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Abstract— Experienced pipeline operators utilize Magnetic 
Flux Leakage (MFL) sensors to probe oil and gas pipelines 
for the purpose of localizing and sizing different defect types. 
A large number of sensors is usually used to cover the 
targeted pipelines. The sensors are equally distributed 
around the circumference of the pipeline; and every 
three millimeters the sensors measure MFL signals. 
Thus, the collected raw data is so big that it makes the 
pipeline probing process difficult, exhausting and error-prone. 
Machine learning approaches such as neural networks have 
made it possible to effectively manage the complexity 
pertaining to big data and learn their intrinsic properties. 
We concentrate, in this work, on the applicability of artificial 
neural networks in defect depth estimation and present a 
detailed study of various network architectures. Discriminant 
features, which characterize different defect depth patterns, 
are first obtained from the raw data. Neural networks are 
then trained using these features. The Levenberg-Marquardt 
back-propagation learning algorithm is adopted in the training 
process, during which the weight and bias parameters of the 
networks are tuned to optimize their performances. 
Compared with the performance of pipeline inspection 
techniques reported by service providers such as GE and 
ROSEN, the results obtained using the method we proposed 
are promising. For instance, within ±10% error-tolerance 
range, the proposed approach yields an estimation accuracy 
at 86%, compared to only 80% reported by GE; and within 
±15% error- tolerance range, it yields an estimation accuracy 
at 89% compared to 80% reported by ROSEN. 

Keywords-big data; neural networks; machine learning; 
pipeline inspection; magnetic flux leakage  

I.  INTRODUCTION 
Natural gas and crude oil production is usually carried 

through long-distance transmission metallic pipelines. Due 
to the nature of environment and extreme temperature, 
metallic pipelines are subjected to corrosion, which is 
considered as a leading cause of pipeline defects. In [1], it 
has been reported that nearly 30% of pipeline defects are 
due to external corrosion. These pipeline defects can result 
in huge financial losses, damage to the environment, and 
loss of life. Thus, pipeline operators are required to utilize 
effective and efficient intelligent tools to detect and locate 
pipeline defects. Efficient intelligent tools utilize Magnetic 
Flux Leakage (MFL) signals and ultrasonic waves and use 
them to detect and localize defect types (e.g., corrosion, 
cracks, dents, etc.). MFL recordings around the center of a 

metal-loss defect do have a distinct pattern of behavior. The 
sensor passing directly above the defect center has highest 
amplitude of the axial and radial components of the MFL 
signal. The amplitude of these components gets lower for 
sensors further away from the defect center.  Using the MFL 
measurements of the neighborhood sensors, the type and 
size of a defect can be determined. In the literature, several 
techniques have been proposed for the purpose of detecting 
and localizing pipeline defects [2]. In [3], using MFL 
signals, Artificial Neural Networks (ANNs) are used to 
classify signal patterns of various kinds of defects. These 
defects were manufactured and deliberately implanted. The 
ANN was able to distinguish between defect and non-defect 
signals with great accuracy (94.2%). For a particular type of 
defect signals, the ANN recognized them 92.5% of the time. 
In [4], a fuzzy artificial neural network-based approach is 
proposed for reliability assessment of oil and gas pipelines. 
The actual condition of aging pipelines vulnerable to metal 
loss corrosion are characterized by eight pipe parameters as 
input variables obtained from MFL signals. The proposed 
method uses these parameters to estimate the probability of 
failure of aging pipelines vulnerable to corrosion. In [5], a 
recognition and classification of pipe cracks using images 
analysis and neuro-fuzzy algorithm is proposed. Crack-
related features are first extracted. The combination of a 
fuzzy membership function, used to absorb variation of 
feature values, and a back-propagation network, with 
learning ability, shows good classification efficiency. In [6], 
a Radial Basis Function Neural Network (RBFNN) is 
deemed to be a suitable technique and a corrosion inspection 
tool to recognize and quantify the corrosion characteristics. 
An Immune RBFNN (IRBFNN) algorithm is proposed to 
process the MFL data to determine the location and size of 
the corrosion spots on the pipeline.  

