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ABSTRACT

Process variation presents a practical challenge on the per-
formance of analog and mixed signal (AMS) circuits. This
paper proposes a Monte Carlo-Jackknife (MC-JK) technique,
a variant of Monte Carlo method, to verify process variation
affecting the performance and functionality of AMS designs.
We use a behavioral model to which we encompass device
variation due to 65nm technology process. Next, we conduct
hypothesis testing based on the MC-JK technique combined
with Latin hypercube sampling in a statistical run-time veri-
fication environment. Experimental results demonstrate the
robustness of our approach in verifying AMS circuits.

Categories and Subject Descriptors

B.7.2 [Design Aids]: [Verification, Simulation]

1. INTRODUCTION
Relentless miniaturization of CMOS technology comes with

its own compromises. Although it permits an increase in
the level of integration, it results on the other hand in more
complex designs. This makes AMS design more challenging
and dictates a careful verification. Moreover, the diminu-
tive sizing of transistors leads to an ever substantial per-
centage deviations from the parameters nominal values [4].
Hence, empowering designers with new tools and techniques
in order to tape out designs that withstand process varia-
tion while meeting strict specification are highly required.
To respond to this raising need during early verification, we
investigate in this paper a new statistical verification tech-
nique that can reduce the Monte Carlo simulation time while
ensuring accuracy of the results. The Monte Carlo method
is an attractive technique that has a widespread use [8, 3].
Based on repetitive simulations, it permits to evaluate sub-
stantive design properties as well as to statistically estimate
circuit parameters. To do so, this approach needs a pre-
specified underlying distribution, mainly uniform, normal,
or log-normal to describe the random variables of process
variation effect. Hence, a wrong distribution assumption
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leads to a possibility of outright wrong results. This issue
has been mooted in a recent research work [7].

This paper addresses the shortcomings of conventional
sampling based verification method by (1) providing better
parameter space coverage with reduced simulation overhead
results from the Latin Hypercube sampling [1] as an alter-
native to Pseudo Random Monte Carlo sampling; and (2)
offering more accurate error margins and hence better veri-
fication accuracy is achieved using the Jackknife statistical
method to estimate the Monte Carlo distribution parame-
ters.

The rest of this paper is organized as follows: Details of
the proposed methodology are given in Section 2. There-
after, we report experimental results for the verification of
a ring oscillator and a Charge Pump PLL in Section 3. Fi-
nally, we conclude the paper in Section 4.

2. PROPOSED METHODOLOGY
Figure 1 depicts the overall proposed verification method-

ology. Given an AMS design description, we derive its be-
havioral model. Using the process variation libraries created
by technology vendors, we then choose a range of parame-
ter deviations for 65nm process. Traditional sampling tech-
niques such as Pseudo Random Sampling (PRS) arranges
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Figure 1: Overview of the proposed methodology
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parameter values at some specific corners in the parame-
ter space. When running Monte Carlo simulation, it can-
not mimic the system behavior in a global parameter space.
However, the Latin Hypercube technique gives samples that
could reflect the integral distribution more effectively with
a reduced samples variance. In fact, it turns out to be five
times more effective than PRS Monte Carlo in yield esti-
mation as shown in [2]. For an efficient sampling procedure
from the process variation distribution, the Latin Hyper-
cube Sampling technique is deployed (more details are given
in Section 2.1). The AMS circuit is thereafter evaluated
for the obtained parameter samples for specific environment
constraints, namely the initial values of the voltage and cur-
rent state variables and simulation parameters (the total
simulation time, the simulation step size and so on).
On the other hand, we elucidate a property of interest (P)
that the circuit output should comply with. This property is
phrased as hypothesis testing problem. It consists of defin-
ing a null hypothesis H0 of P and an alternative hypothesis
H1 which is naturally the counterexample (Q) opposite to
(P). For the chosen parameter variation values and a spec-
ified tail test, a critical value based Monte Carlo-Jackknife
monitor is carried for a confidence level δ. The property
P is verified if the null hypothesis H0 is accepted, else the
monitor reports a violation. The conclusion of accepting
or rejecting H0 is drawn with an error margin ǫ for a 95%
confidence level (see Fig. 1).

