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Abstract. Hidden Markov Models (HMMs) have been widely utilized
for modeling time series data in various engineering and biological sys-
tems. The analyses of these models are usually conducted using computer
simulations and paper-and-pencil proof methods and, more recently, us-
ing probabilistic model-checking. However, all these methods either do
not guarantee accurate analysis or are not scalable (for instance, they
can hardly handle the computation when some parameters become very
huge). As an alternative, we propose to use higher-order logic theorem
proving to reason about properties of discrete HMMs by applying au-
tomated verification techniques. This paper presents some foundational
formalizations in this regard, namely an extended-real numbers based
formalization of finite-state Discrete-Time Markov chains and HMMs
along with the verification of some of their fundamental properties. The
distinguishing feature of our work is that it facilitates automatic verifi-
cation of systems involving HMMs. For illustration purposes, we utilize
our results for the formal analysis of a DNA sequence.

Keywords: HMMs, HOL4, Theorem Proving, DNA, Probability
Theory.

1 Introduction

Hidden Markov Models (HMMs) [16] provide a useful statistical method for an-
alyzing random processes based on their observable output samples. As their
name suggests, HMMs assume that the observed samples are generated by a
Markov process [3], for which the states are hidden from the observer. Initially
HMMs were proposed to solve optimal linear filtering problems as the simplest
dynamic Bayesian networks [27]. However, due to their usefulness in effectively
analyzing probability distributions over a sequence of observations, HMMs are
now extensively used in many applications involving speech recognition, crypt-
analysis, molecular biology, data compression, financial market forecasting and
artificial intelligence.

Traditionally, simulation has been the most commonly used computer-based
analysis technique for HMMs. Based on this technique, HMMs are used to solve
three types of problems: 1) evaluating the probability of occurrence of a partic-
ular observed sequence; 2) finding the most probable state sequence to generate
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given observations; and 3) learning parameters in the presumed model. These
problems are typically solved by applying complex algorithms, like Forward-
Backward, Viterbi, or Baum-Welch algorithms [16], whose implementations are
usually not formally verified. This fact, along with the inherent limitations of
computer simulation, like usage of computer arithmetic and pseudo random num-
bers, makes the analysis of HMMs approximate and thus the analysis based on
HMMs becomes unreliable. This problem can have severe consequences when it
comes to analyzing critical applications like Electrocardiogram Signal Processing
[7] or Computational Biology [8], which is mainly used in determining and/or
analyzing cancer, tumor and human genome. The analysis results directly affect
the treatment of patients and their lifetime.

Formal methods allow to overcome the above mentioned limitations. For in-
stance, probabilistic model checking guarantees precise system analysis by mod-
eling the system behavior, including its random components, in a given logic and
reasoning about its probabilistic properties. Some model checking algorithms
have been proposed for analyzing HMMs [26]. However, the state-space explo-
sion problem [2] limits the usage of probabilistic model checking to a very small
subset of HMM applications. In addition, it cannot verify generic mathematical
expressions for probabilistic analysis. Finally, the proposed model checking algo-
rithms for HMMs in [25] are also complex and make use of many optimizations
that are difficult to verify, and thus force the user to trust the developer of a
given model checker.

The other widely used formal method is theorem proving [10], which provides
a conceptually simple formalism with a precise semantics and can express all
classical mathematical theories. Due to the highly expressive nature of higher-
order logic and the inherent soundness of interactive theorem proving tools, this
technique can provide precise analysis of HMMs. Although three chapters of
measure theory were formalized in Isabelle/HOL [13] and the formalization of
probability theory was simplified in Coq [6][1], to the best of our knowledge,
foundational mathematics for HMMs has not been formalized in higher-order
logic. Moreover, the interactive nature of higher-order logic theorem proving
makes it quite unattractive for engineers and scientists involved in analyzing
HMMs. This is one of the main reasons why theorem proving has not been used
for the analysis of HMMs despite its ability to provide exact answers.

