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Nowadays, optics has several applications in many industries. Quantum optics in particular plays an
important role, e.g., in information technology. The systems developed using quantum optics have
several applications which can be critical (with respect to either safety or financial aspects). Their
verification is thus an extremely important problem. This is done usually with paper-and-pencil
analysis, simulation or computer algebra systems. However these techniques have some flaws that
we propose to address using formal verification, and, more specifically, theorem proving. In this
position paper, we sketch a formalization of quantum optics using a theorem prover and describe
potential applications of these techniques. We focus in particular on the implementation of quantum
bits (i.e., the first step towards a quantum computer) using coherent laser light.

1 Introduction

Classical physics (electromagnetic theory and Maxwell equations) studies light as an electromagnetic
wave. On the contrary, quantum optics studies light as a stream of particles, called photons [4]. Based
on this concept, quantum optics investigates new properties and phenomena about the light, especially
with low number of photons [12]. This investigation allows a better use of existing optical devices,
e.g., beam splitters [9], and the invention of totally new quantum devices, e.g., single photon devices
[11]. These devices help in different fields; sometimes they enhance the performance, e.g., detection of
gravitational waves, and in other cases they define totaly new solutions, e.g., quantum communications
[15]. In addition, quantum optics is one of the most practical implementations of quantum computers
[13].

System verification represents a critical issue in every design process. For quantum mechanics and
especially quantum optics, the available verification methods are simulation, paper-and-pencil, numerical
methods, and computer algebra systems (“CAS”). In the first case, the systems are simulated on computer
and in optical laboratories. For large systems, laboratories are more efficient and effective than computer
simulation since it was proved in 1982 by Feyman that quantum systems cannot be simulated on ordinary
computers [3]. Although laboratories can be sufficient, they raise cost and safety issues. In the paper-
and-pencil approach, all the verification process is done by modeling the system and proving, using
existing physic knowledge, that the system satisfies its specifications. However all this process is done
by a human and is thus much error-prone, particularly when the system is very large. Thus, computer
methods can be used to help the human – and thus decrease the risk if errors – which yields the two last
methods: numerical methods (typically Matlab [14]) and CAS (typically Mathematica [2]). Both kinds
of tools are used to help the simplification and generation of intermediate mathematical steps. However,
these tools are not sufficient: they cannot be substituted fully to the paper-and-pencil approach since they
cannot mathematically express the whole model of the system.

Formal verification is an alternative to the techniques mentioned above. This approach involves the
development of a formal (i.e., mathematical) proof that the system satisfies its specifications. This can be
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done in particular using a theorem prover, i.e., a software allowing to express the specification and model
of the system in a mathematical way. We can then prove properties about the system inside the theorem
prover (typically, we prove that the model of the system satisfies its specifications). The whole interest
of the method is that the theorem prover is able to ensure that the provided proof is mathematically
flawless. The language allowing to express the mathematical properties in the theorem prover is usually
first-order logic (FOL) or higher-order logic (HOL). Several theorem provers exist such as HOL4, HOL
Light, PVS, Isabelle or Coq (see, e.g., [?]).

In this work, we investigate the use of theorem proving for the verification of quantum optical sys-
tems. We target the formalization of the quantum optics theory in HOL Light and the use of this formal-
ization in quantum system verification. In addition, we sketch the verification of a quantum computer
implementation as a coherent laser light [13] using this formalization.

2 Quantum Optics Formalization

In this section, we sketch some essential aspects of quantum mechanics that are useful to quantum optics,
which we have formalized. In addition, we give the basic definition and some important results of
quantum optics.

Any system considered in physics has a so-called state which sums up the information that we know
about the system at a given time. A state in classical physics can be evaluated deterministically, but a
quantum state is known only probabilistically. Thus a quantum state can be considered as a probability
distribution function. Since such a function is square-integrable, it can be represented mathematically
as an element of the Hilbert space L2 (usually written with the notation |ϕ〉). Then system observables
(e.g., position and velocity of a moving particle) are represented as linear hermitian transformations over
L2. A real value is obtained from such an observable O by computing 〈ϕ |Oϕ〉, i.e., the L2 inner product
of the state |ϕ〉 with |Oϕ〉.

The above notions have been formalized in HOL Light. More precisely, we defined the notion of
Hilbert space, of hermitian transformations, and we proved related properties. From these, we could
define quantum states as elements of the space L2, and observables as linear hermitian transformations
over L2. This allowed us to prove important results such as the uncertainty principle which states that
some observables cannot be measured simultaneously with high accuracy [4].

