiplication.

The proof details of above theorem is complex and outside the scope of the
paper. We refer interested readers to [15] for proof scripts, where they can find
more details. According to the above shown properties, we can prove the follow-
ing result, which is a conjunction of them:
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Theorem 2.
is inner space (sq integrable, r inprod)

Now, we have all ingredients to formally implement the single-mode (see Sec-
tion 2):

Definition 4.
is sm sm ⇔ 0 < w sm∧
1 is hermitian(sq integrable, r inprod) (anh sm)(cr sm)
2 ∧ anh sm com cr sm = I ∧ is qst (vac sm)

3 is eigen pair (h sm) (vac sm, Cx(planck ∗ (w sm)
2

))

where a single-mode sm consists of the creator cr, annihilator anh, resonance
frequency w and vacuum state vac. Line 1 assumes the adjointness between
creator and annihilator, where is hermitian is defined as follows:

Definition 5.
is hermitian (s, inprod) op1 op2 ⇔

is inner space (s, inprod) ⇒
∀x y. inprod x (op2 y) = inprod (op1 x) y

Line 2 in Definition 4 assumes the commutation between the same operators and
Line 3 assumes the relation between the vacuum state and the energy operator,
where is eigen pair is defined as follows:

Definition 6.
is eigen pair op (v, μ) ⇔

op v = μ% v ∧ (v �= cfun zero)

Recall that a single-mode field at a fock state |n〉 means that the light stream
contains exactly n photons. Such states are quite important since they form the
basis of the single-mode quantum states space. Accordingly, we define fock states
as follows:

Definition 7.
fock sm 0 = vac sm ∧

fock sm (SUC n) = get qst(cr sm (fock sm n))

where get qst f =
√
r inprod f f % f, i.e., returns the normalized version of a

square integrable function, which is typically a quantum state.
For the given definition of the fock state, we prove the effect of creator and

annihilator on fock states as presented in Section 2:

Theorem 3.
∀n sm.is sm sm ⇒

(cr sm) (fock sm n) = Cx(sqrt((SUC n)))%fock sm (SUC n) ∧
⇒ (anhhsm) (fock sm (SUC n)) =

√
SUC n % fock sm n

In the next section, we will present the multi-mode formalization which is the
main tool, in addition to single-mode, to formally verify the CNOT gate and the
Mach-Zehnder interferometer.
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4 Multi-Mode Formalization

The core idea of the Multi-Mode formalization is based on the development of
the tensor product between states and operators. Before we present the general
definition of quantum states tensor product, we will show an example of the
tensor product of only two states. Given a quantum state |n1〉 of an optical
beam, in one of the interpretations of quantum mechanics, this state (i.e., the
complex valued functions) is a probability density function which provides the
probability of the number of photons inside the optical beam. Now, if we have
another beam with state |n2〉, the function that describes the joint probability of
the two beams is the point-wise multiplication of |n1〉 and |n2〉. Hence, we define
the tensor product of two quantum states as follows: λy1 y2. |n1〉 y1 ∗ |n1〉 y2.
To generalize for n beams, we define the tensor product recursively as follows:

Definition 8.
tensor 0 (modes : bqsN) = K(Cx(1)) ∧

tensor (SUC n) (modes) =
(λy : AN.((tensor n modes) y) ∗ (modes$(SUC n)) (y$(SUC n)))

where modes is a vector of size n that contains n modes. The base case of the
zero modes is a trivial case; it only guarantees a terminating definition. We then
define the tensor product of operators as follows:

Definition 9.
is tensor(tens : copsN −→ (realN −→ complex) −→ (realN −→ complex)) ⇒

∀(ops : (bqs −→ bqs)N) (modes : bqsN) n. is linear cop (tens ops)∧
tens ops (tensor n modes) = tensor n(lambda i.(ops$i) (modes$i))

where ops is a vector of operators defined on the single-modes, and tens ops

is the tensor product. Note that the resulting new operator is only applicable
to the tensor product of states. That is why we define it in a predicate form
in order to restrict its functionality. For this definition, we prove the following
crucial property of the operators tensor product, associativity:

Theorem 4.
∀ ten ops1 ops2 n modes.

is tensor ten ⇒ ten ops2(ten ops1 (tensor nmodes)) =
ten ((λ i. (ops2$i) o (ops1$i))) (tensor n modes)

where o refers to function composition.
As we will see later, an optical quantum circuit accepts single-modes as inputs,

however, the circuit operation itself runs in multi-mode. Thus, we need to develop
a function to embed (or express) a single-mode operator in a multi-mode fashion.
For this purpose, we define the following function:

Definition 10.
pos (tens : copsN −→ (AN −→ complex) −→ (AN −→ complex)) (op : cops) m =

tens (lambda i. if i = m then op else I)
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The concept of pos (or positioning) is to place a given operator in a specific mode
(based on its order in the input list) and leave the other modes with the identity
operator. Now, we will utilize the development of multi-mode to define a very
important optical element, of which many quantum circuits are built.

