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Abstract

Multiway Decision Graphs (MDGs) have been re-

cently proposed as an e�cient veri�cation tool for RTL

designs based on an e�cient representation mecha-

nisms. In MDG, a data value is represented by a sin-

gle variable of abstract sort, and a data operation is

represented by an uninterpreted function symbol. In

this work we investigate the non-termination problem

of MDG-based veri�cation. We present a novel ap-

proach to dealing with the problem based on retiming

and circuit transformations that preserve the behavior

of the circuit. We demonstrate the e�ectiveness of our

method on the example of the Island Tunnel Controller

(ITC).

Keywords: Formal Veri�cation, Multiway Decision

Graphs, Retiming, Circuit Transformations, Non-

termination.

1 Introduction
Traditional ROBDD-based methods of automated

veri�cation su�er from the drawback that they require

a binary representation of the circuit. The major

problem with these methods is that the size of the

state space may grow very rapidly with the size of the

model, which is known as the state explosion problem.

To alleviate this problem, a new veri�cation approach

has been proposed. The approach is based on abstract

descriptions of state machines (ASM) which are en-

coded by a new class of decision graphs, called Multi-

way Decision Graphs (MDGs) [3], of which ROBDDs

are a special case. With MDGs, a data value is rep-

resented by a single variable of abstract type, rather

than by Boolean variables, and a data operation is rep-

resented by an uninterpreted function symbol. Many

MDG-based veri�cation works on abstract state explo-

ration have been performed successfully for combina-

tional/sequential circuits, microprocessors and ATM

switch fabric [8, 6, 3].

However, the MDG-based method su�ers in many

cases from an important problem, namely non-

termination when computing the set of reachable

states. This can be a severe limitation on the use

of MDGs as a veri�cation tool.

In this paper, we propose a novel approach to deal-

ing with this problem. The method is based on retim-

ing [7] and circuit transformations. The transforma-

tions lead to an equivalent design on which the ver-

i�cation becomes possible. It has been shown that

retiming preserves the functionality of the circuit [7],

and the transformations that we perform are in fact

one possible implementation of a partial interpretation

of the uninterpreted function symbols.

The organization of the paper is as follows: In Sec-

tion 2 we present MDGs and review some aspects

of the non-termination problem. In Section 3, we

present, through an example, our veri�cation method

for non-terminating speci�cation. Section 4 is devoted

to the application of our method to the veri�cation of

the ITC speci�cation. Finally, we conclude the paper

in Section 5.

2 MDG-based Veri�cation and Non-

termination
The logic underlying MDGs is a many-sorted �rst-

order logic, augmented with the distinction between

abstract and concrete sorts. This is motivated by

the natural division of data-path and control circuitry

in RTL designs. Concrete sorts have �nite enumera-

tions which are sets of individual constants, while ab-

stract sorts do not. Variables of concrete sorts are

used for representing control signals, and variables

of abstract sorts are used for representing data-path

signals. Data operations are represented by uninter-

preted function symbols. An n-ary function symbol

has a type �1 � : : : � �n ! �n+1, where �1 : : : �n+1
are sorts. The distinction between abstract and con-

crete sorts leads to a distinction between three kinds

of function symbols. Let f be a function symbol of

type �1� : : :��n ! �n+1. If �n+1 is an abstract sort

then f is an abstract function symbol. If �1 : : : �n+1



are concrete, f is a concrete function symbol. If �n+1
is concrete while at least one of �1 : : : �n is abstract,

then we refer to f as a cross-operator ; cross-operators

are useful for modeling feedback signals from the data-

path to the control circuitry.

A multiway decision graph (MDG) is a �nite, di-

rected acyclic graph (DAG). An internal node of an

MDG can be a variable of a concrete sort with its

edge labels be the individual constants in the enu-

meration of the sort; Or it can be a variable of ab-

stract sort and its edges are labeled by abstract terms

of the same sort; Or it can be a cross-term (whose

function symbol is a cross-operator). An MDG may

only have one leaf node denoted as T, which means

all paths in the MDG are true formulas. Thus, MDGs

essentially represent relations rather than functions.