2.1 Latin Hypercube Sampling
Latin Hypercube Sampling (LHS) [1] is a an optimized

statistical sampling technique to extract parameter values
from defined multidimensional distribution. We use LHS to
select samples in the process variation space. To construct
a Latin hypercube sample of np data points from an AMS
circuit model with nd dimensions (state variables) defined
from a uniformly distribution X ∼ U(0.1)nd , the sampling
space is divided in such a way that each of the nd dimensions
are divided into nb blocks as follows :

Xij =
πj(i− 1) + Uij

ns

, 1 ≤ i ≤ ns, 1 ≤ j ≤ nd

where πj are uniform random permutations Uij ∼ U [0, 1)
wherein Uij and πj are independent. LHS has a multiple
stratification property:

∀c = 0, ..., ns − 1, ∀j = 1, ..., nd

prob{1 ≤ i ≤ ns|
c

ns

≤ Xij <
c+ 1

ns

} = 1

This technique offers variance sampling reduction which re-
sults in a better verification coverage.

2.2 Jackknife Technique
The Jackknife technique [6] was originally developed as a

nonparametric way to estimate and reduce the bias of an
estimator of a population parameter. The bias of an estima-
tor is defined as the difference between the expected value of
this estimator and its true value. The Jackknife procedure
works as follows: First, remove d data points and calculate
the statistic of interest. Second, calculate the pseudo-values
according to Equation 1. Then, repeat this process, leav-
ing out d data points at a time to build a distribution of
the statistic. Finally, use that distribution to estimate the

Algorithm 1Monte Carlo-Jackknife Verification Algorithm

Require: Vout, Tobs, α, test, M , d
N ← length(Vout)
for i ← 1 to N do

3: θ ← delete d Jacknife

TJK(i) ← Measure test statistic(θ)

while test = ”upper tail test” do

6: CV = quantile(TJK , 1− α)
if CV ≥ Tobs then

Accept H0

9: else

Reject H0

while test = ”lower tail test” do

12: CV = quantile(TJK , α)
if CV ≤ Tobs then

Accept H0

15: else

Reject H0

while test = ”two tailed test” do

18: CVL = quantile(TJK , α
2
)

CVU = quantile(TJK , 1−α
2

)
if CVL ≥ Tobs or CVU ≤ Tobs then

21: Reject H0

else

Accept H0

statistic and its uncertainty. For an estimator S, the ith

pseudo-value Jackknife of S was calculated as follows:

psi = NS − (N − 1)Si (1)

where Si is the estimator value for the sample with the ith

data point deleted. The Jackknife Confidence Interval (CI)
of this estimate for 95% confidence level is then given by:

CIJ = p̄s± 2

√

σJ

N
(2)

where σJ =
∑ (psi−p̄s)2

N−1
, p̄s =

1

N

∑

psi

Hence, the Jackknife reduces the bias of the parameter es-
timates as well as the variance. The detailed procedure for
Monte Carlo-Jackknife (MC-JK) based hypothesis testing
technique for AMS circuits is illustrated in Algorithm 1,
where Vout represents the observed circuit output with pro-
cess variation, M denotes the number of MC-JK samples, d
is a parameter for the deleted d jackknife method, α a cho-
sen significant level and test stands for the type of test to
be performed. The algorithm starts with drawing M sam-
ples from the circuit output Vout of size N by leaving out
d samples of the output at a time (line 3). The deviation
between the output and H0 is computed using a test statis-
tic estimation TJK for each Jackknife pseudo-sample. Next,
the Monte Carlo quantile procedure [8] is employed to mea-
sure the critical by type of test: For an upper tail test (line
5)/lower tail test (line 11), the 1−α/α quantiles of the em-
pirical distribution, respectively. In the case of two tailed
test, both 1 − 1

α
and α

2
quantiles define the lower and up-

per critical values (lines 18-19). Once the critical value is
determined, the monitor decides about the satisfaction or
violation of H0.
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3. EXPERIMENTAL RESULTS
In this section, we report the results of the application of

our methodology to a ring oscillator and a PLL. All compu-
tation and circuit models were performed in a MATLAB en-
vironment for M=1000 trials and confidence level δ = 0.95.
The experiments are run on a 64-bit Windows 7 server with
2.8 GHz processor and 24 GB memory.