There is a relationship between the amplitude and the 
area under the curve of the MFL signal and the depth of the 
corresponding defect. However, this relationship is not 
well-understood and cannot be analytically described. To 
further compound the problem, numerous MFL sensors are 
usually used to scan the pipelines; this in reality results in 
large amount of data collected by these sensors. Hence, 
visual inspection may not be an adequate approach to 
analyze such big data. Therefore, neural networks seem an 
appealing alternative and are proven capable of learning 
this relationship. To the best of our knowledge, neural 
networks have only been used to detect and localize 
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pipelines defects. In this work, the use of artificial neural 
networks (ANNs) for estimating pipeline defects is 
evaluated, using MFL signals obtained an intelligent pig. 

II. PIPELINE DEFECT DETECTION AND SIZING 

A. MFL-based Pipeline Inspection 
Non-destructive pipeline inspection uses autonomous 

devices. Travelling through the pipelines propelled by 
product flow, these devices, called pigs, use special 
sensors that are capable of detecting any magnetic flux 
leakage. This method of pipeline inspection is known as 
MFL scanning, where the measured data are in the form of 
MFL signals. The resolution of the acquired data is 
determined by the number of sensors arranged around the 
pipeline circumference. Theoretically, MFL scanning can 
be simply explained as follows [7]. Using two magnets of 
opposite polarity, magnetic field is first introduced on the 
surface of a pipeline. The lines of the magnetic force 
(magnetic flux) normally traverse through the pipeline 
walls from the south pole to the north pole. However, in 
the existence of a crack or thinning, two new poles emerge 
around the edges of these defects and the air gap between 
the two new edges forces some flux to leak out. An increase 
in flux leakage indicates metal loss. The strength and shape 
of the leaking flux can help estimate defect properties 
such as depth, width, etc.  

B. MFL Data is Big Data 
As shown in Figure 1, if we roll-out the wall of the 

targeted pipeline, the sensors, placed on the inspecting 
autonomous device, are equally spaced along the x-axis. To 
effectively cover the whole circumference of the pipeline, a 
large number of sensors are utilized. Moreover, to effectively 
cover the whole length of the pipeline (usually spreads out 
into hundreds of kilometers), the sensors measure the MFL 
signals every three millimeters along the axis of the pipeline.   
This, of course, results in a tremendous amount of raw data 
that makes the manual inspection process futile. To alleviate 
the difficulties accompanying the analysis process of such 
big data, the data dimensionality is first reduced through 
suitable feature extraction techniques. Furthermore, the 
obtained features are fed into machine learning tools such as 
neural networks to learn the intrinsic relationship between 
MFL signals and their corresponding defect depths. 

C. Metal-Loss Detection and Sizing Using Wavelet-based 
Techniques  
Wavelets [8, 9, 10] techniques are successfully used in 

numerous applications such as data compression [11], 
classification [12], and de-noising [13, 14, 15]. Wavelets 
techniques can also be applied for metal-loss detection in 
pipelines [16 ].  Given a certain defect, corresponding MFL 
signals may have a specific form at the center of the defect. 
The MFL signal )(xB , shown in Figure 2, is sampled from a 
pipeline, and represents three cubical defects. It mainly 
consists of three components xB , yB  and zB . As can be 
seen from Figure 2, the three  defects  have  different  extents  

 
Figure 1.  Rolled-out representation of pipeline wall 

 
Figure 2.  A sampled MFL signal representing  three cubical defects 

along the x-axis of the pipeline. Each component of the MFL 
signal consists of a sum of curves. Each curve is a translated 
and dilated copy of a reference shape. If a mother 
wavelet, )(xψ  is assigned to this reference shape, an 

orthonormal wavelet basis �� )(, xkjψ can be derived from it. 
Then, the MFL signal can be expressed as follows: 

)()( ,
,

, xcxB kj
kj

kj ψ�=  

The wavelet transform of the MFL is computed, with respect 
to the basis �� )(, xkjψ , in order to determine a pipeline 

defect and estimate its extent.  The set of non-zero 
coefficients, kjc , indicates the positions and factors of the 

reference shape, which are used to locate the defect on the 
pipeline and specify its extent.  

