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Abstract—Mixed-Signal extensions to VHDL and SystemC
languages have been developed in order to provide a unifying
environment for the modeling and verification of AMS designs
at different levels of abstraction. In this paper, we model the
behavior of a set of benchmark designs in VHDL-AMS and
SystemC-AMS and compare the simulation run-time with the
low level HSPICE simulation run-time. The various experimental
results observed shows the superiority of VHDL-AMS against
SystemC-AMS in terms of simulation run-times at lower level of
abstraction.

I. INTRODUCTION

With the advances in embedded systems, the role of analog
and mixed-signal (AMS) designs as an interface between
the electronic system and the real world is becoming more
and more important. However, AMS design modeling and
simulation is a challenging task that requires lots of expertise
and deep understanding of their behavior, when compared with
digital designs.

Traditionally, AMS designs are described by netlist format
in SPICE and simulated using available circuit simulators.
Though, it looks simple, the circuit simulators are not ca-
pable of handling efficiently larger designs at lower levels
of abstraction due to its computational intensive nature. An
alternate approach, is to capture the behavior of the AMS
designs at higher level of abstraction using hardware de-
scription languages (HDL). This technique (called behavioral
modeling) brings down the simulation time of the design, but
is less accurate when compared to low level simulation. For
a tradeoff between accuracy and run-time, the designers can
look at modeling AMS designs at higher levels of abstraction
and HDLs provide an attractive platform to carry out such
modeling.

The rest of the paper is organized as follows. We start by
giving an overview of the relevant related work in Section II. In
Section III, we describe the AMS simulation approaches used
in VHDL-AMS [17] and SystemC-AMS [13] with emphasis
on the concept of simulation cycle. In Section IV, we illustrate
and compare the simulation experiments using a set of AMS
benchmark circuits [8], before concluding with a discussion
and outline for future directions in Section V.

II. RELATED WORK

During the past few decades, several work in the Computer-
aided design (CAD) literature were concerned with study-
ing possible frameworks for the simulation of mixed signal
designs. For instance, in [1], the authors propose a new

methodology for the Jiles-Atherton model of ferromagnetic
core hysteresis using mixed-domain SystemC and VHDL-
AMS implementation to ensure numerically reliable integra-
tion of the magnetisation slope. In [2], the authors proposed
a SystemC/Simulink co-simulation framework for embedded
system that relies on Simulink for the continuous simulation
and SystemC for the discrete simulation based on one or more
synchronization model. While in [9], the authors developed
a co-simulation environment based on SPICE and SAVANT.
Another mixed-domain simulation framework was proposed in
[12] based on VHDL and ELDO. The commercial tool Nexus-
PDK [4] supports co-simulation of cycle accurate C/C++ with
SystemC, MATLAB/Simulink, and VHDL/Verilog simulators.
In [10], the authors examine the applicability of SystemC-
AMS for MEMS systems and do a comparison with VHDL-
AMS based implementation. In [3], the authors developed a
mixed-signal, functional level simulation framework based on
SystemC for system-on-a-chip applications. The framework
includes a C++ mixed-signal modules. They implemented
a virtual clock for scheduling and synchronization between
analog and digital components. In [16], the authors presents
a preliminary approach for the modeling and simulation of a
simple but complete Wireless Sensor Network with two nodes
using SystemC-AMS. The paper also explains the advantage of
SystemC-AMS over other HDL’s in modeling and simulation
of such network.

All of the above mentioned papers were concerned with
AMS designs high level modeling and simulation in a multi-
domain environment. However, none of them compares the
simulation performance of the developed AMS systems against
the low level implementation, to get an insight about the
tradeoffs that might occurs between accuracy and simulation
performance. With the standardization of SystemC and on
going standardization for its AMS extension, the aim of this
paper is to extend the insight by comparing the simulation
run-time of VHDL-AMS and SystemC-AMS for the analog
and mixed signal benchmark circuits.

