
A Symbolic Approach for the Safety Verification
of Continuous Systems

Mohamed H. Zaki, Sofiène Tahar and Guy Bois §
Dept. of Electrical & Computer Engineering, Concordia University

1455 de Maisonneuve W., Montreal, H3G 1M8, Canada
§Genie Informatique, Ecole Polytechnique de Montreal

C.P. 6079, succ. Centre-Ville, Montreal, H3C 3A7 , Canada
{mzaki, tahar}@ece.concordia.ca, guy.bois@polymtl.ca

Abstract. Embedded systems are computer-based reactive designs that
interact directly and dynamically with their environment. When embed-
ded systems are used in safety critical applications, the design process
must be able to give safety guarantees to avoid any consequent risks. In
this paper, we propose an approach to check safety properties of the dy-
namical environment of embedded systems using the computer algebra
system Maple and the constraints solver RealPaver. The methodology
we present is suitable when the dynamics are described by a set of poly-
nomial ordinary differential equations, and the safety conditions in the
properties are described as constraints using algebraic inequalities. Such
modeling can be useful in representing classes of embedded systems (e.g.,
optical, mechanical, analog) at functional and behavioral levels.

1 Introduction

Embedded systems are reactive in nature and interact directly and dynamically
with their environment. Such interaction is usually achieved through sensors and
actuators which are interfaced with the controller CPU through data processing
components converting data representations between analog and digital formats.
At the specification level, such architecture can be modeled in an abstract way
as shown in Figure 1.(a), where the digital controller can be modeled by finite
state machines (FSMs), while the dynamical environment can be described using
systems of ordinary differential equations (ODEs). The sensor and A/D interface
can be modeled as threshold detector and event generator respectively, while the
actuator and D/A components can be modeled as switches that choose between
different ODEs systems and set the initialization and reset conditions necessary
for correct functionality.

When embedded systems are safety critical, the design process must be able
to provide safety guarantees to avoid any life threatening risks. An example of a
safety requirement is the switching condition of the dynamical parts of an em-
bedded system, e.g., check whether a continuous behavior will trigger a discrete
event driving the system into an undesired mode. Simulation is classically used
to verify such a property. As exhaustive simulation of all possible scenarios is

impossible, and hence, cannot guarantee the correctness of the design. With con-
trast to simulation, formal verification techniques aim to prove mathematically
that a circuit behaves correctly for all possible input signals and initial conditions
and that none of them drives the system into an undesired behavior. Therefore
such safety properties can be typically verified using formal methods like model
checking [1]. However, the effectiveness of model checking is severely constrained
by the state space explosion problem and even undecidability limitations when
the systems are described by differential equations [5]. In such cases, abstraction
techniques are usually required in order to achieve the verification task.

In this paper, we propose a computer algebra approach to check safety prop-
erties of the continuous dynamics of generic embedded systems as described in
Figure 1.(a). The basic idea is the symbolic extraction of qualitative constraints
of the continuous system described using a system of ODEs, which can be auto-
matically checked against a set of specification properties written in a temporal
logic [1]. For verification purposes, we combine ideas from invariant generation,
linear programming and constraint solving on designs described by non-linear
differential equations using the computer algebra system Maple [7] and the con-
straints solver RealPaver [9].

Related Work. Safety verification has been applied recently to embedded
systems using abstraction based verification [5, 11]. In order to enhance the ab-
straction, the authors in [12, 10] proposed independently to use techniques from
algebraic geometry to generate general invariants. In this paper, we are interested
in qualitative invariants which provide useful information about the behavior,
avoiding the generation of redundant or hard to interpret invariants. In [15], the
authors proposed a similar framework using the idea of barrier certificates. Bar-
rier certificates if they exist, are invariants that separate system behavior from
a bad state. Such method is complementary to ours as the invariants we use do
not require a priori knowledge of initial conditions and in contrast to barrier
certificates give knowledge of the whole system behavior rather than specific be-
haviors. In [16], the authors used invariants with predicate abstraction to build
discrete models for analog circuits to verify oscillation behavior using model
checking.

The rest of the paper is organized as follows: We start with an overview
of the verification methodology in Section 2. We proceed with describing the
system invariants and their generation in Section 3. Finally, we describe safety
verification of continuous systems with illustrative examples in Section 4, before
concluding with a discussion in Section 5.