Just as Bryant's ROBDDs [1] must be reduced and

ordered, MDGs must also be reduced and ordered,

and obey a set of other well-formedness conditions

given in [3]. A set of MDG algorithms has been devel-

oped including algorithms for computing disjunction,

relational product (Conjunction followed by existential

quanti�cation [2]) and pruning-by-subsumption. A de-

tailed description of the algorithms can be found in

[3]. Pruning is implemented in MDGs by pruning-by-

subsumption (PbyS) operation. It takes as input two

MDGs G and H and produces the result G0 by re-

moving zero or more paths from G thus reducing the

graph if needed. PbyS is used for multiple purposes.

It provides a form of frontier-set simpl�cation [4, 2].

It is also used for detecting termination and checking

that an invariant is satis�ed during reachability anal-

ysis [3].

A state machine is described using �nite sets of in-

put, state and output variables, which are pairwise

disjoint. The behavior of a state machine is de�ned

by its transition/output relations, together with a set

of initial states. An abstract description of the state

machine, called abstract state machine (ASM) [3], is

obtained by letting some data input, state or out-

put variables be of an abstract sort, and the data-

path operations be uninterpreted function symbols.

Just as ROBDDs are used to represent sets of states,

and transition/output relations for �nite state ma-

chines, MDGs are used to compactly encode sets of

(abstract) states and transition/output relations for

abstract state machines. We thus lift the implicit enu-

meration [2, 4] technique from the Boolean level to

the abstract level, and refer to it as implicit abstract

enumeration [3]. This algorithm is based on abstract

state enumeration [3] where sets of states, as well as

transition and output relations, are represented us-

ing MDGs. Starting from the initial set of states, the

set of states reached in one transition is computed by

the relational product operation. The frontier-set of

states is obtained by pruning (removing) the already

visited states from the set of newly reached states

using pruning-by-subsumption. If the frontier-set of

states is empty, then a least �xed point is reached and

the reachability analysis procedure terminates. Oth-

erwise, the newly reached states are merged (using

disjunction) with the already visited states and the

procedure continues the next iteration with the states

in the frontier-set as the initial set of states.

Because of abstract variables and the uninterpreted

nature of function symbols, the reachability analysis

algorithm may not terminate [3].

For instance, consider an abstract sort Wordn de-

�ned only by a generic constant Zero and an ab-

stract function inc. Zero represents the initial value

of the sort Wordn and inc is an abstract function

which generates elements of sort Wordn, having the

form: inc(zero); inc(inc(zero)); : : :. A design which

uses this sort would have an in�nite set of states. For

example, consider an abstract description of a conven-

tional (non-pipelined) microprocessor where a state

variable pc of sort Wordn represents the program

counter, zero denotes the initial value of pc, and inc

describes how the program counter is incremented by

a non-branch instruction. The state variable pc would

contain each value of the abstract sortWordn starting

from any �xed value. If at step k, pc contains v then

at step k+1 it will contain inc(v). More precisely, at

each step a new state is created and reachability al-

gorithm will not terminate. To ensure termination of

reachability analysis, we can use a fresh variable, say

x, as the value of the variable pc instead of any �xed

value of sort Wordn such that x matches any modi-

�cation of pc. This process is called generalization in

[3] and it can be applied to all processor-like circuits

which possess a cyclic behavior.

However, this kind of generalization may not work

for circuits with uninterpreted function symbols used

as cross-operators [3] as we will see in the next Section.

3 Retiming and Transformation for

Non-Termination

Originally, retiming algorithms address the prob-

lem of minimizing the cycle-time or the area of syn-

chronous circuits by changing the position of registers

[7]. In the �rst case retiming aims at placing registers

in appropriate positions, so that the critical paths1

they embrace are as short as possible. In the second

1i.e. the longest path between a pair of registers



case, retiming corresponds to minimizing the overall

number of registers. A new application for retiming is

investigated here. More precisely, we use rules of for-

ward retiming to place the registers in appropriate po-

sitions such that the reachability analysis terminates.