III. AMS SIMULATION APPROACH

SystemC-AMS and VHDL-AMS allow the modeling of
discrete-time signals and continuous-time signals, or a combi-
nation of both in a single design. Connecting functional and
behavioral models is accomplished with the help of terminals
and quantities. SystemC-AMS and VHDL-AMS allow the
capture of behavior of AMS designs at higher levels of



abstraction, which brings down the simulation time, while
preserving the functionality of the design.

A. VHDL-AMS

VHDL-AMS [17] was developed as an extension to VHDL
to describe and specify AMS circuits and systems. Its syntax
was defined with a semantics to support conservative and non-
conservatives modeling of analog part of circuits and systems.
The analog parts are modeled as lumped systems and can
be described by ordinary differential and algebraic equations.
Systems in both electrical and non-electrical domains can
be described and specified at various levels of abstraction.
No particular technique to solve equations is specified in
the standard, it only specifies what results must be achieved
by a simulator, leaving the door open for creative algorithm
development and their efficient implementation. VHDL-AMS
standard also describes the interaction between the analog
and digital parts of a model, solution of equations with
discontinuities, and support for frequency domain small-signal
noise simulation.

The VHDL-AMS simulation cycle [6] is shown in Figure
1 and Figure 2. The simulation starts with the initialization
phase (shown in Figure 1). The initialization phase consists of
four main steps. The analog system equations are determined
from the analog part of the VHDL-AMS model. The initial
conditions for the equations are determined from the initial
values of the quantities, their attributes and also from the
break statements. The initial values of the driving signals,
and quantities defined by attributes are first computed. The
processes are then executed once until they suspend. At the
end of the processes execution the simulation time is set to
zero.

Fig. 1. VHDL-AMS Simulation Cycle- Initialization.

The VHDL-AMS simulation cycle (Figure 2) begins with
the computation of analog solution points (see arrow 1). This
continues until the next digital event is scheduled or an event
occurs on the analog and digital interface (see arrow 2). To

compute a digital evaluation point, signals are updated first.
After that, any triggered processes are executed until they
settle. If the time for the next digital evaluation Tn is equal
to current time Tc, the digital simulator is called again (see
arrow 3). If Tn is not equal to Tc, the analog solver is called,
and the next cycle begins (see arrow 4). This continues until
the end of simulation is reached (see arrow 5).

Fig. 2. VHDL-AMS Simulation Cycle- Execution [6]

B. SystemC-AMS

SystemC-AMS [14] is an extension of SystemC that uses
an open and layered approach [15] as shown in Figure 3.

The base layer is the existing SystemC 2.0 kernel. On top
of the base layer, two sets of layers are defined:

1) Interface to the existing SystemC layers, (e.g, discrete
event channels), and

2) A new set of AMS layers such as the synchronisation
layer, the solver layer, and the user layers.

The user view layer provides methods to describe the
continuous-time models in terms of procedural behavior,
equations, transfer functions, state-space formulations, and as
netlists of primitives. Due to its open source architecture, the
user can add additional features to the simulator depending
on their application. SystemC-AMS uses a Synchronous Data
Flow (SDF) [11] model of computation for modeling and
simulation [5]. The solver layer provides different imple-
mentations of solvers (such as linear solver to solve elec-
trical network) that are required to simulate specific AMS
descriptions. The synchronization layer implements a mech-
anism to organize the simulation of a SystemC-AMS model
that may include different continuous-time and discrete-event
parts. SystemC-AMS defines a generic interface for various
continuous-time solvers and provides methods to synchronize
analog solvers and the discrete kernel of SystemC.

