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Abstract. In wireless sensor networks (WSNs), scheduling of the sensors
is considered to be the most effective energy conservation mechanism. The
random and unpredictable deployment of sensors in many WSNs in the
open fields makes the sensor scheduling problem very challenging and thus
randomized scheduling algorithms are used. The performance of these al-
gorithms is usually analyzed using simulation techniques, which do not of-
fer 100% accurate results. Moreover, probabilistic model checking, when
used, does not include a strong support to reason accurately about statis-
tical quantities like expectation and variance. In this paper, we overcome
these limitations by using higher-order-logic theorem proving to formally
analyze the coverage-based random scheduling algorithm for WSNs. Us-
ing the probabilistic framework developed in the HOL theorem prover, we
formally reason about the expected values of coverage intensity, the up-
per bound on the total number of disjoint subsets, for a given expected
coverage intensity, the lower bound on the total number of nodes and the
average detection delay inside the network.

Keywords: Probabilistic reasoning, Theorem proving, Higher-order-logic,
Wireless sensor networks, Scheduling, Coverage.

1 Introduction

Wireless sensor networks (WSNs) [24] have been proposed as an efficient solution
to monitor a field without any continuous human surveillance. Such networks are
composed of small tiny devices wirelessly connected over the field. The main task
of sensors consists in taking measurements of the monitored event. According
to these measurements, a decision procedure is made at the base station. The
WSNs are extensively being deployed these days in a variety of applications like
detection of natural disasters or biological attacks and military tracking.

Minimizing energy requirements for the sensor nodes is very critical given the
fact that these nodes are always stand-alone and battery powered. Scheduling
[14] of the nodes is one of the most widespread solutions to preserve energy. It
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consists in splitting the network on several sub-networks, which work alterna-
tively. The biggest challenge involved in this approach is the ability to provide
continuous coverage, i.e., reliable monitoring or tracking by sensors.

For inhospitable fields where the sensors are arbitrarily deployed, the trend
is to use a random scheduling scheme. As the study of random scheduling algo-
rithms for WSNs is recent, the focus is to investigate more in developing new
models that can satisfy the coverage constraint. In general, a theoretical paper-
and-pencil based model of the proposed scheduling algorithm is developed and
analyzed. After that, performance evaluation by simulation is done in order to
illustrate the theoretical results. Nevertheless, the results obtained by simula-
tion can never be totally accurate. Thus, simulation cannot be considered as a
reliable solution for the probabilistic analysis of WSNs especially when applied
to validate WSNs for mission-critical applications like military, health, disaster
relief and environmental monitoring.

In order to overcome the common drawbacks of simulation, formal methods
[6] have been proposed as an efficient solution to validate a wide range of hard-
ware and software systems. Formal methods increase the system reliability by
rigorously using mathematical techniques to analyze the mathematical model
for the given system. They have the advantage to find out subtle errors that
cannot be revealed by traditional simulation. The need of formal methods in
the context of WSNs is illustrated in [19]. However, formal methods seem very
restricted when used to validate probabilistic systems. The random components
of the system cannot be directly modeled within traditional formal tools. For ex-
ample, it will be impossible to reason precisely about statistical properties, such
as expectation and variance, in the case of state-based approaches. Furthermore,
huge proof efforts are usually expected to be involved in reasoning about random
components of a wireless system in the case of theorem proving.

Due to the recent developments in the formalization of probability theory
concepts in higher-order-logic [12,7], the analysis of a variety of wireless sys-
tems with random components in a higher-order-logic theorem prover [5] can
be handled with reasonable amount of proof efforts. In this paper, we propose
to use the probabilistic framework developed in the HOL theorem prover [7] to
formally analyze the coverage-based random scheduling algorithm of [18]. Due
to the high expressiveness of the underlying logic and the inherent soundness of
theorem proving, this framework overcomes the common limitations of proba-
bilistic model checking, which are the state space explosion and the inaccuracy
in the reasoning about statistical quantities. Particularly, we aim at verifying
the expected values of coverage intensity, and deducing the upper bound on the
total number of disjoint subsets, given expected coverage intensity for the given
scheduling algorithm. We also verify the lower bound on the total number of
nodes and the average detection delay inside the network.

