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ABSTRACT

The generation of fast models for device level circuit de-
scriptions is a very active area of research. Model order
reduction is an attractive technique for dynamical models
size reduction. In this paper, we propose an approach based
on clustering, curve-fitting, linearization and Krylov space
projection to build reduced models for nonlinear analog cir-
cuits. We demonstrate our model order reduction method
for three nonlinear circuits: a voltage controlled oscillator,
an operational amplifier and a digital frequency divider. Our
experimental results show that the reduced models lead to
an improvement in simulation speed while guaranteeing the
representation of the behavior of the original circuit design.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—Simulation
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1. INTRODUCTION
Device level simulation is a main step to validate electronic

circuits before their fabrication. This step became very com-
putationally expensive because of the large size and nonlin-
earity of their models. Therefore, researchers are looking
for methods to build faster circuit models which preserve the
same device level accuracy. Such models are needed to fasten
simulation and enhance verification methodologies. Model
abstraction, simplification and linearization are methods to
deal with the complexity of large dynamical models. How-
ever, for the case of analog circuits they can lead to in-
accurate models which do not preserve their characteristic
nonlinear behaviour. Model Order Reduction (MOR) [1]
is an attractive technique which consists in transforming a
mathematical circuit model into a macromodel using a well
defined algorithm. The resulting reduced model simulates
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in much smaller time than the full order model while repro-
ducing the same behaviour. The most promising MOR algo-
rithms for the reduction of analog circuits are the Trajectory
Piece-Wise Linear MOR method (TPWL) [13], the General-
Purpose Nonlinear MOR using Piecewise-Polynomial Rep-
resentations [7] and the MOR method for nonlinear circuits
based on state space clustering [2]. These methods employ
Taylor expansions representations and Krylov space projec-
tion to reduce dynamical circuit model in the form of Ordi-
nary Differential Equations (ODEs).

Curve-fitting is a very powerful method used in different
scientific areas to construct models from a series of data
points [12]. It is a very effective approach especially for
partially known models. This is the case of analog circuit
models generated through Modified Nodal Analysis (MNA),
when their semiconductor devices I-V characteristics are not
completely specified or are missing some parameters [6].

In this paper, we propose an automated approach to build
reduced models for nonlinear analog circuits, based on curve-
fitting, clustering, linearization and MOR via Krylov space
projection. Parametric nonlinear models are built via MNA
and are curve-fitted using SPICE circuit simulation traces
to obtain accurate nonlinear dynamical models. Then, lin-
earization and state space reduction via Krylov space pro-
jection are applied at different state space clusters to obtain
circuit reduced models.

In what follows, the related work is briefly reviewed in
Section 2. Then, Section 3 details our method to gener-
ate circuit reduced models using their netlist and simulation
traces. After that, our experimental results are shown in
Section 4 for three nonlinear circuits: a voltage controlled
oscillator, an operational amplifier and a frequency divider.
Finally, our conclusions and future work are presented in
Section 5.

2. RELATED WORK
In the last two decades many researchers realized the pos-

sibilities offered by MOR and tried to improve and apply
these methods. There have been different successful meth-
ods to approximate transfer functions of linear circuits like
the Singular Value Decomposition (SVD) and the Krylov
Space projection methods [1]. However, for the case of non-
linear circuits, MOR methods are still in development phase.
The Proper Orthogonal Decomposition (POD) that is the
adaptation of the SVD method for nonlinear models is being
used to reduce Partial Differential models successfully [1].
For the case of weakly nonlinear circuits, a MOR based on
approximating nonlinear terms with quadratic Taylor ap-
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proximations and Krylov space projections is proposed in [4].
Also, the TPWL MOR, based on linear Taylor approxima-
tions, was applied to nonlinear transmission lines, amplifier
chains and Micro-machined devices [13]. The general pur-
pose MOR method, based on piecewise polynomial repre-
sentations [7], and the MOR method, based on state space
clustering [2], improve the TPWL by addressing the prob-
lem of input dependency. Recently, three different MOR
methods called ManiMOR, QLMOR and NTIM were pro-
posed to derive reduced models for circuits and biology mod-
els [8]. Their accuracy is enhanced by using nonlinear mani-
folds projection, canonical representation and Volterra anal-
ysis. However, the resulting reduced models are intended
for a specific type of analysis: DC, AC responses and tim-
ing/phase responses.