In this paper, we address both of the concerns mentioned above to facilitate
the formal analysis of HMMs using theorem proving. Firstly, we present a higher-
order logic formalization of mathematical foundations for HMMs. This includes
the formalization of discrete time Markov chains (DTMCs), HMMs and the for-
mal verification of some of their widely used properties. Our formalization of
DTMCs is an improved version of the formalization of DTMCs presented in [15]
since it is based on a more general probability theory and can handle inhomo-
geneous DTMCs with generic state spaces, which are the foremost prerequisites
for modeling HMMs. Our formalization of HMMs also allows to reduce user in-
tervention in formal modelling and analysis of real-world systems that can be
expressed in terms of HMMs. The main challenge of this work is to express the
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conditional independency of two stochastic processes in higher-order logic. To
facilitate this process further, we introduce some automatic simplifiers to make
the proposed method a very practical solution for the formal analysis of HMMs.
For illustration purposes, we present a case study about DNA sequence analysis.

2 Related Work

Various simulation-based HMM analysis tools, dedicated to a particular system
domain, have been reported in the literature. Some prominent examples include
HMMTool [12] as part of the NHMMtoolbox [21] to predict daily rainfall se-
quence. ChIP-Seq [4], MArkov MOdeling Tool (MAMOT ) [9] and HMMER [11]
are some of the popular simulation software in biological research. As mentioned
in the previous section, due to their approximate nature, all these simulation
techniques are not reliable enough for critical applications.

Probabilistic model checking [22] is the state-of-the-art formal Markov chain
analysis technique. Numerous model checkers, e.g., PRISM [20], VESTA [23],
MRMC [18], Ymer [24], etc., are available and have been used to analyze a vari-
ety of systems. In [25], the author defined probability spaces for modeling HMMs
and presented model checking algorithms using Probabilistic Observation CTL
(POCTL) for specifying properties of parameterized HMMs. The complexity of
these algorithms depends on the size of the model and the number of variables
involved in the property formula. This factor, coupled with the inherent na-
ture of model checking, severely limits the usage of this algorithm for analyzing
real-world examples. In addition, no HMM can be analyzed by model checker
PRISM.

Higher-order-logic theorem proving overcomes the limitations of model check-
ing and has been used to successfully formalize DTMCs [15]. However this for-
malization was not general enough to formalize HMMs. This was due to the fact
that the underlying probability theory did not allow the definition of two distinct
state spaces, which is a requirement in order to model HMMs. Nevertheless, re-
cent developments have yielded a more general probability theory [17], that we
use, in the present work, to develop an improved formalization of DTMCs. This
allows, in particular, to define both time-homogeneous and time-inhomogeneous
DTMCs, and HMMs, which in turn can be used to conduct formal analysis of
HMMs within the sound core of a theorem prover.

3 Formalization of Discrete-Time Markov Chains

A probability space is a measure space (Ω,Σ,Pr) such that Pr(Ω) = 1 [3]. Σ is
a collection of subsets of Ω (these should satisfy some closure axioms that we do
not specify here) which are called measurable sets. In [17], a higher-order logic
probability theory is developed, where given a probability space p, the functions
space and subsets return the corresponding Ω and Σ, respectively. Mathemat-
ically, a random variable is a measurable function between a probability space
and a measurable space, which refers to a pair (S,A), where S is a set and A
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is a σ-algebra, i.e., a collection of subsets of S satisfying some particular prop-
erties [3]. In HOL, we write random variable X p s to state that a function
X is a random variable on a probability space p and the measurable outcome
space s. Meanwhile, the mathematical probability Pr is denoted as P in this
paper. Building on these foundations, measure theoretic formalizations of prob-
ability, Lebesgue integral and information theories are presented in [17]. In this
paper, we build upon these results to first formalize DTMCs and then use this
to formalize HMMs.

3.1 Definition of Discrete-Time Markov Chains

A stochastic process [3] is a function X : T → Ω where T = N (discrete-time
process) or T = R (continuous-time process) and Ω is a measurable set called
the state space of X . A (finite-state) DTMC is a discrete-time stochastic process
that has a finite Ω and satisfies the Markov property [5]: for 0 ≤ t0 ≤ · · · ≤ tn
and f0, · · · , fn+1 in the state space, then: Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 =
f0} = Pr{Xtn+1 = fn+1|Xtn = fn}.