Beam Splitter in Multi-Mode
A beam splitter is a device that takes a beam of light and partly transmits it
and partly reflects it, thus splitting the beam into two beams. The remarkable
feature of quantum mechanics is that a single photon can be split by a beam
splitter.

In its standard definition, a beam splitter consists of two-input/two output
ports. We can recognize each port (or optical mode) by the creator and annihi-
lator operators, as shown Figure 1:

 
 

 
 

 o1 

 o2 

Fig. 1. Beam Splitter- Standard Inputs and Outputs

The beam splitter then relates input modes with the output modes according
to the following matrix representation:

(
â†o1 ⊗ I

I ⊗ a†o2

)
=

(
T′ R
R′ T

)(
â†i1 ⊗ I

I ⊗ a†i2

)
(3)

with the following relations between the coefficients :

|R′| = |R|, |T′| = |T|, |R|2 + |T|2 = 1,

R∗T′ +R′T∗ = 0, and R∗T+R′T′∗ = 0.

These coefficients are of type complex and represent the reflectivity and transi-
tivity in some sense. We now have the quantum mechanical description of the
beam splitter, and thus we can develop its formal version as follows:

Definition 11.
1 is beam splitter(p1, p2, p3, p4, ten, i1, m1, i2, m2, o1, m3, o2, m4) ⇔
2 is sm i1 ∧ is sm i2 ∧ is sm o1 ∧ is sm o2

3 ∧ w i1 = w i2 ∧ w i2 = w o1 ∧ w o1 = w o2 ∧
4 vac i1 = vac i2 ∧ vac i2 = vac o1 ∧ vac o1 = vac o2 ∧
5 pos ten (cr i1) m1 = p1∗% pos ten (cr o1) m3+ p2∗% pos ten (cr o2) m4

6 pos ten (cr i2) m2 = p3∗% pos ten (cr o1) m3+ p4∗% pos ten (cr o2) m4
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Note that the formal definition of beam splitters relates the inputs operators in
terms of the outputs operators (see Line 5 and Line 6), to the contrary of the
theoretical definitions presented earlier in Equation (3): This form is practical for
the analysis of the circuits, as we will see later, since the goal is to generate the
output states from the input states. Thus, the parameters {p1,p2,p3,p4} are the
inverse of the matrix presented before. In Line 1, the parameters {m1,m2,m3,m4}
define the order of each mode in the whole circuit. In the case of a circuit of only
two inputs/two outputs, the possible values of these parameters are 1 and 2. Line
2 and Line 3 ensure that the four modes are proper single modes, and working
with the same frequency and vacuum state (i.e., the state of zero photons).

Now, we have the full tools to tackle any circuit that consists of beam splitters,
and generate the corresponding output of this circuit.

5 Quantum Optical CNOT Gate

In this section, we will tackle the formalization of the universal quantum CNOT
gate. Before this step, we will study the formalization of a simpler circuit, namely
Mach-Zehnder Interferometer, in order to illustrate how the mathematics work
in these kind of circuits, which also applies for the larger circuits, e.g., the CNOT
gate.

5.1 Mach-Zehnder Verification

The most interesting use of the beam splitter is to combine it with mirrors
that reflect the incident photon. The configuration shown in Figure 2 is called
a Mach-Zehnder Interferometer. There are two beam splitters labelled BS1 and
BS2. The grey objects shown are mirrors. The photon is shown as a wavy line.
The photon incident at BS1 is split in the manner we have described above,

where each beam splitter is working according the matrix 1√
2

(−i 1
−1 i

)
, and each

mirror produces phase shifts of i over creation operators.

â†
1

BS1

b̂†1

b̂†2

b̂†3

b̂†4

BS2

ĉ†2

ĉ†1

Fig. 2. Mach-Zehnder Interferometer- Inputs and Outputs
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Accordingly, we have the following transformation between the different cre-
ations operators:

a†1 = 1√
2
(ib†

1 + b†
2)

b†
1 = ib†

3

b†
2 = ib†

4

b3†
1 = 1√

2
(ic†1 + c†2)

b4†
1 = 1√

2
(c†1 + ic†2)

Given that only one photon incidents at the input mode a†1(see Figure 2),
then the state of the input modes is

∣∣1〉⊗ ∣∣0〉. According to Equation (2), this

is equal to a†1 ⊗ I(
∣∣0〉⊗ ∣∣0〉). Carrying out the above transformations of the

field operators all the way to the end, the output modes state becomes equal to
ic†1 ⊗ I(

∣∣0〉⊗ ∣∣0〉), i.e., the photon will leave from the vertical port of BS2 (see
Figure 2). In the following, we see how to formally prove this result along with
the formal definition of the Mach-Zehnder interferometer.