Curve-fitting is an inverse-problem where the objective is
to determine parameters of a candidate model given a de-
sired system response. For analog circuits, curve-fitting was
used to determine a power MOSFET model parameters us-
ing experimental results [3]. Also, a piecewise curve-fitting
modelling technique was proposed to determine accurate low
order impedance transfer functions for capacitors and induc-
tors from experimental data [11]. Recently, a method for
parametric fault detection based on polynomial curve-fitting
was applied to the case of a biquad filter [10]. However, none
of these approaches can be used to curve-fit a large size ana-
log circuit model.

In this paper, we are rather interested in determining dy-
namical model parameters for large analog circuits using
a nonlinear curve-fitting constrained to a minimum mean
squared error and reducing these models using a projection
type MOR approach.

3. MOR METHODOLOGY
The proposed methodology for the generation of reduced

models of large analog circuits using their transient simu-
lation traces and their netlist is depicted in Figure 1. We
apply first MNA to elaborate a mathematical model for the
given circuit netlist, after replacing each active device with
an equivalent circuit. The I-V-characteristic parameters of
each equivalent circuit are unknown which leads to a para-
metric nonlinear differential model describing the circuit dy-
namics. Then, we use curve-fitting to extract the missing
parameters from the circuit simulation traces performed in
SPICE. The obtained circuit model is validated through sim-
ulation and comparison with the original simulation traces.
In parallel, we perform clustering of the simulation traces
in order to select linearization points which will be used for
a piecewise linear description of the nonlinear differential
model obtained via curve-fitting. After that, we compute
a Krylov space projection matrix using the Arnoldi algo-
rithm and reduce the local linearized models via projection,
as described in [2]. Finally, the obtained reduced model is
validated against the original nonlinear model within a test-
bench. We simulate the reduced model for different inputs
and conditions and check its accuracy, input sensitivity and
speedup.

Circuit Netlist 

Equations Generation

Time Simulation Traces 

Curve Fitting

Linearization 

Krylov Space Projection (Arnoldi)

Clustering

Reduced Model Validation (Testbench)

Validated Reduced Model

Figure 1: Model Order Reduction Methodology

3.1 Equations Generation
In order to perform an accurate curve-fitting, the gen-

eration of a good function guess is essential. In fact, the
function guess must be capable of reproducing the main
transient characteristics of the active devices. Semiconduc-
tor devices can include hundreds of parameters. In our ap-
proach, these elements are modeled using basic transient
equivalent circuits consisting mainly of Voltage Controlled
Current Sources (VCCS) and possibly some constant par-
asitic capacitances and resistances. The VCCS models are
piecewise defined functions with linear and quadratic terms
for MOSFETs and exponential terms for diodes and BJTs.
The parameters of these models have to be determined using
curve-fitting. The replacement of the active elements leads
to a circuit consisting only of the following two-port ele-
ments: capacitances, resistances, inductances, independent
voltage and current sources and VCCS. The input voltages
and currents as well as the passive elements models are ex-
tracted from the netlist. Having a two port elements equiva-
lent circuit, we extract the differential model using the MNA
formulation.

G1
vdd

vin

G2

G3

C3

C2

C1

R1

R2

R3

out

N3

N5

N2

N1

N4

Figure 2: One-BJT Amplifier Circuit with VCCS

We demonstrate the equation generation step on a single
BJT amplifier circuit, shown in Figure 2. The BJT ele-
ment was replaced by its transient equivalent circuit and
the MNA formulations leads to the set of matrices, shown
in Equation (1).