In this section we review, by an example, the main

reasons of non-termination of the abstract state enu-

meration in MDGs and present a solution to overcome

it. Consider an Abstract State Machine, say M, shown

in Figure 1. It consists of two states, s0 and s1. A sin-

gle register, reg, is used to encode the two states. The

S0 S1

if   r=0  then   n_pc = zero 

if  f(pc) = 1 and r=1 then n_pc = inc(pc) 

if  r=1 then 

       n_pc=inc(pc)
if  f(pc) = 0  or 

      r=0  then 

         n_pc=pc

pc =
 zero 

Figure 1: A simple processor-like loop ASM (M)

reachability analysis for this machine does not termi-

nate even if we generalize the state variable pc. An

analysis of the �rst MDG generated for this example

shows that the cross-operator, f , is the reason for this

non-termination. The MDGs in Figure 2 are gener-

ated after two transitions of the ASM M. It shows

the MDGs I, N k and F k (k=1,2) representing the

set of initial states, the set of states reached in two

transitions, and the frontier set of states, respectively.

The initial state represented by the MDG I consists
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Figure 2: First MDGs generated for the ASM in Figure 1

of reg = 0 and pc = a, where a is a fresh variable.

In the initial state, the ASM can stay there or it can

reach the state s1 under the condition f(a) = 1 with

reg = 1 and pc = inc(a). This is represented in Fig-

ure 2 by the MDG N1 which contains two paths. The

frontier set F1 is computed by removing the paths

on the left-hand side of N1, since it is subsumed by

I . N2 represents the reachable states from F1 in one

step. If r = 0 then the ASM goes back to the ini-

tial state with zero loaded in the state variable pc.

If r = 1, then the ASM stays in s1 with reg = 1

and pc containing inc(inc(a)). The path on the left-

hand side in N2 is subsumed by the single path of

I , because the latter is more general than the former

which is thus removed. For the path on the right-

hand side of N2, pc = inc(inc(a)) is an instance of

pc = inc(a) in N2, but the presence of the same

guard f(a) in both paths results in non-termination,

since there is no appropriate substitution to match

the state reg = 1 ^ pc = inc(inc(a)) ^ f(a) = 1

(path on the right-hand side in N2) with the state

reg = 1 ^ pc = inc(a) ^ f(a) = 1 (path on the right-

hand side in N1). Let us point out that this guard is

generated from the initial state, where pc would have

had the initial value zero. Hence the argument of f

would have been zero. Suppose, that we know that,

under a speci�c interpretation in the use context of

the circuit, the value of f(zero) is 1. It would be pos-

sible to use this information to eliminate the guard,

f(zero) = 1, by using the rule f(zero) ! 1. Unfor-

tunately, this rule does not apply when we generalize

to a as shown in the example. The basic idea to solve

this kind of non-termination is to use the partial in-

terpretation of the cross-operator and delay the gen-

eralization until after the interpretation. To restore

this information lost by generalization, we could save

it in a new state variable. This state variable (register)

must be found in the ASM structure by redistributing

the existing registers so as not to change the original

behavior. For this purpose we use the rules of forward

retiming. The new register will thus appear at the out-

put of the cross-operator f . Forward retiming always

guarantees to �nd the initial values for all registers.

In general, we need additional circuit transformation

to maintain the interpreted value of the cross-term as

long as it remains valid.

Since retiming is usually applied to a structural

description of the circuit, it is necessary to extract

the circuit from the ASM description. This extraction

may lead to a complex circuit for which retiming may

be di�cult. To limit the retiming to just the necessary

portion of the ASM, we decompose the original ma-

chine, say M , into two inter-dependent sub-machines

M1 and M2. M1 represents the control-part and con-

tains only concrete state variables whileM2 represents

the data-part that depends on the state ofM1 and con-

tains abstract state variables. M1 is thus a copy of M

without abstract state variables and M2 is reduced to

a single control state. The result of this decomposi-

tion as applied to the ASM M of Figure 1 is shown in



Figure 3 and Figure 4.