In [15], the authors describe the semantic model of
SystemC-AMS and propose changes to the SystemC 2.0 sim-
ulation cycle to extend its capabilities to support the execution
of dataflow clusters. A dataflow cluster (or a cluster process)
consists of one or more continuous-time modules embedded
inside a discrete-event process which is managed by a coordi-
nator. An elaborated AMS design in SystemC-AMS consists
of a set of interconnected cluster processes and discrete-event
SystemC processes. The cluster process simulation runs at a
constant time step determined by a coordinator based on the
sampling rates of the signals in the dataflow cluster and is



Fig. 3. SystemC-AMS Architecture

generally much higher than the minimum required Nyquist
rate. Discrete-event models are simulated using delta cycle
mechanism which allows emulation of concurrent behavior.

The SystemC-AMS simulation cycle is shown in Figure 4
and is summarized below:

1) Initialization: The initialization methods registered in
SystemC-AMS modules are executed including the ini-
tial condition definitions.

2) Evaluation: Processes are only executed at delta 0 in
the order defined by the static scheduling (delta cycles
provide a standard way to emulate concurrency when
simulating discrete-event models). The cluster processes
will be reactivated, always at delta 0, at every time step
defined for the cluster.

3) Repeat step 2 while there are still processes ready to
run, else go to step 4.

4) Update: Signals are updated with their new values.
5) Go to step 2 if the signal updates generated events with

zero delay (delta cycle), else go to step 6.
6) Finish simulation if there are no more pending events,

else go to step 7.
7) Advance the time to the earliest pending event.
8) Determine ready to run processes and go to step 2.
A SystemC model consists of a hierarchical network of

parallel processes, which exchange messages under the control
of the simulation kernel process and concurrently update the
value of signals and variables. Signal assignment statements
do not affect the target signals immediately, but the new values
become effective in the next simulation cycle. The kernel
process resumes when all user-defined processes become sus-
pended either by executing a wait statement or upon reaching
the last process statement. On resumption, the kernel updates
the signal and variable and suspends again when the user-
defined process starts. If the time of the next earliest event Tn

is equal to the current simulation time Tc, the user processes
execute a delta cycle.

IV. COMPARISON AND SIMULATION RESULTS

For the comparison, we have chosen four small to medium
sized analog and switch capacitor circuits. We modeled those
circuits in VHDL-AMS, SystemC-AMS and in HSPICE and
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Fig. 4. SystemC-AMS Simulation Cycle

simulated them for run-time measurements. HSPICE run-time
measurement results are provided as it is still the dominant
and widely accepted simulator for analog circuits to-date.
We define the simulation run-time as the time taken by a
given machine to simulate the design for a specified dura-
tion. VHDL-AMS and HSPICE designs were simulated using
Mentor Graphics Tools on an ULTRA SPARC-IIIi machine
(177 MHz CPU, 1024 Mbyte memory). The SystemC-AMS
design descriptions were also compiled and executed on the
same workstation.

The four circuits selected for the simulation are [8] [7]:
1) Continuous-Time State Filter.
2) Low Pass Active Filter.
3) Leap Frog Filter.
4) First Order Switch Capacitor Filter.

The design descriptions in both VHDL-AMS and SystemC-
AMS were verified through simulations and by comparing the
transient and AC analysis results with those obtained from
HSPICE simulations.
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Fig. 5. Continuous-Time State Filter

A. Continuous-Time State Filter

The Continuous-Time State space Filter circuit (Figure 5)
has three outputs; the low pass output Vlp, the high pass
output Vhp, and the band pass output Vbp. The circuit design
parameter and the resulting component values are summarized
in Table I.



Circuit Parameters Fc=795Hz, Gdc=1, Q=1.11
Resistors R1=R2=R3=R4=R5=10kΩ, R6=7kΩ, R7=3kΩ
Capacitors C1=20nF, C2=20nF

TABLE I
CONTINUOUS TIME STATE FILTER PARAMETERS.

Freq VHDL AMS SystemC AMS HSPICE
(Hertz) (Seconds) (Seconds) (Seconds)

100 0.07 49.20 50.8
795 0.07 48.26 50.8
1K 0.10 49.07 51.3
10K 0.38 49.71 50.9
40K 1.34 49.55 54.9

TABLE II
SIMULATION TIMES FOR 10MS SIMULATION RUN FOR CONTINUOUS TIME

STATE FILTER.

