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Abstract. Process engineering deals with the design, operation and op-
timization of different physical processes such as chemical reactions, bi-
ological mechanisms and petroleum processing. Recent technological ad-
vancements and short time to market in almost every industry bring
new challenges and hence the complexity in the process engineering sys-
tems. One of the main techniques to analyze such models is to represent
underlying systems using signal-flow-graphs which provide a systematic
procedure to evaluate the system performance in the form of transfer
functions. Traditionally, the analysis of signal-flow-graphs based models
has been carried out by the paper-and-pencil based proofs and numerical
techniques. In this paper, we present an overview of using theorem prov-
ing to formally analyze process engineering models. The main motivation
of this work is twofold: First, the application of formal methods in a new
domain to improve the analysis accuracy; Second, an effort to reduce the
gap between formal methods and different engineering communities such
as mechanical, chemical and engineering management.

1 Motivation and Background

International competition, demand for quality, and new technologies have height-
ened the need to develop high quality products, which can compete in the global
marketplace. As a result of this increased competition, the pace of product de-
velopment has quickened, forcing manufacturers into an era in which continuous
quality improvement is a matter of survival, and not simply a competitive advan-
tage. In general, process engineering is composed of different interrelated tasks
which can be described in the form of a block diagram or a signal-flow-graph
(SFG) [10,9]. In this paper, we address how to formally model engineering de-
sign strategies and methods in a theorem prover based on the formalization of
signal-flow-graph theory. Consequently, many features can be predicted such as
success probabilities and lead time, which is the time required to procure or
manufacture an item of industrial design process. Our formalization of SFG is
generic and allows the modeling of dynamically changing design conditions in a
systematic way. Moreover, we can compute the distribution of project durations
and easily predict important project metrics such as the expected mean and
variance of lead time [11,12,8]. Finally, the information regarding the iterative
structure of the project, and sensitivity of the lead time, which describes the



impact of varying one of the model variables i.e., probability or task duration
on the model lead time, can also be evaluated.

The signal-flow-graph is composed of a network of directed branches which
are connected by nodes (as shown in Figure 1). The branches represent the
design activities, and the nodes represent states of the process and may involve
a probabilistic choice as to which subsequent branch to follow. A special type
of branch is one which goes back to a previous state of the process, i.e., the
design iteration. The simplest form of design iteration is the direct repetition of
an activity, i.e., return to the same state (as shown in Figure 1). If the duration
and/or probability are different for the subsequent iterations and/or we wish to
limit the possible number of iterations, another approach to model the process
must be used, i.e., adding new nodes and branches that represent subsequent
iterations. The branch jk depicts the activity when going from node j to node
k. Each branch is associated with a quantity known as the branch transmission,
i.e., Pjk = pjkz

tjk where pjk is the probability associated with the branch, and
tjk is the time taken to traverse the branch. The parameter z is the transform
variable used to connect the physical system (time domain) to the quantities
used in the analysis (transform domain). Also, z is used to separate the time
and probabilities when branch transmissions are multiplied, so we will be able
to extract the lead time of the process and the probability of each branch.
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Fig. 1. Signal-Flow-Graph Example

In order to analyze the model behavior and to ensure that a given model
satisfies the system properties and specifications, we need first to obtain the
system transfer function which relates the system input and output. The main
benefit of using SFG is the Mason’s gain formula (MGF) [9] to compute the
system transfer function, which is indeed applicable to any linear signal-flow-
graph. The formula is given as follows :
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where

– ∆: The determinant of the graph



– yin: The input-node variable
– yout: The output-node variable
– G: Complete gain between yin and yout
– N : Total number of forward paths between yin and yout
– Gk: Gain of kth forward path between yin and yout
– Li: Loop gain of each closed loop in the system
– LiLj : Product of the loop gain of any two non-touching loops
– LiLjLk: Product of the loop gain of any three non-touching loops
– ∆k: The cofactor value of ∆ for the kth forward path, with the loops touching

the kth forward path removed.

The MGF provides an efficient way to compute the transfer function by avoid-
ing the linear algebraic computations of simultaneous equations and the overall
problem reduces to the extraction of the forward paths and feedback loops. We
use the HOL Light theorem prover [6] to formalize the underlying theories of
signal-flow-graph. This work is a part of larger projects on the formal analysis
of signal processing and optics12.