The remainder of this paper is organized as follows. First, we discuss related
work. Then, we present an overview of HOL probabilistic analysis foundations.
Sections 4 and 5 provide the formal specification and verification of the coverage-
based random scheduling algorithm, respectively. Finally, we conclude the paper.
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2 Related Work

Due to its wide applicability, the random scheduling algorithm has been analyzed
using various approaches in the open literature. The most commonly used ap-
proach is simulation, where a computer based mathematical model of the given
algorithm is built and then evaluated through rigorous sampling. The simulation
tools must essentially provide some probabilistic features in order to perform re-
alistic simulations. In [18], a coverage-based random scheduling algorithm has
been analyzed by a mathematical model, which coverage has been subsequently
enhanced in [17] by eliminating some blind points. The evaluation of the two
previous works within a Java simulator has restricted the monitored region to
200mx200m, the detection range to 10m, and the number of sub-networks to 6.
Due to the inherent nature of simulation coupled with the usage of computer
arithmetic, the probabilistic analysis results attained by the simulation approach
can not be termed as completely accurate.

Probabilistic model checking is one of the first formal methods to be used
for probabilistic analysis of wireless systems [22]. It has the same principle as
traditional model checking: the mathematical model of the probabilistic system
is exhaustively tested to check if it meets a set of probabilistic properties. This
technique has been successfully used to validate many aspects of WSNs. The
authors of [20] performed the formal analysis of the OGDC algorithm in the
RT-Maude rewriting tool [21]. They have successfully analyzed the common
performance metrics, such as, the network coverage intensity and lifetime. The
probabilistic model checker PRISM [15] has also been used quite frequently for
the verification of medium access control (MAC) protocols designed for WSNs,
such as the S-MAC [1] and ECO-MAC [25] protocols. For the first protocol, the
authors have verified, within PRISM, the reachability of packets to the sink node
for a simple network model of 3-hops. They have also evaluated the expected
communication latency and energy consumption of the model. Regarding the
probabilistic model checking of ECO-MAC, it has especially verified properties
related to the number of packet retransmissions.

In addition to its accuracy, the main advantage of probabilistic model checking
method is its mechanization. However, it also suffers from some major shortcom-
ings like the common problem of state space explosion [2] and the inability to
reason accurately about statistical properties. For instance, during the verifi-
cation of the OGDC [20] algorithm, the network model has been limited to 6
nodes on a surface of 15mx15m. Similarly, in [1], the network hops have been
restricted to 3 and the number of scheduled subsets to 2 so that the built model
can be accepted in PRISM. Finally, while verifying the ECO-MAC [25] protocol,
the authors have been also obliged to readjust some parameters by a reduction
factor in order to avoid a state explosion problem which was completely unpre-
dictable. On the other hand, the reasoning support for statistical quantities in
probabilistic model checker like PRISM is not so accurate. In [1], the authors
have given expected values of communication latency and energy consumption
by running several experiments on the proposed model of S-MAC. These values
were specific to the chosen configuration and can not be considered as general
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in any way. Another limitation of some classical model checkers trying to model
probabilities can be also identified in [20], where the probability modeling was
very approximative within the RT-Maude tool. The authors have just used a
random function which is assumed to be ’good’ to generate such behavior. For
Uniform distributions, they have selected a sampling value generated by the same
random function on a given interval. Such kind of analysis is not exhaustive and
thus cannot be termed as formally verified.