For the results in Table II, Figure 6 shows a plot of the
input signal frequency versus the simulation run-time for the
continuous-time state space filter circuit. The thin dotted line
represents SystemC-AMS, the thick dotted line represents
HSPICE and solid line represents VHDL-AMS.
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Fig. 6. Continuous Time State Filter Simulation Result

We note that for all frequency ranges, the simulation
run-times for VHDL-AMS is almost negligible compared
to SystemC-AMS and HSPICE. On the other hand, the
simulation run-times are comparable for SystemC-AMS and
HSPICE.

B. Low Pass Active Filter

The Low Pass Active Filter circuit is shown in Figure 7. The
circuit design parameter and the resulting component values
are summarized in Table III.

Circuit Parameters Gdc=1, Flp=1kHz
Resistors R1=398Ω, R2=3.98kΩ
Capacitors C1=100pF, C2=10nF

TABLE III
LOW PASS ACTIVE FILTER PARAMETERS.

For the results in Table IV, Figure 8 shows a plot of the input
signal frequency versus the simulation time for the low pass
active filter circuit. The small dotted line represents SystemC-
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Fig. 7. Low Pass Active Filter

Freq VHDL AMS SYSTEMC AMS HSPICE
(Hertz) (Seconds) (Seconds) (Seconds)

1K 0.13 48.24 42.4
2K 0.17 48.45 42.9
4K 0.26 48.16 42.9
40K 0.96 48.20 43.0

TABLE IV
SIMULATION TIMES FOR 10MS SIMULATION RUN FOR LOW PASS ACTIVE

FILTER.
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Fig. 8. Low Pass Active Filter Simulation Result

AMS, the big dotted line represents HSPICE and bold line
represents VHDL-AMS.

We note that, again for all frequency ranges VHDL-AMS
is faster than both SystemC-AMS and HSPICE and the run-
times are almost negligible. On the other hand, the run-times
of SystemC-AMS and HSPICE are almost comparable with
SystemC-AMS performing slightly better than HSPICE for
all frequencies.

C. Leap Frog Filter

The low pass Leap Frog Filter circuit is shown in Figure 9,
whereas the design parameters and the resulting component
values are given in Table V.

For the results in Table VI, Figure 10 shows a plot of the
input signal frequency versus the simulation time for the leap
frog filter circuit. The small dotted line represents SystemC-
AMS, the big dotted line represents HSPICE and bold line
represents VHDL-AMS.

We note from the figure that, for all frequency ranges
VHDL-AMS is faster than SystemC-AMS and HSPICE. For
frequency greater than 10KHz, there is a linear increase in
simulation run-times for VHDL-AMS. Also, for all frequency



R
2

R
6

C
1 C

2

V
in

R
1

R
2

R
3

R
4

R25
R
8

C
3

V
out

C
4 R

10

R
9

R
7

R
11

Fig. 9. Leap Frog Filter

Circuit Parameters Flp=900Hz, Gdc=1
Resistors R1=R2=R3=R4=R5=10kΩ

R6=R7=R8=R9=R10=R11=10kΩ
Capacitors C1=10nF, C2=20nF, C3=20nF, C4=10nF

TABLE V
LEAP FROG FILTER PARAMETERS.
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Fig. 10. Leap Frog Filter Simulation Result

ranges, SystemC-AMS is slightly faster than HSPICE simula-
tion.

D. First Order Switch Capacitor Filter

The First Order Switch Capacitor Filter circuit is shown
in Figure 11. The circuit is modeled at component level
using ideal switches and operational amplifiers. The design is
simulated using ideal two-phase non-overlapping clock. The
circuit design parameter and the resulting component values
are summarized in Table VII.

For the results in Table VIII, Figure 12 shows a plot of
the input signal frequency versus the simulation time for the
first order switch capacitor filter circuit. The small dotted
line represents SystemC-AMS, the big dotted line represents
HSPICE and bold line represents VHDL-AMS.