Figure 2 outlines the main idea to formally model process engineering us-
ing signal-flow-graphs, compute the system transfer function using Mason’s gain
formula, and prove that the given process engineering model satisfies the speci-
fication.
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Fig. 2. Formal Analysis Framework
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The whole framework can be decomposed into three major parts which are
depicted by different colors as shown in Figure 2. First, the formalization of
signal-flow-graph theory which consists of the formalization of the two algo-
rithms, i.e., Elementary Circuits and Forward Circuits which compute the
forward paths and feedback loops, respectively. Consequently, these feedback
loops and forward paths can be used to compute the transfer function using
Mason’s gain formula; Second, the formalization of Mason’s gain formula to
compute the transfer function; Third, the modeling of system properties, which
are the model lead time and its expected value and variance along with the
model sensitivity. Moreover, modeled systems will then also be available in a
library for future use either independently or as a part of a larger process, which
can be used by engineering managers to gain insight into the process through
lead time computation and sensitivity analysis. The verified systems also serve
to characterize the industrial processes, and to design and optimize them for the
best use of time, effort and cost.

The rest of the paper is organized as follows: Section 2 presents some high-
lights of our SFG formalization. We give the formal analysis of engineering pro-
cess properties in Section 3. In Section 4 we present the analysis of the die design
process as an illustrative practical application Finally, Section 5 concludes the
paper and provides hints for some future directions.

2 Signal-Flow-Graph Formalization

We model a single branch as a triplet (i, Pij , j), where i, Pij and j represent
the start node, the transmittance and the end node, respectively. Therefore, a
path can be modeled as a list of branches and further an SFG can be described
as a composition of a list of all branches in the graph along with the information
about the total number of nodes in the graph (size of the graph) and the sink
node (output node) at which we want to compute the output of the model. We
define three type abbreviations in HOL Light1, i.e., branch, path and signal-
flow-graph as follows:

Definition 1 (Branch, Path and SFG).
new type abbrev ("branch", ‘:N × C × N‘)
new type abbrev ("path", ‘:(branch)list‘)

new type abbrev ("sfg", ‘:(branch)list × N × N‘)

where the second and third elements of sfg represent the size and the output
node of a signal-flow-graph, respectively.

Next, in order to apply the MGF to a given SFG, we need to compute all the
forward paths (forward circuit) and feedback loops (elementary circuit) from the
source node to the node given by the user as the output node. We implemented a
procedure to extract this information which is mainly inspired from the method

1 Note that throughout this paper, we used minimal HOL Light syntax in the pre-
sentation of definitions and theorems to improve the readability and for the better
understanding without prior experience of HOL Light notations.



proposed in [13]. Briefly, we take an SFG and generate a square matrix in which
nodes are arranged in the first column and each row represents the nodes from
which there is at least a branch that starts from the node under consideration.
The matrix has the same size as the graph and the nodes numbers are arranged as
the first elements of each row and the rest of the row is zeros. For the extraction
of elementary circuits, we start the process by the first node of the graph and
go through all possible paths which start from the node under consideration
and test for each path whether it is a loop or not, i.e., the start and the end
node of the path are the same. In the next iteration, we go to the next node of
the graph and repeat the same process, only that we do not consider the nodes
which have been considered in the previous node. For example when we search
for loops which start from the node 2 we do not consider the paths which pass
by the node 1 in the search process. The main process stops when we reach the
last node of the SFG. For forward circuits (forward paths) extraction, we repeat
a similar process, but we only consider the paths starting from the source node
rather than exploring all the nodes, also instead of testing the node whether it
is a loop or not we test if it is a forward path, the end node of the path is the
output node of the model. For the sake of clarity, we give the following two main
definitions of our formalization and more details can be found in [1].

Definition 2 (Elementary Circuits).
` ∀ (system : sfg).
EC system = if (fst of trpl system = [ ]) then [ ]
else all loops (EC MAIN system) system

where the function EC MAIN accepts an SFG, i.e., ((branch)list × N × N)
and returns the list of loops in which each loop is represented a list of nodes
only, and all loops takes the result of EC MAIN and the SFG (system) under
consideration and returns the list of loops in the standard format, in which each
loop is a list of branches and each branch represents a triplet. Finally, the main
function, EC returns an empty list if the system has no branches otherwise it
gives the list of all loops in the system found in the search.

Definition 3 (Forward Circuits).
` ∀ (system : sfg).

FC system = if (fst of trpl system = [ ]) then [ ]
else forward paths (FC MAIN system) system

where the function FC MAIN accepts an SFG (i.e., system) and returns the list of
forward paths in which each forward path is considered as a list of nodes. Then
the function forward paths takes the result of FC MAIN and system and returns
the list of forward paths, such that each forward path is a list of branches.

We use Definitions 2 and 3 to extract the elementary and forward circuits
of the SFG given in Figure 1. We consider node 1 as the input (source) and
node 4 as the output (sink), the graph size is 4 (number of nodes in the graph).
First, we model the signal-flow-graph as follows :

Definition 4 (Model of SFG in Figure 1).
` ∀ P12 P24 P13 P23 P32 P34 ∈ R.



Sfg model P12 P24 P13 P23 P32 P34 =
[(1, P12, 2); (2, P23, 3); (2, P24, 4); (1, P13, 3); (3, P32, 2); (3, P34, 4)], 4, 4

Second, we apply the Definitions 2 and 3 on the above model to extract the
forward and elementary circuits:

Theorem 1 (Forward Circuits in SFG of Figure 1).