This allows to formalize the Markov property as follows:

Definition 1. (Markov Property)

� ∀ X p s.

mc property X p s =

(∀ t. random variable (X t) p s) ∧
∀ f t n.

increasing seq t ∧ P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) �= 0 ⇒
(P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n} ∩⋂

k∈ [0,n−1]{x | X tk x = f k}) =

P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n}))
where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j, thus for-
malizing the notion of increasing sequence. The first conjunct indicates that the
Markov property is based on a random process {Xt : Ω → S}. The quantified
variable X represents a function of the random variables associated with time
t which has the type num. This ensures the process is a discrete time random
process. The random variables in this process are the functions built on the
probability space p and a measurable space s. The conjunct P(

⋂
k∈ [0,n−1]{x |

X tk x = f k}) �= 0 ensures that the corresponding conditional probabilities
are well-defined, where f k returns the kth element of the state sequence.

A DTMC is usually expressed by specifying: an initial distribution p0 which
gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every state;
and transition probabilities pij(t) which give the probability of going from i to
j for every pair of states i, j in the state space [19]. For states i, j and a time t,
the transition probability pij(t) is defined as Pr{Xt+1 = j|Xt = i}, which can
be easily generalized to n-step transition probability.

p
(n)
ij =

⎧
⎪⎨

⎪⎩

{
0 if i �= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0
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This is formalized in HOL as follows:

Definition 2. (Transition Probability)

� ∀ X p s t n i j.

Trans X p s t n i j =

if i ∈ space s ∧ j ∈ space s then

if (n = 0) then

if (i = j) then 1 else 0

else P({x | X (t + n) x = j}|{x | X t x = i})
else 0

We will write p
(n)
ij (t) for the n-step transition probability (note that the notations

pij(t) and p
(1)
ij (t) are then equivalent).

Based on the concepts of Markov property and transition probability, the
notion of a DTMC can be formalized as follows:

Definition 3. (DTMC)

� ∀ X p s p0 pij.

dtmc X p s p0 pij =

mc property X p s ∧ (∀ i. i ∈ space s ⇒ {i} ∈ subsets s) ∧
(∀ i. i ∈ space s ⇒ (p0 i = P{x | X 0 x = i})) ∧
(∀ t i j. P{x | X t x = i} �= 0 ⇒ (pij t i j = Trans X p s t 1 i j))

The first conjunct states that a DTMC satisfies Markov property [19]. The second
one ensures that every set containing just one state is measurable. The last two
conjuncts indicate that p0 is the initial distribution and pij are the transition
probabilities, respectively. It is important to note that X is polymorphic, i.e., it
is not constrained to a particular type, which is a very useful advantage of our
definition.

In practice, many applications actually make use of time-homogenous DTMCs,
i.e., DTMCs with finite state-space and time-independent transition probabilities
[2]. This is formalized as follows:

Definition 4. (Time-homogeneous DTMC)

� ∀ X p s p0 pij.

th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧
(∀ t i j. P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒

(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j))

where the assumptions P{x | X t x = i} �= 0 and P{x | X (t + 1) x = i}
�= 0 ensure that the conditional probabilities involved in the last conjunct are
well-defined. For time-homogenous DTMCs, pij(t) = pij(t

′) for any t, t′, thus
pij(t) will simply be written pij in this case.

Using these fundamental definitions, we formally verified most of the classical
properties of DTMCs with finite state-space using the HOL theorem prover.
Because of space limitations, we present only the formal verification of the most
important properties in the following subsections and the remaining ones can be
found in our proof script [14].
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3.2 Joint Probability

The joint probability of a DTMC is the probability of a chain of states to occur. It
is very useful, e.g., in analyzing multi-stage experiments. In addition, this concept
is the basis for joint probability generating functions, which are frequently used
in considerable system analysis problems. Mathematically, the joint probability
of n + 1 discrete random variables X0, . . ., Xn in a DTMC can be expressed as:

Pr(Xt = L0, · · · , Xt+n = Ln) =

n−1∏

k=0

Pr(Xt+k+1 = Lk+1|Xt+k = Lk)Pr(Xt = L0)