In this paper, we overcome the limitations of both simulation and model
checking techniques by using the probabilistic framework developed in the HOL
theorem prover to validate a variant of the randomized scheduling of nodes in
the context of WSNs. This framework, which is a theorem proving based prob-
abilistic analysis framework, has already shown its practical effectiveness on a
lot of case studies. Indeed, Hurd successfully verified the Miller-Rabin primality
test; a well-known and commercially used probabilistic algorithm [13]. Hasan et
al. verified the stop-and-wait protocol [9], a stuck-at fault model for reconfig-
urable memory arrays [8] and the automated repeat request (ARQ) mechanism
at the logic link control (LLC) layer of the General Packet Radio Service (GPRS)
standard for Global System for Mobile Communications (GSM) [10]. The HOL
probabilistic framework is principally founded on Hurd’s PhD thesis [12] where
the formalization of some discrete random variables along with their verification,
based on the corresponding PMF properties is presented [12]. In [7], Hurd’s for-
malization framework has been extended with a formal definition of expectation.
This definition is then utilized to formalize and verify the expectation and vari-
ance characteristics associated with discrete random variables that attain values
in positive integers only. Statistical properties of continuous random variables
have been also verified in [11]. To the best of our knowledge, none of the past
works dealing with the random scheduling algorithm for WSNs or one of its vari-
ant has incorporated a formal probabilistic technique based on model checking
or theorem proving.

3 Preliminaries

In this section, we describe the main theoretical elements upon which the proba-
bilistic framework developed in the HOL theorem prover is built [7]. Particularly,
we present the formalization of discrete random variables in HOL and the veri-
fied probabilistic properties that will be needed later. The general methodology
that we have to follow for analyzing a wireless system within the probabilistic
framework developed in the HOL theorem prover can be found in [10].

3.1 Formalization of Discrete Random Variables and Verification of
their PMF

A random variable is called discrete if its range, i.e., the set of values that it can
attain, is finite or at most countably infinite [23]. Discrete random variables are
mathematically specified by their Probability Mass Functions (PMF) which is
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the probability that a random variable X is exactly equal to some value x, i.e.,
Pr(X = x). In higher-order-logic, discrete random variables are formalized as
deterministic functions with access to an infinite Boolean sequence B∞; a source
of infinite random bits with data type (num → bool)[12]. According to the result
of popping the top most bit in the infinite Boolean sequence, these deterministic
functions make random choices. They may pop as many random bits as they
need for their computation. At the end of the computation, they return the
result along with the remaining portion of the infinite Boolean sequence to be
used by other functions. Thus, a random variable that takes a parameter of type
α and ranges over values of type β can be represented in HOL by the function:

F : α → B∞ → β × B∞.

As an example, the Bernoulli(1
2 ) random variable that returns 1 or 0 with equal

probability can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s).

where the variable s represents the infinite Boolean sequence and the functions
shd and stl are the sequence equivalents of the list operation ’head’ and ’tail’.
The function bit accepts the infinite Boolean sequence and returns a pair with
the first element equal to either 0 or 1 and the second element equal to the
unused portion of the infinite Boolean sequence, which in this case is the tail of
the sequence.

Random variables can also be expressed in a more compact form using the
general state-transforming monad where the states are the infinite Boolean se-
quences.

� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = g (fst (f s)) (snd (f s)).

The HOL functions fst and snd above return the first and second components
of a pair, respectively. The unit operator is used to lift values to the monad,
and the bind is the monadic analogue of function application. All monad laws
hold for this definition, and the notation allows us to write functions without
explicitly mentioning the sequence that is passed around, e.g., function bit can
be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0).

where, sdest gives the head and tail of a sequence s as a pair (shd s, stl s).
The measure theory formalization of [12] can be used to define a probability

function prob, which transforms sets of infinite Boolean sequence to the set of
real number between 0 and 1. The domain of prob is the set E of probability
events. Consequently, the formalization of prob and E can be used together to
prove probabilistic properties of random variables such as:

� prob {s | fst (bit s) = 1} =
1
2
.
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where the HOL function fst selects the first component of a pair and {x|C(x)}
represents a set of all elements x that satisfy the condition C.