Before we present the theorem that verifies the above result, we have to define
the notion of mirror, similar to what we have for the beam splitters:

Definition 12.
mirror(ten, i1, m1, o1, m2)⇔

pos ten(cr i1) m1 = i % pos ten (cr o1) m2

The following theorem shows the formal structure of the above circuit, and
proves that if we receive a photon at the horizontal input of the interferometer,
then it will leave at the vertical output of the interferometer:

Theorem 5.
∀a b d.
is tensor ten∧

1 is beam splitter (−
√

1
2
∗ ii,

√
1
2
),−

√
1
2
,
√

1
2
∗ ii,

ten, a$1, 1, a$2, 2, b$1, 1, b$2, 2)∧
2 mirror(ten, b$1, 1, b$3, 1)∧ mirror(ten, b$2, 2, b$4, 2)∧
3 is beam splitter (−

√
1
2
∗ ii,

√
1
2
),−

√
1
2
,
√

1
2
∗ ii,

ten, b$3, 1, b$4, 2, c$1, 1, c$2, 2)
4 ⇒ tensor 2 (lambda i. if i = 1 then fock (a$1) 1 else vac) =
5 ii% tensor 2 (lambda i. ifi = 1 then fock (c$1)1 else vac)

Lines (1-3) provide the structure of the circuit in Figure 2 with the same modes

naming. Line 4 describes the input modes, where we have one photon at mode a†1
and nothing elsewhere. Line 5 provides the corresponding output modes, where
we obtain one photon at mode c†1 and nothing elsewhere.

Now, we will move to a more complex circuit, where we will focus on the
formal results obtained rather than the proof steps.
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5.2 CNOT Gate Verification

Similar to classical computer, the basic component of the quantum computer is
the quantum bit (or qbit). A quantum bit is a quantum system with two basis
states |0〉 and |1〉. However, in contrast to its classical counterpart, the state
of a qbit is not only |0〉 or |1〉, but can be a mix. Indeed, such a state can be
expressed as |ψ〉 = α|0〉 + β|1〉, where |α|2 + |β|2 = 1. There are a number of
operations that can be defined over these qbits. In this paper, we are interested
in the Controlled NOT gate. It is a two inputs/two outputs gate, namely control
and target signals. The gate semantic is to invert the target bit whenever the
control bit is equal to one, and nothing changes as long as the control bit is
equal to zero. The control bit is always transmitted as is. In other word: if
the possible input is |ψ〉 = α|00〉 + β|01〉 + γ|10〉 + η|11〉 then the output is
|ψo〉 = α|00〉+ β|01〉+ γ|11〉+ η|10〉.

In quantum optics, this gate can be implemented using five beam splitters
[19], as given in Figure 3, where each of the control and target qbits is repre-

BS1 

BS2 

BS3 

BS4 BS5 

c0 

vac 

t0 

t1 

vac 

t1 

t0 

c1 

c0 

c1 

v0 

v5 

 4 

 2 

 1 

 2 

 5 

 4 

 5 

 3 

 1 

 4 

 3 

 6 

 5 

 6 

 4 

 5 

Fig. 3. Controlled NOT gate optical implementation

sented using two optical beams, and each of the beam splitter follows the matrix( √
η

√
1− η√

1− η −√
η

)
. For BS4, BS5 η is equal to 1

2 , and for the rest it is equal to

1
3 . The encoding of such four beams is as follows: applying a single photon to
c0 is equivalent to setting the control bit to zero, and applying the photon to c1
is equivalent to setting the control bit to one (same rule applies for the target
bit). In Figure 3, vac refers to vacuum state, i.e., we do not apply any photons
at these ports. For the output modes, v0 and v5 are dummy signals and do not
have any semantic.