In quantum mechanics, we make a distinction between originally quantum systems and originally
classical systems. Originally classical systems have to be transformed into quantum systems by a so-
called quantization process. In 1930, Paul Dirac defined such a transformation called the canonical
quantization. This process was used in the quantization of many systems. A well known quantization
example is the quantization of electromagnetic field which results in quantum optics theory. The quan-
tization of an electromagnetic field, especially a single-mode field1, forms the basis of quantum optics.
Important results were discovered in the quantized single-mode field. For example, the fact that the total
energy in the field is a discrete value, the fact that the field consists of particles called photons, and the
relation between the total energy in the field and the number of photons in it.

Using our quantum mechanics HOL library, we have implemented the canonical quantization process
and used it successfully to quantize the single mode field. Currently, we have a library for the single mode
in which we have proved several theorems. For example, we proved that the total energy in the field is
discrete. In addition, the definition of photons was added and the relation between photons number and

1i.e., an electromagnetic field with single resonance frequency.
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the total energy in the field was proved. We are currently working on the implementation of the coherent
light definitions and related theorems.

The above libraries show that our objective, i.e., quantum optics formalization, is reasonable. We
now plan to formalize more advanced topics in order to be able to target tangible applications as we will
see in the next section.

3 Formal Verification of a Quantum Bit Implementation

One of the most promising applications of quantum optics is quantum computers. In this section, we
propose to apply our framework to this field and, more specifically, to the implementation of quantum
bits. We hope that using formal verification in this field will help the development of the quantum bit
in the industry, since it is a cheap ,but accurate, verification tool compared to the optical laboratories
simulation.

The first model of quantum computer was proposed in 1985 by Deutsch [1]. The essential advantage
of quantum computers is that they can run exponentially faster than ordinary computers [5]. In a way
similar to ordinary computers which are based on bits, quantum computers are based on quantum bits,
called Qubits. Then, similarly, operations between qubits are achieved by so-called quantum gates. There
are different implementations of quantum computers, e.g., [7], [10], [6] and [16]. The main difference
among these implementations is how qubits are implemented: it can be either photons, electrons or
ions. Among these implementations, the ones based on photons and quantum optics seem to be the most
promising for a practical use [13].

In quantum mechanics, any system has a collection of quantum states2 |ϕi〉 called pure states. At
any time, the system state |ϕ〉 is formally defined as: |ϕ〉=∑i ci|ϕi〉, where ci ∈ C and ∑i |ci|2 = 1. For
a qubit, the system has only two pure states: one for |0〉 and one for |1〉. Thus, the qubit state is defined
as follows: |Qustate〉= δ |0〉+β |1〉, where δ and β ∈ C. Now, we sketch how qubits are implemented as
coherent light.

The light is called coherent when the number of photons, at any time, is randomly distributed with
Poisson probability distribution function (p.d.f). A coherent light at a quantum state |α〉 means that the
Poisson p.d.f parameter is |α |2. In [13] a qubit is implemented as a prepared coherent light with two
pure states: |α〉 and |−α〉 which represent |0〉 and |1〉 respectively. In addition, the implementation of
basic quantum gates is introduced. For example, the quantum flip gate, which converts δ |0〉+β |1〉 into
β |0〉+ δ |1〉, is implemented as an optical phase shifter. We plan, after finishing the formalization of
coherent light, to formally verify two properties:

1. ∀α . |α〉 and |−α〉 are orthonormal3.

2. ∀δ β . an optical phase shifter converts δ |α〉+β |−α〉 into β |α〉+δ |−α〉.
One can notice that the first property cannot be verified by simulation at all. And verifying requires to
simulate all possible values of δ and β , which is impossible. On the other hand, our proposed framework
can handle such problems, which gives it advantage over the the simulation methodology. In addition,
its ability to express all the system specification mathematically gives it advantage over CSA .

2We usually denote a quantum state (i.e., the vector of L2) as |ϕ〉.
3By the definition, the qubit pure states sould be orthonormal.
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4 Conclusion

We introduced a new alternative for the verification of quantum optics systems which covers the flaws
of simulation and CSA. HOL Light libraries for quantum mechanics and single-mode field quantization
were implemented. We are currently working on the formalization of coherent light to formally verify
the implementation of qubits as coherent light. In the long run, we plan to develop a full, generic, library
that could be easily applied to the verification of more complex optical systems.
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