By following the methodology described above, most of the commonly used
discrete random variables which are frequently used have been specified in the
HOL theorem prover. The corresponding PMF of each of these discrete random
variables has been also verified. For example, HOL definitions and PMF theorems
for the Bernoulli, Uniform, Binomial and Geometric random variables can be
found in [12,7].

3.2 Formalization and Verification of Expectation Properties for
Discrete Random Variables in HOL

The expectation of a discrete random variable, which attains values in the pos-
itive integers only, is specified as follows [16]:

Ex fn[f(R)] =
∞∑

n=0

f(n)Pr(R = n). (1)

where R is the discrete random variable and f represents a function of the
random variable R. The function f maps the random variable R to a real value.
The above definition of expectation holds only if the summation is well defined,
i.e., finite. The above equation can be formalized in HOL as follows:

Definition 1
� ∀ f R. expec fn f R = suminf (λn.(f n)prob {s | (fst (R s)=n)}).

The HOL function suminf represents the infinite summation of a real sequence.
The function expec fn accepts two parameters, the function f of type (num →
real) and the positive integer valued random variable R and returns a real num-
ber.

The expectation of a discrete random variable that attains values in positive
integers would be a particular case of the above definition where the function f
is instantiated by the identity function (λn.n).

Definition 2
� ∀ R. expec R = expec fn (λn.n) R.

For illustration purposes, the formalization of expectation of a positive valued
discrete random variable was used to verify the expectation of the Bernoulli, Uni-
form, Binomial and Geometric random variables [7]. It was also very interesting
to check the correctness of some related properties, which greatly facilitates the
theorem proving based probabilistic analysis. For example, the proof of the lin-
earity of expectation, specified in (2), has been provided in [7].

Ex fn[af(R) + b] = aEx fn[f(R)] + b (2)
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4 Coverage-Based Randomized Scheduling Algorithm

According to the probabilistic framework, proposed in [10], the formal analysis
of wireless systems is composed of two main steps, i.e., the formalization of the
given wireless system, while modeling its random components by the formalized
random variables, and using this model to formally verify properties of interest as
higher-order-logic theorems. In this section, we develop a HOL formalization of
the coverage-based random scheduling algorithm for WSNs, which corresponds
to the first step outlined above. This formalization is basically inspired by the
paper-and-pencil based analytical analysis presented in [18].

4.1 Overview of the Coverage-Based Randomized Scheduling
Algorithm

We consider a WSN that deploys n sensors over a field of size a. All sensors
have the same task; gathering data and routing it back to the base station.
The deployment of nodes over the two-dimensional field is random and thus no
location information is available. The size of the sensing area of each sensor is
denoted by r. A sensor can only sense the environment and detect events within
its sensing range. We say that a point of the monitored field is covered when
any event occurring at this point can be detected by at least one active sensor.
The probability q that each sensor covers a given point is r/a. The random
scheduling of the nodes assigns each sensor to one of the k sub-networks with
equal probability 1/k. During a time slot Ti, only the nodes belonging to the
sub-network i will be active and can cover an occurring event. Hence, the disjoint
sub-networks created will work alternatively. We denote also by: Si, the set of
sensors that belongs to the sub-network i and covers a specific point inside the
field, S, the set of nodes covering a specific point inside the field, and, c, the
cardinality of S.

For illustration purposes, Fig. 1 shows how the scheduling algorithm splits
arbitrarily a network containing eight sensor nodes to two sub-networks. The
eight nodes, randomly deployed in the monitored region, are identified by IDs
ranging from 0 to 7. The two sub-networks are called S0 and S1. Each node
chooses at random between 0 and 1 in order to be assigned to one of these two

Fig. 1. An example of the randomized coverage-based algorithm [18]
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sub-networks. Suppose that nodes 0; 2; 5; 6 select the number 0 and join the
subset S0 and nodes 1; 3; 4; 7 choose the number 1 and join the subset S1. Thus,
the two sub-networks will work alternatively. In other words, when the nodes
0; 2; 5; 6, which sensing ranges are denoted by the solid circles, are active, the
nodes 1; 3; 4; 7 illustrated by the dashed circles will be idle and vice versa.