3.1 Ring Oscillator
A ring oscillator is a closed-loop chain of an odd number

of inverters placed in series with a negative feedback to pro-
vide oscillation. Each inverter is composed of a cascaded
n-channel and p-channel transistors.

C C C C C

VDD

x1 x2 x3 x4 x5

Figure 2: Five-stage CMOS ring oscillator schematic

A five-stage ring oscillator circuit is shown in Fig. 2. To
model the influence of the interconnect circuitry, an addi-
tional load capacity of C was used. The circuit dynamics
are governed by Equation (3):

dx1

dt
= −

1

C
(In(xn, x1, gnd) + Ip(xn, x1, VDD) (3)

dxi

dt
= −

1

C
(In(xi+1, xi, gnd) + Ip(xi+1, xi, VDD), ∀i ∈ [2, n]

Vout = xn

where {xi}
n
i=1 and gnd stand for the node and ground volt-

ages, respectively. We model the nonlinear current gener-
ated by the n-channel and p-channel transistors as functions
In and Ip, respectively. The node voltages of each of the 5
inverters has been designed to oscillate between the power
Vdd and the ground gnd at a frequency of 4.5GHz with a
tolerance of ±50MHz. As a result, the null hypothesis H0

and the alternative hypothesis H1 can be expressed as:

H0 : 4.450 GHz ≤ fosc ≤ 4.550 GHz; (4)

H1 : fosc ≥ 4.550 GHz ‖ fosc ≤ 4.450 GHz;

To study the effect of process variation on the oscillation
frequency (fosc), we choose two scenarios:
1) The channel width wni

of each n-MOS transistor {Mni
}5i=1
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Figure 3: Frequency spectrum of the circuit output

has up to 15%.
2) The power supply voltage VDD is assumed to have 5%
variation with Gaussian distribution around the nominal
value.

To compute fosc, we employ the Fourier Transform (FT)
analysis in MATLAB [5] . A comparison between the Monte
Carlo (MC) technique and the proposed approach for the
above mentioned scenarios under several process variation
factors are summarized in Table 1. Since a two tailed test
is chosen, a rejection decision of H0 is announced if the ob-
served value Tobs is within the rejection region (Tobs ∈ ]-
∞,C.VL] ∪ [C.VL,+∞[). It can be noticed from Table 1 that
when the percentage of variation increases from 1 to 15% in
the case of transistor width deviation (Row 1), both MC and
MC-JK techniques report decision changes from acceptance
to rejection. However, by sweeping the wni

up to 10% of
variation, an erratic decision between the Monte Carlo and
the proposed Jackknife-Monte Carlo is remarked (see Table
1). Moreover, in all cases our approach presents less error
margins. This can be explained by the biased estimation of
the Monte Carlo technique and the reduced sampling error
offered by our approach.

Figure 3 depicts the Single-Sided Amplitude Spectrum of
the ring oscillator output x5 for the two different process
variation scenarios. It can be noticed that a great devia-
tion of the tolerated oscillation frequency has been obtained.
Therefore, a process variation in the power supply voltage
VDD is identified to have a greater effect than a process
variation in all 5 n-MOS transistor lengths for 5% trimmed
deviation.

3.2 Charge-Pump Phase Locked Loop
We apply the proposed methodology to verify the lock-

ing property of a 3rd order dual path Charge Pump PLL
(CP-PLL) design shown in Fig. 4. The Phase Frequency
Detector (PFD), which is a digital component, operates as
follows: The PFD compares the phases of the reference

Table 1: Statistical runtime verification of oscillation frequency of ring oscillator for α = 0.05
J(ns) C.VU C.VL Tobs fobs (GHz) H0 ǫ (MHz)

MC MC-JK MC MC-JK MC MC-JK MC MC-JK MC MC-JK MC MC-JK
1% -1.487 -1.326 1.487 1.326 1.0389 0.9754 4.51 4.49 Accept Accept 34.8 16.9