We verified this property in HOL as the following theorem:

Theorem 1. (Joint Probability)

� ∀ X p s t L p0 pij.

dtmc X p s p0 pij ⇒
(P(

⋂n
k=0{x | X (t + k) x = EL k L}) =

(
∏n−1

k=0P({x | X (t + k + 1) x = EL (k + 1) L}|
{x | X (t + k) x = EL k L}))P{x | X t x = EL 0 L})

3.3 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation [3] is a widely used property of time-homo-
geneous Markov chains since it facilitates the use of a matrix theory to analyze
large Markov chains. It basically gives the probability of going from state i to j
in m+n steps. Assuming the first m steps take the system from state i to some
intermediate state k, which is in the state space Ω and the remaining n steps
then take the system from state k to j, we can obtain the desired probability by
adding the probabilities associated with all the intermediate steps:

p
(m+n)
ij =

∑
k∈Ω p

(n)
kj p

(m)
ik (1)

Based on Equation (1) and Definition 4, the Chapman-Kolmogorov equation
is formally verified as follows:

Theorem 2. (Chapman-Kolmogorov Equation)

� ∀ X p s i j t m n p0 pij.

th dtmc X p s p0 pij ⇒
(Trans X p s t (m + n) i j =∑

k∈space s(Trans X p s t n k j * Trans X p s t m i k))

3.4 Absolute Probabilities

The unconditional probabilities associated with a Markov chain are called abso-
lute probabilities which are expressed as follows:

p
(n)
j = Pr(Xn = j) =

∑
k∈Ω Pr(X0 = k)Pr(Xn = j|X0 = k) (2)

This property is formally verified as the following theorem:
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Theorem 3. (Absolute Probability)

� ∀ X p s j n p0 pij.

dtmc X p s p0 pij ⇒
(P{x | X n x = j} =∑

k∈space s(P{x | X 0 x = k}P({x | X n x = j}|{x | X 0 x = k})))
The formal proof script for the above mentioned properties and many other

useful properties is composed of 1200 lines of HOL code, which is used in the
interactive verification process. The usefulness of this development is that it can
be built upon to formalize HMMs as will be shown in the next section.

4 Formalization of Hidden Markov Models

An HMM [16] is a pair of two stochastic processes {Xk, Yk}k≥0, where {Xk}k≥0

is a Markov chain and {Yk}k≥0 denotes an observable sequence, with the condi-
tional independency property [27]. The observer can visualize the output of the
random process shown in {Yk}k≥0 but not the underlying states in {Xk}k≥0.
That is the reason why the Markov chain involved in this process is called hid-
den Markov chain.

A HMM is defined as a triple λ = (A, B, π(0)) with the following conditions:

1. A Markov chain {Xk}k≥0 with state space S, the initial distribution π(0) =
{Pr{X0 = i}}i∈S and the transition probabilities A = {Pr{Xn+1 = j|Xn =
i}}i∈S,j∈S.

2. A random process {Yk}k≥0 with finite state space O. {Xk}k≥0 and {Yk}k≥0

are associated with the emission probabilities B, which is {Pr{Yn = Ok|Xn =
j}}j∈S,Ok∈O.

3. {Yk}k≥0 is conditional independent of {Xk}k≥0, i.e. Yk depends only on Xk

and not on any Xt, such that t �= k.

In our work, we consider mainly discrete time and finite-state space HMMs,
which is the most frequently used case. Now, HMM is formalized as follows:

Definition 5. (HMM)

� ∀ X Y p sX sY p0 pij pXY.

hmm X Y p sX sY p0 pij pXY =

dtmc X p sX p0 pij ∧ (∀ t. random variable (Y t) p sY) ∧
(∀ i. i ∈ space sY ⇒ {i} ∈ subsets sY) ∧
(∀ t a i. P{x | X t x = i} �= 0 ⇒

(P({x | Y t x = a}|{x | X t x = i}) = pXY t a i)) ∧
∀ t a i tx0 ty0 stsX stsY tsX tsY.