C = AC · C0 · A
T
C (1)

G = AR ·R−1 ·AT
R
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R=





R1 0 0

0 R2 0

0 0 R3



 C0=





C1 0 0

0 C2 0

0 0 C3



 I=





G1

G2

G3



 V =

[

vdd

vin

]

AR=











1 0 0

0 1 0

−1 0 0

0 −1 0

0 0 1











AC=











0 0 0

0 0 0

0 −1 0

1 1 0

−1 0 1











AI=











0 0 0

0 0 0

1 −1 0

0 1 1

−1 0 −1











- The resistance, capacitance and inductance matrices R, C,
L are ordered diagonal matrices.
- Dependent and independent current and voltage sources
are merged to the row vectors I and V , respectively.
- The incidence matrices for all elements AR, AL, AC , AI

and AV are built based on their nodes information.
The matrices C and G are reduced to Ccut and Gcut by

removing the lines related to the supply and input voltages,
which are not considered as state variables. Then, the dif-
ferential model is formed as given in Equation (2).

ė = C
−1

cut ·

(
−Gcut ·

[
V

e

]
− AI · I(e, c)

)
(2)

where e = [vN1
, vN2

, vN3
]T is the state variables vector and

I(e, c) are the parametric VCCS models which depend on the
state variables and the undefined parameters c. The matrix
Ccut has to be nonsingular to generate an ODE system and
avoid a DAE system, which is not always solvable. For this
purpose, very small parasitic elements can be considered,
as C3 in Figure 2. If the circuit contains inductances, their
currents have to be added as state variables to Equation (2),
which leads to one system of Equation (3).

ė = C
−1

cut ·

(
−Gcut ·

[
V

e

]
− AI · I(e, c)− AL · iL

)

i̇L = L
−1 ·AT

L ·

[
V

e

]
(3)

The general form of the differential model is given in Equa-
tion (4).

ẋ = f(x, c, u(t)) (4)

3.2 Curve-Fitting
The curve-fitting step is performed as detailed in Figure 3.

It requires the circuit transient simulation traces (state vari-
ables snapshots) and a function guess f which is the incom-
plete circuit model given in Equation (4). After that, we
approximate the state variables derivatives by finite differ-
ences approximation ẋ ≈ (∆x

∆t
)s for different time samples

s. The approximated state variables time derivatives pro-
vides a set of valuations of the function guess f . Then, the
best-fit model parameters copt are determined automatically
using the Levenberg-Marquardt curve-fitting method [12]. It
is also called the least-squares curve-fitting algorithm since
it determine local best-fit parameters which minimize the
least-square residual between the function guess values and
the approximated time derivative, as shown in Equation (5).

copt = min
c

‖f(xs, c, us)− (
∆x

∆t
)s‖2 (5)

The accuracy of the curve-fitting algorithm depends on the
function guess choice, the approximated state variables time
derivatives and the initial parameters guess cinit. Because
of that, we solve numerically the differential model in Equa-
tion (4) with the obtained best-fit parameters and compare

Time Derivatives Approximation

Function Guess

Verification

Best-Fit Parameter Values copt

Time Simulation Traces 

Curve Fitting 

Figure 3: Curve-Fitting Model Parameters

the result with the time simulation traces. If the model is ac-
curate, we proceed to the model reduction step. Otherwise,
we add more training points xs which leads to the maximum
error values, during the verification step. At the end, if the
previous test did not improve the accuracy of the models, we
change the initial function guess. In fact, the use of a proper
function guess is necessary for a successful curve-fitting of
the nonlinear behavior of analog circuits. For that reason,
we use device models similar to the SPICE model but with
a smaller set of parameters. Using only polynomial function
guess, as the Vandermodes interpolation method [9], we do
not get best fit-parameter set which can reproduce the large
signal transient behaviour of the circuit devices. The reason
is that some device I-V characteristics have piecewise expo-
nential functions with different parameters and coefficients.
Piecewise local interpolation also fails to approximate the
states behavior as it leads to a linear dependent system of
equations which does not have a unique solution. Using the
described curve-fitting approach, we determine the complete
differential model given in Equation (6).

ẋ = f(x, u(t)) (6)

3.3 Linearization and Krylov Space Transfor-
mation

We select k linearization points via Kmeans clustering of
the simulation traces [12] and linearize the differential model
in Equation (6), as detailed in [2, 13]. This leads to k local
linear models as given in Equation (7).