D. Machine Learning-based Techniques for Defect-Depth 
Estimation 

Once defects have been detected and located using 
wavelet techniques, an    equally   important   problem   is 
estimating their depths. Considering the large amount of data 
obtained by hundreds of MFL sensors, obtaining meaningful 
defect depth-related properties is by no means an easy task 
and hard to   accomplish using traditional approaches. Thus, 
machine learning techniques can play a significant role as 
they are capable of extracting such properties through 
iterative training from large data. While most machine 
learning-based techniques reported in the literature have 

586



addressed the defect localization problem, little work has 
been dedicated for defect depth estimation. In [17], a support 
vector machine and principal component analysis are used in 
defect depth estimation. In this work, the neural networks are 
utilized to learn the intrinsic properties between certain 
defect depths and the shapes of their corresponding MFL 
signals. 

III. NEURAL NETWORK-BASED APPROACH FOR 
ESTIMATING DEFECT DEPTHS 

Along with the length of the defect, its depth is a very 
important factor for determining its severity. According to 
industry standards, some defects, based on their depths, may 
be considered completely safe, while others are deemed too 
severe. It has been observed that the magnitude of MFL 
signals is much higher for defects with larger depths. The 
relationship, however, between defect depths and the 
magnitude of MFL signals is not well understood and 
cannot be analytically described. Therefore, machine 
learning techniques can be used to capture this relationship. 
In this paper, we investigate the application of Artificial 
Neural Networks (ANNs) as a learning tool and propose an 
ANN-based approach for estimating failure depths. The 
structure diagram of the proposed approach is shown in 
Figure 3.  

As shown in Figure 3, a feature set is first extracted from 
the MFL signals obtained from a set of sensors. These 
features should distinctly characterize different patterns of   
different failure depths. These features are then used in the 
learning process of the neural network. 

A. Feature Extraction 
Feeding raw MFL signals directly into the neural 

network may prolong the learning task and lead to 
unsatisfactory results. Instead, a number of features that 
characterize the MFL signals is computed. Hence, we 
calculate five statistical features for each component of the 
MFL signal, namely, maximum magnitude, peak-to-peak 
distance, integral of the normalized signal, mean average, 
and standard deviation.  To obtain more features, we 
approximate the MFL signals by polynomial series of the 
form: 

01... aXaXa n
n +++  

To find the best MFL approximation, the values of the 
polynomial coefficients 0... aan ++  are optimized. These 
coefficients are then extracted and used, along with the 
statistical features, to train the neural network. It has been 
found that polynomials of degree three provide the best 
approximation for the xB  component, whereas polynomials 
of degree six provide the best approximation for both the 

yB and zB components. In total, we have an input vector 
consisting of thirty-three features. 
 

 
Figure 3.  The main components of the proposed ANN technique 

 
Figure 4.  Architecture of static FFNN architecture 

 
 

Figure 5.  Architecture of the cascaded FFNN 

 
Figure 6.  Architecture of the dynamic FFNN 

B. Neural Network Architecture and Parameters 
We examine three architectures, namely static, cascaded, 

and dynamic Feed-Forward Neural Networks (FFNN).  
1) Static FFNN  
The architecture of the static FFNN is shown in Figure 4. 

The extracted feature vector is fed into the first hidden layer. 
Weight connections, based on the number of neurons in 
each layer, are assigned between every adjacent layers.  

2) Cascaded FFNN 
As shown in Figure 5, these networks are similar to feed-

forward networks, but include a weight connection from the 
input layer to each other layer, and from each layer to the 
successive layers. 

3) Dynamic FFNN 
In dynamic networks as shown in Figure 6, the network 
outputs depend not only on the current input feature vector, 
but also on the previous inputs and outputs of the network. 