P({x | X t x = i} ∩ ⋂
kεtsX

{x | X (tx0 + k) x = EL k stsX} ∩⋂
kεtsY

{x | Y (ty0 + k) x = EL k stsY}) �= 0 ⇒
(P({x | Y t x = a}|{x | X t x = i} ∩⋂

kεtsX
{x | X (tx0 + k) x = EL k stsX} ∩⋂

kεtsY
{x | Y (ty0 + k) x = EL k stsY}) =

P({x | Y t x = a}|{x | X t x = i}))
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The variable X denotes the random variable in the underlying DTMC, Y indi-
cates the random observations, and pXY indicates the emission probabilities. The
following two conditions define a random process {Yt}t≥0 with a discrete state
space. The fourth condition assigns the emission distributions given by pXY. The
last condition ensures the above mentioned conditional independence.

The time-homogenous HMMs can also be formalized in a way similar to time-
homogenous DTMCs:

Definition 6. (Time-homogeneous HMM)

� ∀ X Y p sX sY p0 pij pXY.

thmm X Y p sX sY p0 pij pXY =

hmm X Y p sX sY p0 pij pXY ∧ FINITE (space sX) ∧ FINITE (space sY) ∧
∀ t a i j. P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒

(Trans X p sX (t + 1) 1 i j = Trans X p sX t 1 i j) ∧
(pxy (t + 1) i j = pxy t i j)

Next, we verify some classical properties of HMMs, which play a vital role in
reducing the user interaction for the formal analysis of systems that can be
represented in terms of HMMs.

4.1 Joint Probability of HMMs

The most important property of time homogeneous HMMs is the expression of
the joint distribution of a sequence of states and its corresponding observation,
which can be expressed using products of its emission probabilities and transi-
tion probabilities. This is frequently used to find the best state path or estimate
model’s parameters. Mathematically, this is expressed as the following equation:

Pr(Y0, · · · , Yt, X0, · · · , Xt) = Pr(X0)Pr(Y0|X0)

t−1∏

k=0

Pr(Xk+1|Xk)Pr(Yk+1|Xk+1)

and has been formally verified using the HOL theorem prover as follows:

Theorem 4. (Joint Probability of HMM)

� ∀ X Y p t sX sY p0 pij pXY stsX stsY.

thmm X Y p sX sY p0 pij pXY ⇒
(P(

⋂t
k=0{x | X k x = EL k stsX} ∩ ⋂t

k=0{x | Y k x = EL k stsY}) =

P{x | X 0 x = EL 0 stsX}
P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})
(
∏t−1

k=0P({x | X (k + 1) x = EL (k + 1) stsX}|{x | X k x = EL k stsX})
P({x | Y (k + 1) x = EL (k + 1) stsY}|

{x | X (k + 1) x = EL (k + 1) stsX}))

4.2 Joint Probability of an Observable Path

In addition to the above property, researchers are often interested in the prob-
ability of a particular observation, independently of any underlying state path.
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This can be mathematically expressed as:

Pr(Y0, · · · , Yt) =
∑

X0,··· ,Xt ∈
space s

Pr(X0)Pr(Y0|X0)

t−1∏

k=0

Pr(Xk+1|Xk)Pr(Yk+1|Xk+1)

Using Theorem 4, we can formally verify this equation as follows.

Theorem 5. (Joint Probability of Observable Path)

� ∀ X Y p s n sX sY p0 pij pXY stsX.

thmm X Y p sX sY p0 pij pXY ⇒
let L = {L | EVERY (λx. x ∈ space sX) L ∧ (|L| = n+ 1)} in

(P(
⋂n

k=0{x | Y k x = EL k stsY}) =∑
stsX∈L(P{x | X 0 x = EL 0 stsX}

P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})
(
∏n−1

k=0P({x | X (k + 1) x = EL (k + 1) stsX}|
{x | X k x = EL k stsX})

P({x | Y (k + 1) x = EL (k + 1) stsY}|
{x | X (k + 1) x = EL (k + 1) stsX})))

where |L| returns the length of the list L and EVERY p L is a predicate which is
true iff the predicate p holds for every element of the list L.