ẋ = f(xl, ul) + Jxl
· (x− xl) + Jul

· (u− ul) (7)

where the Jacobian Jxl
= ∂f

∂x
(xl) and Jul

= ∂f

∂u
(ul) are

computed numerically for each cluster (xl, ul), using the
Romberg extrapolation [5]. The piecewise weighted sum of
the previous few local models is a good approximate of the
differential model in R

n. This intermediate model is reduced
via Krylov space projection to get a smaller size differential
model in R

m, m < n, as given in Equation (8). A local
n × m orthogonal projection matrix, which is necessary to
do such a transformation, is computed using the Arnoldi al-
gorithm [14]. Then, the main singular vectors of these local
matrices form the unified projection matrix U . The reduced
differential model is given in Equation (8).

ż = Rl +Al · (z − zl) +Bl · (u− ul) (8)

where Rl = UT · f(xl, ul), Al = UT ·Jxl
·U , Bl = UT ·Jul

and ~z is the reduced state space vector that can be projected
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back to the original state space to approximate the original
full order state variable x using the relation x̂ = U ·z. During
the numerical simulation of Equation (8), the closest cluster
zl = UT · xl to the current state z is determined and the
local model around it is evaluated in order to determine the
next state.

3.4 Reduced Model Validation
The reduced model must fit some requirements to be us-

able in practice. Its simulation time must be smaller than
the simulation time of the original model. It has also to pre-
serve the input-output behavior and be accurate for a range
of input signals. We use a testbench environment to auto-
matically check the generated reduced models and compare
them to the original model simulations. For our applica-
tions, we measure the closeness of the reduced simulation
output vector x̂o(t) and the original simulation output vec-
tor xo(t) with Equation (9).

error =

nt∑
i=1

||xo(i) − x̂o(i)||

k∑
i=1

||xo(i)||

(9)

where nt is the number of time sample points. If different
sample times are used for xo and x̂o, we interpolate x̂o at
the time i using the closest trajectory points. The simula-
tion speedup can be affected by the numerical integration
method. Therefore, we use the same backward differentia-
tion algorithm for both the reduced and the original model
version in MATLAB [12]. Note that we cannot force the
solver to use the same internal steps as it affects the solu-
tion accuracy. Also, the determination of the closest lin-
earization point, which is done at every time step, can be
time consuming if the current state is compared to a large
number k of linearization points. Even though, we do not
have the original SPICE circuit models coded in the MAT-
LAB environment, we still can illustrate the speedup of the
simulations of our generated reduced models using models
expressed in the original state space using SPICE-like equiv-
alent models for active devices.

4. APPLICATIONS
In this section, we apply the current method to a two-

stage operational amplifier, a 90− nm CMOS voltage con-
trolled oscillator (VCO), and a frequency divider. We show
that the simulations of the generated reduced models are
faster than that of the original models, while the error due
to the reduction, evaluated using Equation (9), is minimal.
Equation (10), illustrates a two parameters VCCS equivalent
model for an NMOS transistor used during the equation
generation step, for all applications. The set of parameters
c1,2 is determined during the curve-fitting step and x and
y are the gate to source and the drain to source transis-
tor terminals voltages which values are extracted from the
simulation traces.

IFET =







0 if x < c1
c2 · 0.5 · (x− c1) if y > x− c1 > 0
c2 · y · (x− c1 −

y
2
) if y < x− c1

(10)

For each of the following applications, a table shows the
mathematical model size of the original state space (Equa-
tion (2)) and the reduced state space (Equation (8)).