Now the formal definition of such circuit is included in the following theorem:
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Theorem 6.
∀a b c d.
is tensor ten ∧

1 is beam splitter (
√

1
3
,
√

2
3
,
√

2
3
,−

√
1
3
, ten, a$2, 2, a$1, 1, b$2, 2, b$1, 1)∧

2 is beam splitter(
√

1
2
,
√

1
2
,
√

1
2
,−

√
1
2
, ten, a$4, 4, a$5, 5, b$4, 4, b$5,5) ∧

3 is beam splitter(
√

1
3
,
√

2
3
,
√

2
3
,−

√
1
3
, ten, b$4, 4, a$3, 3, c$4, 4, c$3,3) ∧

4 is beam splitter(
√

1
3
,
√

2
3
,
√

2
3
,−

√
1
3
, ten, b$5, 5, a$6, 6, c$5, 5, c$6,6) ∧

5 is beam splitter(
√

1
2
,
√

1
2
,
√

1
2
,−

√
1
2
, ten, c$4, 4, c$5, 5, d$4, 4, d$5,5) ⇒

6 |010100〉 = 1
3
∗ (|010100〉+√

2 ∗ |101000〉
7 +

√
2 ∗ |100001〉+ |011000〉+ |010001〉+√

2 ∗ |100100〉)
Lines (1-5) represent the formal structure of the CNOT gate in Figure 3. Note
that we used the bra-ket notation [5] in the formal theorem for simplicity, in the
actual code all states are written the same form as in the Mach-Zehnder example
(see Theorem 5). The order of the output bits, on the right hand side of Line 6
and Line 7, is v0, c0, c1, t0, t1, v5.

According to [19], the output of the circuit in Figure 3 is not exactly as desired:
As one can notice from Line 6 and Line 7, in the case of the control bit is equal
to zero and the target bit is equal to zero. The result on the right hand side
contains many possibilities of different probabilities, among them the required
(underlined) one with probability (13 )

2. Note that these unwanted possibilities
do not contain at all any meaningful states, i.e., |011000〉, |001100〉, |001010〉. We
can get rid of these unwanted outputs by a physics process called coincidence
basis [19]. We also verify the case where the control gate is equal to zero and
the target is equal to one. The result was compatible with the one presented in
[19]. Similarly, we verified the case of the control is equal to one. For example in
case of |001100〉, the following theorem shows the result:

Theorem 7.
tensor |001100〉 = 1

3
∗ (|001010〉 − √

2 ∗ |002000〉 − |001001〉+√
2 ∗ |000200〉+ |000101〉+ |000110〉+ |000011〉)

The formal analysis of these two optical circuits would not have been possible
without the development of the following tactic: MULTI MODE DECOMPOSE TAC

which is responsible for passing the creator operator in/out to/from the different
modes. As its name suggests, it acts like decomposing multi-modes to many single
modes that can be dealt with using the single-mode theorems.. The key lemma,
on which this tactic is built, is:

Theorem 8.
∀p q f x.(p x ⇒ f x = q) ⇒ (if p x then q else (f x)) = f x

This lemma typically reduces multi-mode to single-mode, whenever all possible
conditions (in the if statement) reduce to the same predicate.
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Besides above tactic, we have developed a few other, such as CFUN FLATTEN TAC,
which takes the whole formula to complex level, at final stage of the proof, to han-
dle some algebraic simplification to finalize the proof. Without these tactics the
verification of Mach-Zehnder and CNOT would be lengthly and complicated. In-
terested readers can check the HOL script of these tactics at [15], and see how they
are utilized in the proofs.

This interesting result concludes the whole formalization by showing the effec-
tiveness of formal methods, in particular with large circuits with a large number
of connections and variables. Note that this circuit is working on 6 modes in
each step, with the actual number of single modes (including intermediates)
equal to 16.

6 Conclusion

Quantum computers are expected to outperform classical machines in certain
cases, and provide powerful and unbreakable security systems. Among many
implementations, quantum optical circuits with the help of nuclear optical cou-
pling and nuclear magnetic resonance showed good advancement in building
quantum machines at large scale. Thus, the quantum computer development
became very critical. In this paper, we have studied the applicability of formal
methods, in particular of HOL theorem proving, for the formal analysis and
verification of quantum optical computers. The presented work includes the for-
malization of optical single-mode and multi-mode that helped in the analysis
of quantum gates. As an illustrative application, we presented the verification
of the Mach-Zehnder interferometer and Controlled NOT gate. Throughout our
development, we have experienced a number of difficulties. We had a problem to
find one clear definition of many quantum concepts. Physics books present the
same idea from different perspectives and each considers some implicit assump-
tions. To deal with this problem, we focused our axiomatic definitions on the
common ground of the different physics resources. The usability and readability
of definitions and theorems are another challenge, where in the first versions of
our development, we had lengthy definitions and theorems due to the high num-
ber of variables that control the quantum process. For this situation, we tried to
remove irrelevant variables (which is a kind of low-level abstraction) that do not
affect the quantum natures of systems. We also enhanced the proving process
by developing dedicated tactics. This facilitates the reasoning about potentially
similar circuits and gates and removes the burden of tedious steps, in particular
with large circuits that have a high number of modes (i.e., optical beams). As
a future work, we are targeting the formalization of more complicated quantum
gates, e.g., the Hadamard gate [19], and enhancing the whole verification process
to be more automated.
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