One can note that Theorems 4 and 5 provide ways to compute the probabilities
that are usually desired while analyzing HMMs. Consequently, if the theorems
are instantiated with concrete values for their parameters, then a real number
can be obtained for the corresponding probability. Thus, it seems natural to try
to automatize such computations. Moreover, this is extremely useful since, in
practice, one is always interested in applying the theorems to concrete situations.
In the next subsection, we describe how to automatically acquire interesting
probabilities and find the best state path, for a given HMM, using the results of
Theorems 4 and 5. This makes the accuracy of theorem proving available even
to users with no knowledge about logic or theorem proving, hence making our
technique closer to practical usability.

4.3 Automating the HOL Computations

In order to automate the computation associated with Theorem 4, we define an
SML function hmm joint distribution ini distr trans distr e distr sts

obs which takes as input the initial distributions, the transition probabilities,
the emission distributions, a list of states and a list of observations: When call-
ing this function, these parameters will be automatically substituted to p0, pij,
pXY, stsX and stsY, respectively, of Theorem 4. We then take t to be the length
of sts (which should be the same as obs): this seems to be the most common
case in practice, but could be easily relaxed if needed by adding a parameter
to the function. We can then compute, using HOL4 theorems about lists, real
numbers, etc., the right-hand side of the equation in Theorem 4 in an exact
way (as a fraction). In the end, the function returns the corresponding instan-
tiation of HOL4 theorem stating the equality between the joint probability and
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its value. Note that the result is really a HOL4 theorem: even the operations
between real numbers like multiplication or addition are obtained by deductive
reasoning, thus making every single step of the computation completely reliable
and traceable. An example of this function will be presented in the next sec-
tion. The implementation of the function hmm joint distribution requires the
development of an intermediate lemma and makes heavy but fine-grain use of
rewriting techniques in order to have a reasonable efficiency. We do not go into
implementation details due to the lack of space.

The computations associated with Theorem 5 can also be automated sim-
ilarly, but we can actually go further: A problem which arises very often in
practice is to find the state path which has the best probability of generat-
ing a given observation sequence. To obtain this, we need to compute the set
of all possible state paths, compute the probability of each of these paths as
hmm joint distribution does, and then return the path which has the best
probability. Once again, in order to be the most accurate as possible, all these
computations shall be done inside HOL4. This can be achieved by an SML func-
tion best path ini distr trans distr e distr st ty obswhere ini distr,
trans distr, e distr, and obs denote the same objects as for hmm joint

distribution and st ty denotes the type of terms representing states. This
type should be a non-recursive enumerated type, i.e., defined as C1 | C2 | . . . Ck,
where C1, . . . , Ck are constructors without arguments: this ensures that the state-
space is finite. The function then takes care of computing the list of all pos-
sible paths, then computes the corresponding joint probability as hmm joint

distribution does, and, in the end, returns the state path which has the best
such probability (note that the notion of “best probability” is also defined in-
side HOL4 by using the axiomatic definition of the order on real numbers). This
function is currently very slow (with a 3-state path, it will take around one sec-
ond to obtain the best path; for a 5-state path, it takes around one minute) due
to the computation of the set of all possible state paths, but there is a lot of
room for improvement, in particular by filtering paths which have trivially a null
transition probability or null emission probability. This is a first step, which is
not as fast as other statistical tools, on developing a tool to formally analyze
HMMs.

We now show how to apply these theorems and functions in practice, by
providing the formal analysis of a HMM of DNA model in the next section.

5 Application: Formal Analysis of DNA Sequence

DNA sequence analysis plays a vital role in constructing gene mapping, dis-
covering new species and investigating disease-manifestations in genetic linkage,
parental testing and criminal investigation. Statistical methods are mainly ap-
plied for analyzing DNA sequence. In particular, obtaining the probability of a
state path underlying the DNA fragment is the most critical step in identifying
a particular DNA sequence.