4.1 Two Stage Operational Amplifier
Operational Amplifiers (OA) are extensively used in ana-

log circuits applications such as communications and signal
conversion. We use the two stage OA, in Figure 4, as an ap-
plication to prove the effectiveness of the proposed reduction
method. Its bias current is provided by a constant current
source built by an NMOS transistor and a resistance. The
open loop gain of this OA is of the order of 6.6·105 at 1MHz

operating frequency.

inp inm

out

vdd=2V

vss=-2V

Figure 4: Two Stage Operational Amplifier Circuit

The number of best-fit parameters determined, during the
curve-fitting step, is eight, as there are four different types
of transistors in this circuit. The curve-fitted model have
been validated against the original SPICE simulation traces.
Table 1, gives the size of the original and reduced OA math-
ematical models. The reduced models 1 and 2 in rows 4
and 5 refer to the open loop OA and feedback loop OA con-
figurations, respectively. The open loop OA configuration
consists in grounding the negative input and connecting a
sinusoidal input source to its positive input. The feedback
loop OA configuration consists in connecting a resistance be-
tween the output node and the negative input which leads
to a limited gain non-inverting OA.

Table 1: Original and Reduced OA Sizes

Original
C−1

cut Gcut [V ; e] AI I(e)
30× 30 30× 34 34× 1 30× 7 7× 1

Reduced Rl Al z Bl u

1 27 × 1 27× 27 27× 1 27× 4 4× 1
2 25 × 1 25× 25 25× 1 25× 4 4× 1

The reduction of the feedback loop OA model needed 30
linearization points. However, we used 79 points for an accu-
rate reduction of the open loop OA which can be explained
by its very high gain and its strongly nonlinear behavior.
This results in a much smaller speedup of the open loop OA
as shown in row 2 of Table 2. Table 2, provides also in row 3
and 4 the results for the feedback loop reduced OA models
simulations. In this configuration the reduced OA model is
accurate and much faster that the OA original model.

Table 2: OA Simulation Results for (inp − inm) =
A · sin(2π · f · t)

A[V] f[MHz]
Run Time[s]

Speedup
Error

Original Reduced [10−2]
18µ 1 10.93 2.90 3.70 0.02
45m 1 142.20 4.13 34.43 0.07
45m 0.5 66.51 3.07 21.66 0.01

Figure 5 shows that the reduced and the curve-fitted OA
models are accurate compared to the SPICE model.
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Figure 5: Operational Amplifier Output Signal

4.2 Voltage Controlled Oscillator
The Voltage Controlled Oscillator (VCO) is an ubiqui-

tous circuit used for applications requiring an adaptive clock
frequency, such as PLL. It generates a square output volt-
age with a frequency controlled by its input voltage. We
applied our approach to the VCO given in Figure 6. It
is implemented as a ring oscillator (central inverters chain
PMOS and NMOS transistors) and a large current mirror
(upper PMOS and lower NMOS transistors), which limits
the current mirrored in each of the ring oscillator inverters.
The curve-fitting of the VCO model requires 4 parameters

Vin

Vdd=1.8V

Vout

Figure 6: Voltage Controlled oscillator Circuit

for each of the equal size and same type transistors, leading
to 16 parameters in total. The size of the original and re-
duced VCO models are given in Table 3. Table 4 reports the

Table 3: Original and Reduced VCO Sizes

Original
C−1

cut Gcut [V ; e] AI I(e)
48× 48 48× 50 50× 1 48× 62 62× 1

Reduced
Rl Al z Bl u

33 × 1 33× 33 33× 1 33× 2 2× 1

different simulations results of the generated reduced VCO
model. The reduced VCO model runs 5 times faster than the
original VCO model for a reduction of the state variable size
from 48 to 33. Reducing further the VCO leads to higher
speedup values but requires also an adjusting of the set of
linearization points. In all experiments, the accuracy of the
reduced VCO model is good compared to the VCO original
model. The last row of Table 4 shows also that the reduced
VCO model is able to increase its output signal frequency
after a step increase in its input frequency. This feature
has been enabled because of the input dependent terms, in
Equation (8), which makes the reduced models sensitive to
small input variations. Figure 7 illustrates the output volt-

Table 4: VCO Simulation Results
Input Run Time[s] Speedup Error
V in[V ] Original Reduced [10−2]
1.2 21.75 2.70 5.85 0.45
1.3 21.49 6.73 3.15 0.28

step(0.9, 1.1) 21.72 5.38 4.03 0.23

ages behavior of the reduced VCO model, the curve-fitted
model and the SPICE model. It shows that the three mod-
els are oscillating at the same frequency for the specified
input voltage. The slight deviation from the SPICE simula-
tion traces is mainly due to the accuracy of the curve-fitting
step which uses different active device models than that of
SPICE.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10-9