4.2 Formalization of the Network Coverage Intensity

The challenge in the random scheduling algorithm described below, is to select a
value of k so that the energy can be saved with a good coverage. Therefore, the
performance of this algorithm depends essentially on the chosen value of k. A
large k will imply a lot of sub-networks which would in turn result in few nodes
in each of these sub-networks, and hence a poor coverage. However, a small k
will imply few sub-networks with a lot of points covered simultaneously by a lot
of nodes, so a waste of energy.

The random scheduling algorithm involves several random variables. The first
one distributes uniformly the nodes over the sub-networks. It is formalized by
the HOL function rd subsets:

Definition 3
� (∀ k. rd subsets 0 k = []) ∧
(∀ c,k. rd subsets (c+1) k = (prob uniform k)::(rd subsets c k)).

which generates recursively a list of Uniform random variables, and accepts two
parameters: c, the number of sensors that covers a specific point inside the field,
and k, the number of sub-networks. In this definition, we use the predefined
HOL function prob uniform which takes as input a natural k and generates a
Uniform (k) random variable.

Let X be the random variable denoting the total number of non-empty subsets
Sj. X is defined as follows:

X =
k−1∑
j=0

Xj. (3)

where Xj is the Bernoulli random variable describing a non-empty subset. The
variable Xj, expressed by the following HOL function, is based on the recursive
HOL predicate subset empty which describes an empty subset by looking for
an index j in the list generated by the function rd subsets.

Definition 4
� ∀ j,c,k. subset non empty j c k = bernoulli num

(prob bern {s | fst (subset empty j (rd subsets c k) s) = F}).
The function subset non empty takes three parameters: j, a natural number,
c, the number of sensors that covers a specific point inside the field, and k, the
number of sub-networks. The set {s | fst (subset empty j (rd subsets c
k) s) = F}, used in this function, formally models the set of events when the
subset Sj is non-empty.
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In order to define the random variable X , given in (3), we first define a function
which recursively generates a list of Xj’s by accepting the parameters: k, the
length of the list, c, the number of sensors that covers a specific point inside
the field, and m, the number of sub-networks. After that, a pre-defined function
of the HOL probability theory, called sum rv lst, accepts this list of random
variables and returns their sum as a single random variable.

Definition 5
� (∀ c,m. subset non empty lst 0 c m = [subset non empty 0 c m]) ∧
(∀ k,c,m. subset non empty lst k c m =
(subset non empty (k+1) c m)::(subset non empty lst k c m)).

The coverage intensity for a specific point Cp can now be defined as the average
time during which the point is covered by the total length of the scheduling
cycle.

Cp =
E[X ] × T

k × T
. (4)

where E[X ] denotes the expectation of the random variable X defined in (3).
The variable Cp is formalized in HOL as follows:

Definition 6
� ∀ c,k. cvrge intsty pt c k =
(expec (sum rv lst (subset non empty lst k c (k+1))))/(k+1).

The above definition specifies the coverage intensity for a specific point using
the HOL function cvrge intsty pt. This function takes as parameters: c, the
number of sensors that covers a specific point inside the field, and k, the number
of sub-networks. Added to the function subset non empty lst, this definition
uses two other predefined HOL functions which are expec, for the expectation
of a discrete random variable (Definition 2), and sum rv lst, for the summation
over random variables. More details about these two functions can be found in
the preliminaries section and in [7].