A DNA fragment is a sequence of nucleotides called A (Adenine), T (Thymine),
G (Guanine) and C (Cytosine). However, nucleotide composition of DNA is in
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Fig. 1. 5’ splice site recognition model

general not uniformly distributed (because every DNA sequence can be synthe-
sised): some regularities can be found among the possible sequences. For instance,
it might be that all four nucleotides can appear with equal probability at the be-
ginning of the sequence, but, after a particular point, only A and G can appear,
and then all four can appear again but with higher probabilities for A and T.
In this application, there are thus three different “states” of the DNA, charac-
terized by the probabilities of occurrence of each base. In this DNA model, the
first state is called exon (E), the second one 5’ splice site (5), and the third one
intron (I) [8]. This model is described and studied very naturally using HMMs
[8]: a DTMC over the states E, 5, and I is used in order to know in which state
the nucleotides are, then another random process is defined which characterizes
the emission of A, G, T or C according to the state which the proteins are in.
This is summarized in Fig. 1.

In order to formalize this HMM, we first define types representing the states
and the bases:

Definition 7. (HOL4 Data Types)

� dna = A | G | T | C

� state = START | E | I | FIVE | END

Note that, in order to characterize the sequence, it is a common practice to add
some fake start and end states, which have no connection with the observable
sequence and thus no emission probability is required. Hence START and END are
contained in the definition of state in Definition 7. As examples, we define the
following state and DNA sequences:

Definition 8. (State Path and DNA Sequence)

� state seq = [START; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; FIVE; I; I; I; I; I; I; I; END]

� dna seq = [C; T; T; C; A; T; G; T; G; A; A; A; G; C; A; G; A; C; G; T; A; A; G; T; C; A]

So as to model the HMM represented in Fig. 1, we need an initial distribution,
the transition probabilities, and the emission probabilities, which we define as
follows:
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Definition 9. (DNA Model Parameters)

� ini distr i = if (i = START) then 1 else 0

� e distr a i =
case (i, a) of
(E, ) → 0.25
‖ (FIVE, A) → 0.05
‖ (FIVE, G) → 0.95
‖ (I, A) → 0.4
‖ (I, T) → 0.4
‖ (I, G) → 0.1
‖ (I, C) → 0.1
‖ → 0

� trans distr t i j =
case (i, j) of
(START, E) → 1

‖ (E, E) → 0.9
‖ (E, FIVE) → 0.1
‖ (FIVE, I) → 1

‖ (I, I) → 0.9
‖ (I, END) → 0.1
‖ → 0

Then, in order to work with random variables X and Y denoting the states and
the observations, respectively, on a probability space p, it is sufficient to have
the following predicate:

thmm X Y p sX sY ini distr trans distr e distr

∧ space sX = univ(: state) ∧ space sY = univ(: dna)

where univ(:t) is the set of all possible values of type t, e.g., univ(:dna) =

{A; G; T; C}.
Now, for instance, we can prove the theorem which gives the probability of

obtaining the sequence dna seq if the underlying state path is state seq:

Theorem 6. (Joint Probability of a DNA Segment)

� ∀ X Y p sX sY.

thmm X Y p sX sY ini distr trans distr e distr ∧
space sX = univ(: state) ∧ space sY = univ(: dna) ⇒
P(

⋂|state seq|−1
k=0 {x | X k x = EL k state seq} ∩

⋂|dna seq|−1
k=0 {x | Y k x = EL k dna seq}) = 0.2518 ∗ 0.923 ∗ 0.14 ∗ 0.95 ∗ 0.45

To verify this theorem, a lemma of Theorem 4 is proved firstly:

Lemma 1.

� ∀ X Y p t sX sY p0 pij pXY stsX stsY.

thmm X Y p sX sY p0 pij pXY ∧ (|stsx|=t + 3) ∧ (|stsy|=t + 1) ⇒
(P(

⋂t+2
k=0{x | X k x = EL k stsX} ∩ ⋂t

k=0{x | Y k x = EL k stsY})=
P{x | X 0 x = EL 0 stsX}
P({x | X (k + 2) x = EL (k + 2) stsX}|

{x | X (k + 1) x = EL (k + 1) stsX})
(
∏t

k=0P({x | X (k + 1) x = EL (k + 1) stsX}|{x | X k x = EL k stsX})
P({x | Y (k + 1) x = EL k stsY}|{x | X k x = EL (k + 1) stsX}))