0

0.5

1

1.5

2

Time [s]

V
ou

t [
V

]
 

 
SPICE Model
Curve-fitted Model
Reduced Model

Figure 7: VCO Output Signal

4.3 Frequency Divider
We consider a Frequency Divider (FD) which is a highly

nonlinear circuit commonly used for both analog and digital
applications. It inputs a signal of a frequency fin and out-
puts a signal of frequency fout, where fout = fin

n
and n is

an integer. A typical FD operating frequency ranges from
100MHz to 5GHz. We applied our methodology to reduce

clk

out

Frequency Divider (D-Flip-Flop) Inverter gate NAND gate

Figure 8: Frequency Divider Circuit

the FD implemented using one D-Flip-Flop (eight NAND
gates and two inverters), as detailed in Figure 8. This FD
is sensitive to the high flank of the input clock signal and
output a rectangle signal whose frequency is half of the in-
put clock frequency. The size of the original and reduced
FD models are given in Table 5.

Table 5: Original and Reduced FD Sizes

Original
C−1

cut Gcut [V ; e] AI I(e)
53 × 53 53 × 55 55× 1 53 × 36 36 × 1

Reduced
Rl Al z Bl u

48× 1 48 × 48 48× 1 28× 2 2× 1
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Table 6 summarizes the different simulations performed
with the generated reduced FD models for a set of clock fre-
quencies ranging from 0.5GHz to 2GHz. The FD reduced
model runs three times faster than the FD original model for
a reduction of the state variable size from 53 to 48. The sim-
ulation speedup can be increased to higher values by reduc-
ing further the state space size and using a sufficient number
of linearization points to reproduce the FD behavior at the
clock rising and falling edges. Figure 9 shows a snapshot

Table 6: FD Simulation Results
Frequency Run Time[s] Speedup Error
[GHz] Original Reduced [10−2]
2.0 46.80 14.56 3.21 0.18
1.0 43.26 15.08 2.87 0.73
0.5 24.52 7.49 2.90 0.06

of FD simulation results reported in row 3 of Table 6. The
input clock has a frequency of 2GHz and the FD model
output has a frequency of 1GHz. The reduced FD model is
as sensitive to the clock edge as the curve-fitted and SPICE
models and its output signal accurately reproduces the main
frequency component of the SPICE simulation traces.
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Figure 9: Frequency Divider Output Signal

5. CONCLUSION
In this paper, we proposed an approach to extract re-

duced analog circuit models using their SPICE simulation
traces. The main challenges of the method are the cre-
ation of simplified circuit models via a curve-fitting pro-
cedure and their reduction using a Krylov space projec-
tion method. Guess functions required by the Levenberg-
Marquardt curve-fitting algorithm were obtained with the
help of MNA and the use of parametric equivalent models for
the active devices. The accuracy of the curve-fitted models
was measured by comparing them with the original simula-
tion traces. For that reason, these models are intended to be
used for the same input and environment conditions as dur-
ing the initial SPICE simulation. Otherwise, accuracy issues
might raise. The curve-fitted differential models of the cir-
cuit are linearized at different points of the state space and
are reduced locally via Krylov space projections. The appli-
cation of the method on three different circuits showed that
our reduced models are accurate compared to the simulation
traces and are faster than their original models. However,
to improve the presented method, curve-fitting could be ap-
plied in a hierarchical way after subdividing the original cir-
cuit model into sub-circuits with a limited number of active

devices. This will reduce the MOR effort and make the
method scalable to much larger and complex circuit mod-
els. Also, limiting the number of linearization points in each
integration time step and using computationally inexpen-
sive weight-functions, which can smooth the model between
local regions, can lead to better accuracy and speedup. Fi-
nally, to fully automate our methodology, an algorithm has
to be implemented for the prediction of the total required
linearization points as well as the size of the reduced model
based on the information within the simulation traces and
the number of nonlinear devices in the circuit netlist.
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