Freq VHDL AMS SYSTEMC AMS HSPICE
(Hertz) (Seconds) (Seconds) (Seconds)

1K 0.09 50.26 61.8
1.4K 0.12 50.56 60.4
10K 0.52 50.66 61.0
100K 6.92 51.27 60.9

TABLE VI
SIMULATION TIMES FOR 10MS SIMULATION RUN FOR LEAP FROG FILTER.
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Fig. 11. First Order Switch Capacitor Filter

Circuit Parameters Gdc=1, Fs=64kHz, Fp=1kHz, Ts=15.635µs
Capacitors C1=0pF, C2=1.032pF, C3=1.032pF, C4=10pF

TABLE VII
FIRST ORDER SWITCH CAPACITOR FILTER PARAMETERS.
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Fig. 12. First Order Switch Capacitor Filter Simulation Result

From the figure, we note that for all frequency ranges
VHDL-AMS is faster than SystemC-AMS and HSPICE and
the run-times are negligible. On the other hand, SystemC-
AMS is faster by a factor of 7.0 compared to HSPICE for
all frequency ranges.

E. Discussion

For higher frequency inputs the simulation run time is
slightly higher than for low frequency inputs. This is because
when the input signal changes at a faster rate (higher fre-
quency) the analog solver requires more iterations to converge
to an analog solution point for a given accuracy requirements
and hence results in a slight increase in simulation time. This is
seen for each circuit described in the VHDL-AMS, SystemC-
AMS and HSPICE as one looks at the simulation run-time

Freq VHDL AMS SYSTEMC AMS HSPICE
(Hertz) (Seconds) (Seconds) (Seconds)

500 6.72 70.28 509.0
1K 6.84 70.27 532.0
2K 6.97 70.39 530.5
4K 7.06 70.40 533.0

TABLE VIII
SIMULATION TIMES FOR 10MS SIMULATION RUN FOR FIRST ORDER

SWITCH CAPACITOR FILTER.



numbers starting from low frequency values to high frequency
values.

However, the circuit simulation times of the first order
switch capacitor filter are larger because of the non-linear
switches in the filter circuit which cause the simulator to
iterate more often at the instants of time when the switches
change states from ON to OFF or vice versa. Since the
switches are turned ON and OFF a fixed number of times
in a 10ms simulation the simulation run-time is independent
of the input signal frequency but rather depends on the clock
signal frequency used for controlling the switches.

V. CONCLUSION

The simulation of analog and mixed signal circuits is both
memory and CPU intensive. The simulation speed depends
on the complexity of the circuit, the length of simulation,
and the frequency of the input signals. In this paper, we
give an overview about the simulation cycles of VHDL-AMS
and SystemC-AMS. Four benchmark circuits were described,
simulated and their run-times were compared with that of
HSPICE simulation.

Our experience can be summarised as follows: First of all,
the results show that for all the filter circuits, the simulation
run-times increase as the input signal frequency increases.
This is again due to the fact that the simulator requires
more iterations for each analog solution point if the input
signal changes faster as compared to a slowly varying signal
for a given time resolution and accuracy requirements. We
observe the superiority of VHDL-AMS against SystemC-AMS
and HSPICE simulation runtimes. However, the HSPICE and
SystemC-AMS run times are comparable for all filter circuits.

Unfortunately, SystemC-AMS is still in development phase,
so there is a lack of available libraries that would have allowed
to explore more complex case studies. We believe that with
growing user and developer community for SystemC-AMS
such library would be available allowing us to conduct more
experimental results on the language.

Future plans include extending the comparison to the syn-
tactic and semantical aspects of the HDL and detailed inves-
tigation about the simulation cycle algorithms. We also need
to tackle larger case studies to get a more indepth knowledge
about the quantitative properties of the language simulators.
We also would like to extend the comparison to include other
HDL like Verilog-AMS.
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