It has been shown in [18] that Cp is equal to:[
1 −

(
1 − 1

k

)c]
. (5)

We recall that the variable c is initially the number of nodes covering a specific
point inside the field. Covering a point or not can be assimilated to a Bernoulli
trial with the probability q. If we consider the variable c among the n nodes of the
network, it becomes a Binomial random variable with the following probability:

Pr(c = j) =
n!

j! (n − j)!
qj(1 − q)n−j . (6)

where q is the probability that each sensor covers a given point.
Thereafter, Cp is also a random variable. Particularly, Cp is a function of

the random variable c. Since the random deployment strategy distributes inde-
pendently the nodes over the area and the random scheduling makes a uniform
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distribution of the same sensors, the expectation of Cp for any point inside the
area is the same and its value is Cn. The variable Cn is defined as follows:

Cn = Ex fn[Cp] (7)

where Ex fn designates the expectation of a function of a random variable. The
corresponding HOL function formalizing (7) is:

Definition 7
� ∀ q,n,k. cvrge intsty network q n k =
expec fn (λx. 1 + (-1)×(1 - 1/(k+1))x) (prob binomial p n q).

The above function cvrge intsty network accepts as inputs q, the probability
that a sensor covers a point, n, the number of sensors deployed inside the field,
and k, the number of sub-networks. This function specifies the expectation of a
function of random variable and thus needs two parameters: the input function
which basically describes the variable Cp and the random variable which is the
Binomial of (6).

4.3 Formalization of the Average Detection Delay

The average detection delay is another performance metric which can be relevant
in evaluating the random scheduling algorithm. It is defined as the expectation
of the time elapsed from the occurrence of an event to the time when the event
is detected by some sensor nodes. The average detection delay for an event
arriving at any time slot with equal probability and lasting for duration longer
than (k − 1) × T , is defined as:

delays =
k−1∑
i=1

T∫
0

1
T

× Pr(H0 ∩ H1 ∩ ... ∩ Hi) × (i × T − t)dt. (8)

where Hi is the event that none of the c covering sensor nodes belongs to the
working subset i, Hi is the event that at least one of the c covering sensors
belongs to the working subset i, T is the duration of a time slot, and k is the
number of disjoint subsets.

Defining the HOL theorem corresponding to the verification of the average
detection delay requires the formalization of the set (H0∩H1∩...∩H(i−1)∩Hi)
as a higher-order-logic function. The proposed idea consists in dividing this set
into two parts: the first one defines the intersection of the (i − 1) first events
while the second models the event that ’the ith working sub-network is non-empty
within Ti’.

The function compl intersection, given in Definition 8, illustrates the first
part of the required final set.

Definition 8
� ∀ i,c,k. compl intersection i c k =

bind (indep rv list (subset non empty rv list i c k))
(λx. unit (disj list x)).
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This builds the intersection of events describing the (i − 1) first empty sub-
sets. The idea is to first make a list of the required random variables (function
subset non empty rv list) by satisfying the independence criteria (function
indep rv list), and then create the conjunction of all the elements of the list
as required. The function compl intersection takes as parameters: i, a natural
index, c, the number of sensors that covers a specific point inside the field, and
k, the number of sub-networks. The HOL definitions of the the two functions
used within the function compl intersection can be found in [4].

The second part of the final set is described by the Bernoulli random variable
used in (3) which also expresses the event of an empty subset. Thus, the final
set is described by the following HOL function final set which takes the same
parameters as the function compl intersection.

Definition 9
� ∀ i,c,k. final set i c k =

bind (compl intersection i c k) (λx.
bind (subset non empty (k-i-1) c (k-i)) (λy.
unit (¬x ∧ (y = 1)))).

5 Formal Verification of the Random Scheduling
Algorithm

We use the defined HOL functions in order to formally verify the main statistical
properties regarding the network coverage intensity and the average detection
delay. We have described the verified theorems in a backward chaining approach,
i.e., we present the main goal first and then the corresponding proofs.

5.1 Formal Verification of the Network Coverage Intensity

We have already noticed from the specification section that the network coverage
intensity is defined as a statistical measure of the coverage intensity for a specific
point (see (7)). Hence, we need to verify first that the coverage intensity for a
specific point, defined in (4), is really equal to the expression given in (5). The
HOL theorem corresponding to this property can be expressed as follows:

Theorem 1
� ∀ c,k. cvrge intsty pt c k = 1 - (1 - (1/(k+1)))c.