S0 S1

  out_f = 0  or       r=0  
r=0  

out_f = 1 and r=1  

  r=1 

Figure 3: The control-Part (M1) of the ASM M
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    or ( out_reg = 1 and  r=1   then n_pc = inc(pc) )

 if  (out_reg = 0 and out_f = 1 and  r=1)

Figure 4: The data-Part (M2) of the ASM M

M1 communicates its state information toM2 through

the output signal out reg, whileM2 communicates the

condition on the pc value through the output of the

cross-term f , out f . Note that the two machines share

the primary inputs. By this decomposition, we have

isolated the non-termination problem in the machine

M2, that can be retimed as needed, i.e, to obtain a

register at the output of the cross-term f . In Figure 5
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zero
mux
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out_fr

Figure 5: Structural description of M2 and its connections to

M1

we show the structural description of M2 and its con-

nection to M1. The inputs of M1 are r and f(pc), and

its ouput is reg which gives the information about the

current state of M1 to M2. The structural description

of M2 includes a data register pc, an 8 to 1 multi-

plexer, and two functional blocks represented by the

uninterpreted function symbol inc and f . inc takes pc

as its input and produces the abstract value inc(pc). f

is a cross-term that takes as its abstract input pc and

produces a concrete output out f of sort bool. The

transition relation of M2 is as follows
2:

(out reg = 0 ^ out f = 1 ^ r = 1)

_ (out reg = 1 ^ r = 1)! n pc = inc(pc)

j out reg = 1 ^ r = 0! n pc = zero

j n pc = pc

In order to obtain a register at the output of f , we

retime M2 by moving the register pc forward to the

input of inc and the output of f . The result of this

retiming is shown in Figure 6. At the output of f , the

register pc is replaced by a register pc f of sort bool,

and at the input of inc is replaced by a regsiter pc inc.

inc

f

pc_f

M1

pc_inc

0

1

2

3

4

5

6

7

r

 out_reg

out_f

mux

zero

zero

r

pc_f

Figure 6: Structural description of M2 after retiming and its

connections to M1

Since the initial value of the register pc was the

generic constant zero, the equivalent initial state for

the retimed circuit is obtained by letting the appro-

priate initial values for the two registers pc inc and

f pc. These values are obtained by propagating the

initial state to the new register positions. It follows

that the initial value of pc inc is zero and the ini-

tial value of pc f is f(zero), which is equal to 13.

This partial interpretation of f must be retained in

the register pc f until the control machine M1 uses

the condition f(zero) = 1. Furthermore, when M1

and M2 return back to their initial states, the initial

value (i.e., 1) of the register pc f must be reloaded.

2For simplicity, the conditional equation: if a then b else c is

written: a! b j c
3Recall that to avoid non-termination of the reachability

analysis, we must use the partial interpretation, f(zero) = 1



The logic which controls the register pc f can be im-

plemented by a multiplexer, having as control signals

the primary input r, the register reg which provides

information about the current state of M1 and pc f

itself. In order to implement this control for pc f , we

use the equation related to pc f from Figure 6, where

pc f = f(pc inc). The next state for the register pc f

is given by n pc f = f(pc inc0). By replacing pc inc0

by its value, which is the same as n pc, we get:

(out reg = 0 ^ pc f = 1 ^ r = 1)

_ (out reg = 1^ r = 1)! n pc f = f(inc(pc inc))

j out reg = 1 ^ r = 0! n pc f = f(zero)

j n pc f = f(pc inc)

Note that in the third case the register pc inc keeps

its previous value and thus pc f does too, in the second

case pc inc loads the initial value zero and pc f loads

f(zero), and in the �rst case pc f contains a new value

depending on the result of f(inc(pc inc)). This case

analysis on pc inc0 can be implemented by an 8 to 1

multiplexer as shown in Figure 7.
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Figure 7: Structural description of M2 after retiming and

circuit transformation and its connections to M1

Reachability analysis applied for the modi�ed cir-

cuit terminates, as shown by the sequences of MDGs

presented in Figure 8. The initial state is reg = 0,

pc f = 1, and the value of pc inc is generalized to a

variable a. The initial value 1 of pc f represents the

partial interpretation of f(zero) (Figure 8, MDG I).