2 Verification Approach

The basic idea of the proposed verification is to qualitatively divide the contin-
uous state space of the dynamics of the embedded system into distinct invariant
regions on which satisfaction of safety properties can be verified. This qualitative
analysis is based on the Darboux theory of integrability [6]. The approach we
propose is illustrated in Figure 1.(b). Starting with a system of ODEs, along

2

Controller

Event Generator.
System (ODEs)
Continuous

(x)Solution

Flow

x = f(x)

Output Events

EventsInputReset/Initialization

ODEs Selector

Threshold Detector

.

with specification properties written in computational temporal logic (∀CTL)
[1], we construct a system of constraints using properties constraints along with
the qualitative invariants symbolically extracted from the ODEs system.

Checking

Feasability

(Add Constraints)

Solver

Constraints

Generator

Refine

Invariants

Properties
Temporal

ODEs System

Not Verified Verified

(a) Embedded System Model (b) Verification Methodology

Fig. 1. Verification for Continuous Systems

For a safety property specified in temporal logic formula, e.g., ∀� p, (i.e.,¬
always, for all possible execution, the constraint p will be satisfied), we get
the dual property ∃♦ p (which means that there is an execution falsifying the¬
constraint p) and apply feasibility checking on it within the invariant regions of
interest. If the constraints system is satisfiable, we conclude that the property is
violated (cannot be verified) otherwise, the property is verified.

Based on the nature of the system of constraints, we apply satisfiability deci-
sion procedures; feasibility checking for linear constraints based systems and con-
straints solving for non-linear constraints based systems. For linear constraints,
Fourier-Motzkin Elimination method [2] is used to check for feasibility. In non-
linear constraints, a constraint solving approach based on interval arithmetics
[9] is used to test the unsatisfiability of the constraints. The construction of the
constraints is incremental in the sense that more precision can be achieved by
adding more information to the original construction of the system. When the
property is marked violated, one possible reason is because of the false negative
problem due to the over approximation of the abstraction. In this case refinement
techniques may be introduced.

3 State Space Invariants

System Description: We consider the dynamics of the embedded system model
in Figure 1.(a), which can be described by non-linear polynomial ODEs of the
form:

3

m

ẋk =
dxk = Pk(x1, . . . , xd) = a0 +

∑
Pl,k(x1, . . . , xd)

dt
l=1

where t is the independent real time, k = 1, . . . , d and d is the system order. Pk

is a polynomial of degree m, a0 is a constant and Pl,k is a polynomial of degree
l,

i1 idPl,k =
∑

ai1,...,id
x1 . . . xd

i1+...+id=l

where ai1,...,id
is a constant. We assume that the differential equation has a

unique solution for each initial value.
Usually, a continuous system has a behavior which varies in different regions

of state space. The regions’ boundaries are usually defined by special solutions of
the system known in the literature as separatrices which partition the concrete
state space into a set of qualitative distinctive bounded regions.

Definition 1. Given the system of ODEs dxk = Pk(x1(t), . . . , xd(t)), with k =dt

1, . . . d (dx = P(x), x ∈ R
d and P = (P1, . . . ,Pd)), we can define a correspond-dt

ing vector field as
d

DP = P.∂x =
∑

Pk
∂x

∂

k
k=1

The correspondence between the system of ODEs and the vector field DP

is obtained by defining the time derivative of functions of x as follows. Let G
be a function of x: G : R

k → R, then d
dt
G := Ġ = DP(G) = P.∂xG. The time

derivative is called the derivative along the flow since it describes the variation
of function G of x with respect to t as x evolves according to the differential
system. We look at functions which are constant on their zero level set. Darboux
polynomials Ji were first studied by Darboux in the last century, since then have
been investigated in the qualitative and algebraic analysis of continuous systems.
Darboux polynomials split the phase portrait into regions where the behavior
is qualitatively different (bound or unbound). These functions Ji provide the
essential skeleton for the state space from which all other behaviors can be
qualitatively determined. A Darboux polynomial is of the form

J (x) = 0 when DJ = KJ
with J ∈ R[x] and K = K(x) is a polynomial called the cofactor of J = 0, with
a degree of at most M− 1.

Property 1 Given a system of ODEs and a vector field Df , J is an invariant
of the the system if J divides Df , more formally, if there exists K ∈ R[x] such
that Df (J) = KJ . The solution set of the system vanishes on the curve of J .

dx dyFor example, a straight line ux+vy+w = 0 satisfies u dt +v dt = uP1(x, y)+
vP2(x, y) = (ux + vy + w = 0)K(x, y) if it is invariant under the flow of the
system. In case we are only concerned with linear Darboux invariants of the
form ψ(J x) := a0 +

∑d
k=1 akxk.