The verification of the above theorem is based on Theorem 2, which gives the
expectation of the random variable specified in (3).

Theorem 2
� ∀ c,k. expec (sum rv lst (subset non empty lst k c (k+1))) =

(k+1)×(1 - (1 - (1/(k+1)))c).

The proof of Theorem 2 is mainly based on the application of the expectation
property stating that the expectation of the sum of discrete random variables
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is equal to the sum of their respective expectation, and the verification of the
expectation of each element of the list subset non empty lst [4].

Next, we have to verify the second main theorem related to the network
coverage intensity Cn. It has been shown in [18] that Cn is equal to:

1 −
(
1 − q

k

)n

. (9)

which is formalized in HOL by the following theorem:

Theorem 3
� ∀ n,q,k. (0 ≤ q) ∧ (q ≤ 1) ∧ (1 ≤ n) ⇒

(cvrge intsty network q n k = (1 - (1-(q/(k+1)))n)).

The proof of Theorem 3 is primarily based on the application of the linearity
of expectation property (see (2)) which further requires the independence of the
Binomial random variable, already verified in [7], and the proof of the finite
summation of the corresponding function multiplied by the probability. Besides
that, the proof of Theorem 3 needed a lot of mathematical reasoning related to
the real summation especially for the Binomial theorem for reals which was not
available in the existing HOL libraries and thus, we had to prove it.

Theorem 3 gives a clear relationship between the network coverage intensity,
the number of nodes n and the number of disjoint sub-networks k. As a result,
two important corollaries can be deduced. Given a number k, we require that the
minimum of the network coverage intensity Cn is t, and we can deduce the lower
bound on the necessary number of sensor nodes in the whole network which is:

n ≥
[

ln(1 − t)
ln

(
1 − q

k

)
]

. (10)

The above corollary has been successfully verified in HOL by using intermediate
results associated to the two mathematical functions of power and logarithm.

Similarly, we can deduce that for a given n and providing a network coverage
intensity of at least t, the upper bound on the number of disjoint subsets k is:

k ≤ q

1 − e
ln(1−t)

n

. (11)

The proof of the above corollary was straightforward and is based on pre-verified
theorems from the two HOL theories of real and exponential.

The second corollary, given in (11), is very useful in dynamically adjusting the
coverage of a sensor network after it is deployed. When the total number of sensor
nodes is fixed, the network coverage intensity can be adjusted by changing the
number of disjoint subsets k. A simple message flooding can be done to inform
all sensor nodes about the new value of k.

5.2 Formal Verification of the Average Detection Delay

It has been shown in [18] that the average detection delay for an event, occurring
at a point covered by c sensor nodes and lasting for duration longer than (k −
1) × T , is equal to:
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delays =
T

2
×

[(
k − 1

k

)c

+ 2 ×
k−1∑
i=2

(
k − i

k

)c
]

. (12)

We have successfully verified the theorem formalizing the above equation. The
proof has been based on an important result, verified in Theorem 4, along with
some reasoning based on derivatives, and the corresponding details can be found
in [4].

Theorem 4
� ∀ i c k. (2 ≤ k) ∧ (1 ≤ (k - i)) ⇒

(prob bern {s | fst (final set i c k s) = T} =
product 0 i (λj. (1-(1/(k-j)))c)×(1-(1-1/(k-i))c)).

This theorem reduces the probability of a set of independent events to the prod-
uct of their respective probabilities. The function product, used in the above
theorem, is a recursive function that gives the product of a sequence of elements
of the same function. The proof of Theorem 4 required reasoning related to the
transformation of probabilistic sets and to the independence theorem of proba-
bility. Under some assumptions, this last theorem transforms the probability of
the intersection of two independent events into the product of their respective
probabilities.