4) Neural Network Parameters 
In this study, different network parameters are examined 

including the number and size of hidden layers, the type of 
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the transfer functions, and the type of the performance 
functions. As for the opted learning algorithm, it has been 
shown that the Levenberg-Marquardt back-propagation 
algorithm provides the best performance for function 
approximation; and hence it is more suitable than other 
learning algorithms for defect depth estimation [18, 19]. 

IV. PERFORMANCE EVALUATION 
The main performance measure used to evaluate a given 

network structure and configuration is the estimation 
accuracy of the failure depth within a certain level of error-
tolerance. The error-tolerance levels used in this study are 
±1%, ±5%, ±10%, ±15%, ±20%, ±25%, ±30%, ±35%, and 
±40%. For each network structure, the FFNN is 
experimented with different numbers of hidden layers, each 
varies in size from 10 neurons up to 100 neurons. The 
results of the experimental work are reported in the 
following subsections. 

A. Performance and Transfer Functions 
The performance function is the first parameter 

examined as it plays a crucial role in the accuracy and speed 
of network learning. Two performance functions are 
selected:  

 

(1) Mean Squared Error (MSE) 
2

1

ˆ1 �
=

−=
n

i
ii YY

n
MSE  

(2) Sum Squared Error (SSE) 
2

1

ˆ�
=

−=
n

i
ii YYSSE  

The effect of the MSE performance function is first 
examined on a static FFNN with a single hidden layer and a 
different number of neurons. The network performance is 
tested on two types of transfer functions used in neurons of 
the hidden layer:  
 

(1) Log sigmoid  

           
)1(

1log xe
sig −−

=  

(2) Hyperbolic Tangent sigmoid  

1
)1(

2log 2 −
+

= − xe
sig  

Figure 7 shows the results obtained by the static FFNN 
with MSE as a performance function and Log-sigmoid as a 
transfer function. It can be noted from the figure that, for 
±1% error-tolerance level, the defect depth estimation 
accuracy obtained by the network is approximately 10.29% 
with 50 neurons in the hidden layer. Naturally, as the error-
tolerance increases, the network performance starts getting 
better. For instance, for the ±5% error-tolerance level, the 
defect depth estimation accuracy obtained by the network, 
with 70 neurons in the hidden layer, is around 47.55%. For 

the ±10%, ±15%, ±20%, ±25%, ±30%, ±35%, ±40% levels, 
the network best estimation performances are 64.71%, 
79.41%, 83.33%,  88.24%, 90.69%, 90.69%, 91.18% with 
60, 20, 20, 10, 10, 80, and 80 neurons in the hidden layer, 
respectively.   

Figure 8 shows the results obtained by the static FFNN 
with SSE as a performance function and Log-sigmoid as a 
transfer function. For the ±1%, ±5%, ±10%, ±15%, ±20%, 
±25%, ±30%, ±35%, ±40% levels, the network best 
estimation performances are 10.78%, 37.25%, 65.69%, 
76.47%, 82.84%, 89.22%, 92.16%,93.63%, 94.61% with 10, 
90, 90, 40, 40, 100, 100, 70, and 100 neurons in the hidden 
layer, respectively.   

Tables I and II show the comparison of results obtained 
by the static FFNN using different transfer and performance 
functions.  For both performance functions (MSE and SSE), 
both transfer functions show very close performance results. 
However, the difference in hidden neurons is notable.  For 
example,   at ±1% level error-tolerance, an FFNN with the 
Log-sig transfer and MSE performance functions needs only 
10 neurons to obtain an accuracy of 10.29%, while with the 
Tan-sig transfer function, an FFNN needs 70 neurons to 
obtain 9.80% accuracy. At ±5% error-tolerance level, the 
network configuration is the opposite, an FFNN with Log-
sig transfer and MSE performance functions needs 70 
neurons to obtain 47.55% accuracy, while with the Tan-sig 
transfer function, an FFNN needs 70 neurons to obtain 
45.59% accuracy. Similar observation can be made for the 
FFNN with SSE performance function. 