4

Example 1. For the system described by the following ODEs: ẋ = x(a1x+ b1y +
c1) and ẏ = y(a2x+b2y+c2) with a2 = b1 = 0, c1 = c2 and a1b2 = 0. The number
of linear invariants is equal to 3m − 1 = 5, namely f1 = y +

�
c1 , f2 = x + c1 ,b2 a1

f3 = x − b2 y, f4 = x, f5 = y.a1

Generating Second Integrals: The problem of finding the invariant is
based on the evaluation of the coefficients of the predefined forms of Darboux
polynomials J and their cofactors K. This can be considered as the second step
of the Prelle Singer algorithm [8] used to build first integrals from Darboux
polynomials and was implemented in a Maple package called PSsolver [3].

Example 2. Using PSsolver package, for the system ẋ = x(x2 + 2y2 − 1) and
ẏ = y(x2 + 2y2 − 3y + 1), we find following Darboux invariant polynomials
j1 = x−y +1, j2 = −x−y +1, j3 = 0.5x−y +0.5, j4 = −0.5x−y +0.5, j5 = x,
j6 = y.

4 Safety Verification

We define the invariant regions as a conjunction of Darboux invariant predicates.
The invariant regions can be considered as abstraction of the state space such
that being inside an invariant region means that the system dynamics will always
stay in this region. Moreover, we consider the fact that a safety property ∀�I is
always satisfied in a region, if its dual property ∃♦¬I is never satisfied in that
region.

In the remaining of this section, we show how to derive the verification for
two possible cases; namely the linear case, where we use feasibility checking and
the non-linear case, where we use constraint solving.

4.1 Feasibility Checking

The problem of determining whether a linear predicate cross an invariant region
formed by a conjunction of linear constraints can be formulated as a feasibility
problem by solving linear inequalities. The feasibility problem is thus to deter-
mine whether the linear constraints are consistent, and if so, find a point that
satisfies them; x ∈ X is feasible if it satisfies the constraints. The problem can be
formulated as solving a system of linear inequalities as follows. Given a matrix
A = [aij] in R

m×n and a column vector b ∈ R
m, find x = (x1, . . . , xn)T such

that ∃x : Ax ≤ b, i.e.,

∃x :
∧ ∑

aijxj ≤ bi

1≤i≤m 1≤j≤n

Several methods have been developed to deal with this class of problem. For
instance, a standard method is the Fourier-Motzkin Elimination [2]. Intuitively,
the Fourier-Motzkin elimination procedure iteratively projects one variable x
by rewriting the system of inequalities into a new system without x, which has

5

a solution if and only if the original system has a solution. The basic idea of
variable elimination is to pick one variable and eliminate it, then continue until
all variables are eliminated [2].

Example 3. Suppose that the dynamical environment of the system in Figure
1.(a) is described by ẋ = x2 +2xy +3y2 and ẏ = 4xy +2y2, with x0 ∈]0, 0.5] and
y ∈]0, 1]. Suppose the property to check is ∀�x > −1, meaning that the state
variable x valuation will not fall below −1. Based on the methodology in Figure
1.(b) and using the Maple PSsolver package, we found that the system has three
invariant lines; j1 = y, j2 = x + y, j3 = x − y (See Figure 2.(a)). We can divide
the state space into regions formed by the conjunction of different invariant
predicates. Using feasibility checking (with Maple), we start by identifying the
regions to which the initial conditions belong. The following regions satisfy the
initial conditions Θ1 = (y > 0, x + y > 0, x − y < 0), Θ2 = (y > 0, x + y >
0, x− y > 0). We check whether ∃♦x ≤ −1 is satisfiable in the invariant regions
Θ1 and Θ2 using feasibility checking. We find that for region Θ1, the constraints
system is feasible (original property cannot be verified), while for the region Θ2,
the constraints system is infeasible (property is satisfied).

4.2 Verification using Constraints Solving

To verify properties on regions described by a conjunction of non-linear con-
straints, we use an interval based constraint solving which can decide unsat-
isfiability for the system of non-linear constraints. The feasibility problem is
thus to determine whether the non-linear constraints are consistent. In unsatis-
fiability constraint solving, if a solver pronounces the infeasibility of the input
constraints, then this result is sound. Realpaver [9] is an example tool that can
solve constraints of this category. RealPaver is able to solve non-linear equations
or inequality constraints over the real numbers where each domain is repre-
sented by a closed interval. Given a system of constraints, RealPaver computes
a union of boxes that contains all solutions satisfying these constraints. If no box
is computed by RealPaver, then this system is guaranteed to have no solution.
Interval computation guarantees the solution to be reliable; the real solutions
are enclosed by the computed intervals [9].