PV 5% -1.533 -1.378 1.533 1.378 1.0773 0.8559 4.48 4.47 Accept Accept 25.3 20.3
in Wni

10% -1.571 -1.391 1.571 1.391 1.0584 0.8131 4.46 4.47 Accept Reject 32.5 24.9
15% -1.652 -1.441 1.652 1.441 2.269 1.938 4.45 4.44 Reject Reject 39.0 22.7

PV 1% -1.845 -1.722 1.845 1.722 0.741 0.825 4.47 4.49 Accept Accept 17.2 15.6
in 2.5% -1.883 -1.781 1.883 1.781 -2.179 -1.894 4.46 4.48 Accept Accept 18.7 16.9

VDD 5% -1.576 -1.668 1.576 1.668 1.848 1.857 4.25 4.18 Reject Reject 25.3 21.7
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Table 2: Statistical runtime verification of PLL locking time for α = 0.05
case J(ns) c.v Tobs Nobs H0 ǫ

MC MC-JK MC MC-JK MC MC-JK MC MC-JK MC MC-JK

P.V in VCO

0.5% 1.454 1.361 -2.389 -2.771 971 1098 Accept Accept 154 138

and LPF

1% 1.527 1.431 0.768 0.592 1229 1274 Accept Accept 174 146
2% 1.676 1.569 13.443 10.782 1479 1583 Reject Reject 182 165
5% 1.541 1.497 162.19 137.08 1847 1643 Reject Reject 223 177
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Figure 4: 3rd order CP-PLL macro model

signal φref and the feedback signal φv during their rising
edges. If the phase difference is within the tolerated mar-
gins, no current is injected in the Charge Pumps (CP). How-
ever, if the reference oscillator leads/lags the feedback sig-
nal (φref/φv reaches 2π first), then the CP injects current
to charge/discharge the Low Pass Filter (LPF) capacitors
which increases the control voltage.

The dynamics of the analog PLL components is described
by the following equations:

dvi

dt
=

1

Ci

ii

dvp1

dt
=

1

Cp1
[(

1

Rp2
+

1

Rp3
)vp1 +

1

Rp3
vp + ip]

dvp

dt
=

1

Cp3Rp3
(vp1 − vp) (5)

dφi

dt
=

1

N
(Kivi +Kpvp + 2πf0)

dφref

dt
= 2πf0

The locking property we attempt to verify can be ex-
pressed as: The required number of cycles for the PLL to
lock is less than a certain value (| φv − φref |≤ 0.2 ◦). This
property can be formulated as follows:

H0 : Tlock ≤ 1500 cycles; (6)

H1 : Tlock > 1500 cycles;

Table 2 shows the results of verifying the locking time of
the CP-PLL circuit using an upper tail test for a significance
level α = 0.05. We compared the discrepancy between the
results obtained using MC and our MC-JK approach. The
obtained results demonstrate a good agreement between the
two techniques in verifying the PLL locking ( H0 column in

Table 2). Besides, a better verification accuracy is remarked
using our approach with an error margins ǫ less than those
given by the MC technique. For instance, for 2% process
variation in the VCO and LPF the error margin computed
using our approach ǫ = 165 cycles while an error estimate
of ǫ = 182 cycles has been given by traditional MC.

4. CONCLUSION
In this paper, a Monte Carlo-Jackknife statistical approach

is proposed to handle the verification of analog and mixed
signal designs under 65nm process variation. The proposed
technique constructs statistically a sound hypothesis testing
approach and hence can be used in lieu of traditional Monte
Carlo simulation. For instance, it provides better accuracy
with reduced error margin than Monte Carlo. However, MC-
JK is more computationally intensive than MC based sta-
tistical runtime verification. To alleviate this, we deployed
the Latin Hypercube method for a more effective sampling
with less trials.

As future work, we plan to extend the proposed approach
to online runtime verification fashion for the same accuracy.
Moreover, we intend to study more uncertainties in AMS
designs such as noise, and initial condition variation.
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