B. Static, Cascaded, and Dynamic FFNN 
Based on the results and observations obtained in the 

previous section, the MSE performance function and Log-
sigmoid   transfer   function   are fixed for the next 
experiment settings. Table III shows the comparison of the 
results obtained by the static, cascaded, and dynamic FFNN 
structures with different numbers of hidden layers. It should 
be noted from Table III that dynamic networks with a single 
hidden layer yield  the  best  performance  results  for  error- 

 

Figure 7.  Performance of a static single-hidden layer FFNN with Log-
sigmoid transfer and MSE performance functions 
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Figure 8.  Performance of a static single-hidden layer FFNN with Log-
sigmoid transfer and SSE performance functions 

TABLE I.   
BEST ESTIMATION ACCURACY OF STATIC FFNN WITH MSE PERFORMANCE  

 

TABLE II.   
BEST ESTIMATION ACCURACY OF STATIC FFNN WITH SSE PERFORMANCE  

 

tolerance levels of ±1%, ±5%, ±10%, ±15%, and ±20% at 
23%, 74%, 86%, 89%, and 90% estimation accuracies, 
respectively. Moreover, dynamic networks with 4 hidden 
layers yield the best performance for error-tolerance levels 
of ±25%, ±30%, ±35%, and ±40%, at 91%, 93%, 95%, 
96%, and 96% estimation accuracies, respectively. 
Cascaded networks, however, have performed the worst for 
error-tolerance levels of ±1%, ±5%, ±10%, ±15%, and 
±20%, at 7%, 4%, 60%, 72%, and 78% estimation 
accuracies, respectively. At other error-tolerance levels, they 
yield comparable results. Static networks performed better 
than cascaded networks but less than dynamic networks. It 
should be noted that, in this particular application, 
increasing the number of hidden layers  has  not  necessarily  

TABLE III.   
BEST ESTIMATION ACCURACY OF STATIC, CASCADED, DYNAMIC FFNN 

 
 
improved the performances of the networks.  

With the exception of dynamic networks (with 4 hidden 
layers, and for the error-tolerance levels ±1% and ±5%), it 
has actually reduced the overall performance of the feed-
forward neural networks. 

C. Discussion 
In this paper, we suggested an approach consisting of 

combining pattern-adapted wavelets for locating metal-loss 
defects and determining their length and neural networks for 
estimating the defect depth. In the current work, dealing with 
big data resulted from using large number of MFL sensors, 
the focus was on studying the applicability and suitability of 
the neural network component. Compared with the 
performance of pipeline inspection techniques reported by 
service providers such as GE and ROSEN, the results 
obtained using the method we proposed are promising. For 
instance, within ±10% error-tolerance range, the obtained 
estimation accuracy is 86%, compared to only 80% reported 
by GE; and within ±15% error-tolerance range, the achieved 
estimation accuracy is 89% compared to 80% reported by 
ROSEN. 

V. CONCLUSIONS 
The difficulties of identifying the relationship between 

defect depths and amplitudes of MFL signals are mainly 
attributed to the lack of a descriptive analytical model and to 
the inherent complexity pertaining to the huge amount of 
data collected from MFL sensors. To cope with such 
complexity, we proposed the use of artificial neural networks 
(ANNs) for estimating pipeline defect depths. The new 
approach is evaluated using different levels of error-
tolerance. Extensive experimental work for different 
parameters and configurations, and various architectures 
including static, cascaded, and dynamic networks, has been 
conducted. The Levenberg-Marquardt back-propagation 
learning algorithm has been utilized. It has been shown that 
dynamic neural networks yield the best performance of 86% 
and 89% defect depth estimation accuracy within ±10% and 
±15% of error-tolerance, respectively; while cascaded 
networks yield the worst performance. To increase the defect 
depth estimation accuracy at lower levels of error-tolerance, 
we intend in future work to obtain more sophisticated 
features and employ other learning algorithms.  
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