Example 4. Suppose that the dynamical environment of the system in Figure
1.(a) is described by ẋ = y + 2xy and ẏ = −x + 2x2 − y2, with the following
property ∀�y2 +x > 0. The extracted invariants are {j1 = 2x+1, j2 = 1− 2x+
8 2 12 2
5x − 5 y } (see Figure 2.(b)). Using RealPaver, we find out that the property
is only satisfied in regions Θ3 = (j1 < 0, j2 < 0) and Θ4 = (j1 > 0, j2 < 0).
This means that a flow in another region than regions Θ3 and Θ4 can generate
a discrete event, which could trigger the control part into an undesired state.

5 Conclusion

The lack of methods for safety verification of continuous dynamics has been the
main obstacle towards algorithmic verification methodology for embedded sys-

6

Asymptotic solution

–10

–5

5

10

–10 –5 5 10
x

Asymptotic solution

–6

–4

–2

0

2

4

6

y

–6 –4 –2 2 4 6

x

(a) Linear Invariants (b) Non-linear Invariants

Fig. 2. Phase Portrait and Invariants of Examples 3 and 4

tems models. In this paper, we present a qualitative based analysis that can be
suitable to tackle such problems and can be incorporated naturally with formal
verification techniques. The method can be also applied alongside traditional
methods like simulation based techniques to raise confidence in the produced
system. To apply our approach we have used the computer algebra tool Maple
in addition to the RealPaver constraint solver which is suitable for unsatisfia-
bility checking. Future work includes extending the approach to handle discrete
components and apply the verification on practical case studies.

References

1. E. Clarke, O. Grumberg , D.A. Peled. Model Checking. MIT Press: Cambridge, MA,
1999.

2. V. Chvatal, Linear Programming book, W.H. Freeman, 1983.

3. L.G. Duarte, S.E. Duarte, L.A. da Mota, J.E. Skea: An Extension of the Prelle-
Singer Method and a Maple Implementation. Computer Physics Communications,
144:46-62, Elsevier, 2002.

4. W. Hartong, R. Klausen, L. Hedrich: Formal Verification for Nonlinear Analog Sys-
tems: Approaches to Model and Equivalence Checking, Advanced Formal Verifica-
tion, Kluwer, pp. 205-245, 2004.

5. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hybrid
Systems. Software Tools for Technology Transfer, 1:110-122, Kluver, 1997.

6. A. Goriely. Integrability and Nonintegrability of Ordinary Differential Equations,
Advanced Series on Nonlinear Dynamics, Vol 19, World Scientific, 2001.

7. MapleSoft inc., www.maplesoft.com/

8. M Prelle and M Singer: Elementary First Integral of Differential Equations. Trans-
actions of the American Mathematical Society, Vol. 279(1), pp. 215-229, 1983.

9. L. Granvilliers. On the Combination of Interval Constraint Solvers. Reliable Com-
puting, 7(6):467-483, 2001

7

10. S. Sankaranarayanan, H. Sipma, Z. Manna. Constructing Invariants for Hybrid
Systems. In Hybrid Systems: Computation and Control, LNCS 2993, pp 539-554,
Springer, 2004.

11. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In Hybrid
Systems: Computation and Control, LNCS 2289, pp. 465-478, Springer, 2002.

12. A. Tiwari and G. Khanna. Nonlinear systems: Approximating reach sets. In Hybrid
Systems: Computation and Control, LNCS 2993, pp. 600-614. Springer, 2004.

13. R. E. Moore. Methods and Applications of Interval Analysis, Society for Industrial
Applied Mathematics, Philadelphia, 1979.

14. X Zhang. Invariant Hyperplanes and Darboux Integrability of Polynomial Vector
Fields, Journal of Physics A: Mathematical and General, Volume 35, Number 46,
124:9931-9941, Institute of Physics Publishing, 2004.

15. S. Prajna, A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Cer-
tificates. In Hybrid Systems: Computation and Control, Springer, pp. 477-492. 2004.

16. M. Zaki, S. Tahar, and G. Bois: Abstraction Based Verification of Analog Circuits
Using Computer Algebra and Constraint Solving; Proc. International Workshop on
Symbolic Methods and Applications to Circuit Design, Florence, Italy, 2006.

8