` ∀ P12 P24 P13 P23 P32 P34 ∈ R.
FC (Sfg model P12 P24 P13 P23 P32 P34) =

[[(1, P12, 2); (2, P24, 4)]; [(1, P13, 3); (3, P34, 4)]]

Theorem 2 (Elementary Circuits in SFG of Figure 1).

` ∀ P12 P24 P13 P23 P32 P34 ∈ R.
EC (Sfg model P12 P24 P13 P23 P32 P34) = [[(2, P23, 3); (3, P32, 2)]]

Note that the proofs of Theorem 1 and 2 are mainly based on some simplifiers [1]
developed for the forward and elementary circuits extraction, respectively. By
inspection of the Figure 1, we note that there are two forward paths; 1 - 2 - 4
and 1 - 3 - 4 , and one feedback loop; 2 - 3 - 2 . The same result as in Theorems
1 and 2.

Next, we present the formalization of two important functions. The first takes
the list of loops and gives the determinant of the model, by computing the gain of
all loops (which is the product of all loop branches transmittances), and the gain
of no touching loops. The second calculates the numerator of the MGF by taking
the lists of forward paths and feedback loops, and computes

∑
k∈system

Gk∆k,

where Gk and ∆k represent, respectively, the gain of the kth forward path and
the determinant of the kth forward path considering the elimination of all loops
touching the kth forward path.

Definition 5 (MGF Denominator).
` ∀ (t : (path)list).
determinant t = 1 + (delta t (touching loop t))

where the function determinant accepts the list of loops (t) in the graph and cal-
culates the determinant of Mason’s gain formula by first, calling touching loop

which determines all the touching loops for each loop of the graph.

Definition 6 (MGF Numerator).
` ∀ (t1 : (path)list) (t2 : (path)list).
product gain det t1 t2 = if (t1 = [ ]) then 0 else

((gain t1[1]) ∗ (1 + (forward delta t1[1] t2))) +
(product gain det (t1/t1[1]) t2)

where the function product gain det accepts the lists of loops (t2) and forward
paths (t1) in the graph and returns zero if there is no forward path in the graph
otherwise it computes in each iteration the product of the gain of forward path
under consideration (Gk, which is computed by gain) and its determinant (∆k,



which is calculated by forward delta) until we go through all the given forward
paths. Here t1[1] is first element of the list t1.

Finally, we utilize above described functions to formalize the Mason’s gain
formula given in Equation 1, as follows:

Definition 7 (Mason’s Gain Formula).
` ∀ (system : sfg).

Mason Gain system =
product gain det (EC system) (FC system)

determinant (EC system)

where the function Mason Gain accepts an SFG (i.e., system) and computes the
transfer function as in Mason’s gain formula [10,9]. The model transfer function
is computed using the function transfer function, which is defined as follows:

Definition 8 (System Model Transfer Function).
` ∀ (system : sfg).
transfer function system = Mason Gain (λz. system z)

where the function transfer function accepts a system which has type C →
sfg and returns a complex (C) quantity which represents the transfer function
of the design process model (i.e., system). The detailed HOL Light formalization
can be found in [1].

3 Formalization of the System Properties

Reasoning about lead time is a very critical task because it evaluates the per-
formance and survival of an industrial project. The uncertainty of lead time can
have huge effects on the overall business of the company as described in Table 1.
A firm usually prefers to have a long and more reliable lead time, than a shorter,
more variable lead time [5]. The expected value and variance of the lead time

Lead time Outcomes

Lead time is as expected Ideal situation

Lead time is shorter than expected Unused stock when the delivery arrives early

Lead time is longer than expected Shortages when running out before the delivery arrives

Table 1: Uncertain Lead Time Effects

(or the standard deviation) of the design process are directly dependent on the
probabilities of iteration and the task times. The expected value of lead time is
used to compute a safety stock based on a target service level [7]. The variance
of the lead time is used in service-level computation of safety stock when it is
zero, that means the lead time has no uncertainty and it should not be greater
than the lead time [7].



Definition 9 (Expected Value of Lead Time).
` ∀ (system : sfg).

expected LT system =
d

dz
(λz. transfer function (system z)) |z=1

where expected LT accepts a model as an SFG, i.e., (system : path, N, N) and

returns the expected lead time. The function
d

dz
f(z) represents the complex

derivative of function f with respect to z. As each term of the transfer function
is of the from piz

ti , where ti is the time and pi is the probability, for z = 1 we
get piti and the sum is the expected value of lead time of the process.