From this initial state, the ASM can stay there if r = 0

or it can reache the state where reg takes the value 1

and pc inc takes the value inc(a). pc f takes the value

f(inc(a)) which is represented by the MDG N1 with

two paths on which pc f is either 0 or 1 depending on

the value of f(inc(a)). The path on the right-hand

side in N1 is subsumed by I , but the path on the left-

hand side represents a new state. F1 represents the

frontier set obtained by removing the path on right-

hand side. The reachable states from the frontier set

are represented by N2. If r = 1, the machine stays

in this state and increments the counter such that

reg = 1, pc = inc(inc(a)), and R = f(inc(inc(a))).

If r = 0, the transition leads back to the initial state

by loading the value zero to pc inc and the value 1 to

pc f . The path on left-hand side of N2 is subsumed

by the single path of I , by letting a to zero, and the

two paths on the right-hand side of N2 are subsumed

by the paths of N1 by substituting a in N1 by inc(a).

Thus all the paths of N2 are removed and the fron-

tier set F2 is empty, thus terminating the reachability

analysis.
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Figure 8: MDGs generated for the retimed ASM.

We applied this technique on the ITC example.

The abstract state enumeration successfuly terminates

during the reachability analysis. Experimental results

for property checking on the ITC are discussed in the

next section.

4 Experimental results
We have applied our methodology to the Island

Tunnel Controller (ITC). The Island Tunnel Con-

troller was �rst veri�ed in [9]. The complete ITC

speci�cation is composed of 5 communicating state

machines: the Island Light Controller (ILC), and the

Mainland Light Controller, and the Tunnel Controller,

and the Island and Tunnel Counters (see [9, 5] for a de-

tailed description). The tunnel and island counters are

typical processor-like loop. However, the composed

ASM is no more a processor-like circuit, and the initial

state generalization fails. In [9], the authors suggest

a heuristic method for state generalisation based on

the generalization of every abstract state variable at

each clock cycle. This method enlarges unnecessarily

the reachable state which implies manual analysis if

an invariant is violated. The authors recognize that

for complex designs, manual analysis poses di�culties

since we have to simulate manually the behaviour of

the composite ASM. The application of our method is



systematic, we check just syntactic conditions on the

MDG-desciption of the composite ASM and apply the

necessary transformations. This operation could be

easily automated by using any shell language like Perl.

At this momemt this is done manually. Our experi-

mental results are shown in the table 4. They were

done on an Ultra SPARC with 124 MB of memory.

The CPU time is in seconds and the memory usage

is given in megabytes. We verify the same properties

for the original speci�cation and the retimed one. In

the �rst case, we use the heuristic state generalization

while in the second case the initial state generalization

on the retimed speci�cation. The properties that we

have veri�ed are listed below:

P1: Cars never travel both directions in the tunnel at

the same time.

AG ( ! ((igl=1) & (mgl=1)) ).

P2: The tunnel counter is never signaled to increment

simultaneously by ILC and MLC.

AG ( !((itc+ = 1) & (mtc+ = 1)) ).

P3: The island counter is never signaled to increment

and decrement simultaneously.

AG ( ! ((ic� = 1) & (ic+ = 1)) ).

Orig spec Ret Spec

Prop. T M #N T M #N

P1,P2,P3 55 2.7 4329 11.59 7.9 7287

Table 4: Experimental results.

The number of MDGs nodes is increased in the

retimed speci�cation because additional registers are

added due to retiming. This slightly a�ects the mem-

ory usage and CPU time. It is the cost to pay for the

termination of the abstract state enumeration.

5 Conclusions
In this paper we have shown a novel method to

deal with the MDGs non-termination problem. This

problem may occur as abstract sort and uninterpreted

function symbols are used to model circuits and �-

nite state machines. The key point of our method is

based on the idea of retiming in repositioning registers

so that state exploration terminates. We have demon-

strated the e�ectiveness of our method on a non trivial

example, the Island Tunnel Controller on which state

exploration did not terminate.
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