Our results demonstrate the effectiveness of the probabilistic theorem prov-
ing based approach for the verification of randomized scheduling algorithms for
WSNs. We have been able to formally verify the most important probabilis-
tic properties of interest associated with the network coverage intensity and
the average detection delay. While other techniques, like simulation and model
checking, are restricted by the number of simulated nodes n, the number of dis-
joint subsets k, the sensing range r, and the surface a, our results are completely
generic, i.e., the verified theorems are universally quantified for all values of n,
k, r and a.

Moreover, the inherent soundness of theorem proving certifies that the ob-
tained results are 100% accurate. Based on the discussion in Sections 1 and 2 of
this paper, it is clear that other techniques can never have this flexibility. Indeed,
previous simulation work have given non-exhaustive results which are valid for
specific network configurations. Similarly, probabilistic model checking have been
frequently forced to restrict the values of the two first parameters in order to
avoid a state space explosion problem. Finally, compared to probabilistic model
checkers, a major novelty provided in this paper is the ability to perform formal
and accurate reasoning about statistical properties of the problem. Hence, it was
possible to verify the network coverage intensity which is a statistical measure of
the coverage intensity for a specific point. This possibility is mainly due to the
strong theoretical support for probability modeling available within the HOL
probabilistic framework and the high expressibility of higher-order logic.

The above mentioned additional benefits, associated with the theorem proving
approach, are attained at the cost of the time and effort spent, while formalizing
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the randomized scheduling algorithm and formally reasoning about its proper-
ties, by the user. This analysis consumed approximately 200 man-hours and 1500
lines of HOL code by an expert user.

The major challenges faced in this work include the learning of the HOL
probabilistic framework that primarily requires prior familiarization with the
theorem proving technique and a good background on the probability theory.
Higher-order-logic formalization also required a lot of intuition in selecting the
right random variables. Similarly, an exhaustive set of assumptions is required for
the verification as missing any assumption leads to verification failure due to the
inherent soundness of the underlying theorem proving approach. Nevertheless,
the fact that we were building on top of already verified probability theory related
results helped significantly in this regard. In this paper, a lot of intermediate
results have been omitted in order to meet page limits. The interested reader
can refer to [4] for more details about all the theorems.

6 Conclusions

Due to the deployment constraints of WSNs, we are more motivated to provide
algorithms characterized by a probabilistic behavior. Such a characteristic is
impossible to cover using classic validation procedures like simulation, which
do not ascertain 100% accuracy. The purpose of this paper was to provide a
reliable analysis by using an accurate formal probabilistic reasoning based on
the general purpose HOL theorem prover. We formally analyzed the coverage
and the average detection delay of a scheduling algorithm designed for randomly
deployed wireless sensor networks. We particularly verified the expected values of
the coverage intensity, the upper bound on the total number of disjoint subsets,
the lower bound on the total number of nodes and the average detection delay
inside the network.

To the best of our knowledge, this paper presents the first formal analysis of a
randomized scheduling problem using a probabilistic formal method. Obtained
results have the advantages to be exhaustive and completely generic, i.e., valid
for all parameter values, which cannot be attained in simulation or probabilistic
model checking based approach. In addition, the successful formal reasoning
about statistical properties clearly demonstrates the practical effectiveness of
the proposed approach compared to probabilistic model checking, where such a
feature is not available.

It is important to note that the usability of the HOL probabilistic frame-
work for the WSN context is not limited to the current case study. Indeed, the
whole framework can be efficiently used to formally analyze several probabilistic
routing algorithms for WSNs. One such example is the Reverse Path Forward-
ing (RPF) algorithm [3]. Once the HOL probabilistic framework is enriched with
possibilities to reason about statistical properties of multiple continuous random
variables, it will be promising to extend the formal analysis of the coverage-based
scheduling algorithm. We can, for example, think to formally verify the network
lifetime which is a crucial aspect in the WSNs context or the impact of clock
asynchrony on the coverage quality.
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