Definition 10 (Variance of Lead Time).
` ∀ (system : sfg).
variance LT system =

d

dz
(λz. z ∗ d

dz
(λz. transfer function (system z))) |z=1 −

d

dz
((λz. transfer function (system z)) |z=1)

2

where variance LT accepts a system and computes the variance of the lead time
(or standard deviation).

The sensitivity of the expected value and variance of lead time to each pa-
rameter can be calculated as the change in value of the quantity in response to
a small change in the value of the parameter (task duration or the probability).

Definition 11 (Sensitivity).
` ∀ (system : sfg).
sensitivity system k =

(
d

dx
(λx.

d

dz
(λz. transfer function (system x z)) |z=1) |x=k) ∗

(
k

d
dz

(λz. transfer function (system x z)) |z=1,x=k

)

where sensitivity accepts a system and a parameter k in the system (proba-
bility pjk or task times tjk), and returns the sensitivity of lead time with respect
to change in parameter k. In order to demonstrate the utility of our proposed
framework, we formally analyze the die design process in the next section.

4 Application : Die Design Process

Die design process is a manufacturing process which involves the production of
geometrically complex and reusable dies (also called molds). This is a critical
industrial process as mentioned in [2,4,3] because dies are designed primarily
to reduce the toolmaker’s costs, to reduce production times, and to improve
the product quality. Thus the precision in the die design process is required
to avoid problems in the production process. Figure 3 shows the signal-flow-
graph of an example of the process of die design [11], where the task duration
(the exponents of the parameter z in the branch’s transmittance) are in scaled



work days required for a certain range of panel complexity. The signal-flow-
graph shows the tasks of manufacturability evaluation and die design replicated
since the rework probabilities (the real value in the branch’s transmittance) and
task times change after the first iteration. By inspection of the graph, we find
that there are 10 nodes (each node represents a task in the process) and the

output node is node 10 . So by modelling the SFG of die design to the type of
abbreviation we gave in Definition 1, we define it in HOL Light as follows:

Definition 12 (Die Design Model).
` ∀ z ∈ R.
Die model z =
[(1, z3, 2); (2, z3, 3); (3, 0.75z2, 4); (3, 0.25z2, 7); (4, z2, 5); (5, 0.25z, 6); (6, z, 5);

(5, 0.75z2, 7); (7, 0.1z, 6); (7, 0.9z3, 8); (8, z7, 9); (9, 0.5z, 5); (9, 0.5, 10)], 10, 10
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Fig. 3. Signal-Flow-Graph of Die Design Process

Next, we utilize our formalization to verify the transfer function of the above
mentioned die design process [11] as follows:

Theorem 3 (Transfer Function of Die Design Process).
` ∀ z ∈ R.
transfer function (Die model z) =

0.1125z18 − 0.028125z20 + 0.253125z22

1− 0.25z2 − 0.75z4 − 0.3375z13

The proof of this theorem is mainly based on the extraction of forward paths
and feedback loops in the graph and then using the Mason’s gain formula. Note
that we used the simplifiers developed for the elementary and forward circuits
extraction, and Mason’s gain formula [1] which reduce the interaction with HOL
Light during the proof. Based on the obtained transfer function we can verify the
process’s most likely lead time, the shortest lead time, the expected lead time,
the standard deviation of lead time (variance of lead time), and the sensitivity
of the process.



This completes our formal analysis of the die design process. So far, we have
developed a core formalization of the signal-flow-graphs theory. Moreover, we
developed a generalized procedure for the formal stability and resonance analy-
sis of engineering systems (details can be found in [1]). Finally, we applied our
signal-flow-graphs formalization in process engineering by developing a proce-
dure to model a design process and verify the corresponding transfer function.
Based on the transfer function of the die design process, our next step is to verify
the properties of this model using our formalization. The source code of the en-
tire formalization is available at [1]. The formalization of signal-flow-graphs took
approximately 1500 lines of HOL Light code and about 250 man-hours. However,
the utilization of higher-order-logic theorem proving in industrial settings (par-
ticularly, engineering process) is always questionable due to the huge amount of
time required to formalize the underlying theories. Another important factor is
the gap between theorem proving and the engineering communities, which limits
its usage in industry. For example, it is hard to find industrial engineers with
theorem proving background and vice-versa.

5 Conclusion

Signal-flow-graphs provide a powerful, flexible design and modeling tool for the
purpose of analyzing engineering systems such as the product development pro-
cesses. In this paper, we reported a new application of formal methods in the
domain of process engineering. We presented a formal analysis framework based
on higher-order logic which provides the required expressiveness and soundness
to formally model and verify the properties of design process models. In par-
ticular, we formalize the signal-flow-graph theory along with the Mason’s gain
formula and transfer functions. Consequently, we presented the formalization of
the properties of the design process models. Finally, we described the formal
analysis of a die design process. We believe that the reported work is a first
step towards an ultimate goal of building a comprehensive framework to analyze
process engineering systems using formal methods.
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