Actually, a more interesting information than the above number is to find which
among all possible state paths has the highest probability to occur given a par-
ticular DNA sequence. This state path is called the best path in our case. In
our particular context, this problem is called 5’ splice site recognition. This is
verified as follows:
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Theorem 7. (Best State Path)

� ∀ X Y p sX sY.

thmm X Y p sX sY ini distr trans distr e distr ∧
space sX = univ(: state) ∧ space sY = univ(: dna) ⇒
REAL MAXIMIZE SET

[E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; FIVE; I; I; I; I; I; I; I]

(λsts. P(
⋂|sts|−1

k=0 {x | X k x = EL k state seq} ⋂

⋂|dna seq|−1

k=0 {x | Y k x = EL k dna seq})) {sts | |sts| = 26}

where REAL MAXIMIZE SET m f s is a predicate which is true only if f m is the
maximum element of {f x | x ∈ s} (this is defined as a predicate because
there can be several elements of s having this property). Note once again that
this theorem is proved in a purely formal way, i.e., even the comparisons be-
tween probabilities are proved deductively from the axiomatic definition of real
numbers. Consequently, the confidence that we can have in the result is maximal.

While Theorems 6 and 7 have been proved in the classical theorem proving
way, i.e., interactively, there are rare chances that a biologist has the required
knowledge of higher-order logic and HOL4 so as to conduct such a study. How-
ever, we can, by using SML functions that we presented in the previous section,
get the same result in a purely automated way. In order to call the functions
hmm joint distribution and best path, we need to define their arguments as
SML values:

> val dna seq =

"[C;T;T;C;A;T;G;T;G;A;A;A;G;C;A;G;A;C;G;T;A;A;G;T;C;A]";

> val state seq =

"[START;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;FIVE;I;I;I;I;I;I;I;END]";

> val ini distr = "λ i. if (i = START) then 1 else 0";

> val trans distr = "λ t i j. case (i, a) of

(START, E) → 1 ‖ (E, E) → 0.9 ‖ (E, FIVE) → 0.1 ‖ (FIVE, I) → 1 ‖
(I, FIVE) → 0.9 ‖ (I, END) → 0.1 ‖ → 0"

> val e distr a i = "λ t a i. case (i, a) of

(E, ) → 0.25 ‖ (FIVE, A) → 0.05 ‖ (FIVE, G) → 0.95 ‖ (I, A) → 0.4 ‖
(I, T) → 0.4 ‖ (I, G) → 0.1 ‖ (I, C) →; 0.1 ‖ → 0"

Note that, contrarily to the previous definitions, dna seq, state seq,
ini distr, trans distr and e distr are SML values, whereas the values with
the same names presented in Definitions 8 and 9 are HOL4 values. Of course, in
practice, these need to be defined only once (in SML if using the automated way,
or in HOL4 if using the interactive way). We can then call the SML function
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hmm joint distribution as follows:

> hmm joint distribution ini distr trans distr e distr dna seq state seq;

which gives the following output:

Exact value with the corresponding assumptions (obtained by HOL4):

∀ X Y p sX sY.

thmm X Y p sX sY

(λ i. if i = START then 1 else 0)

(λ t i j. case (i,j) of

(E, ) → 0.25 ‖ (FIVE, A) → 0.05 ‖ (FIVE, G) → 0.95 ‖ (I, A) → 0.4 ‖
(I, T) → 0.4 ‖ (I, G) → 0.1 ‖ (I, C) → 0.1 ‖ → 0.1

(λ t a i. case (i,a) of

(START, E) → 1 ‖ (E, E) → 0.9 ‖ (E, FIVE) → 0.1 ‖
(FIVE, I) → 1 ‖ (I, I) → 0.9 ‖ (I, END) → 0.1 ‖ → 0 ∧

(space sX = univ(:state)) ∧ (space sY = univ(:dna)) ⇒
P(

⋂27
k=0{x | X k x =

EL k [START;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;FIVE;I;I;

I;I;I;I;I;END]} ∩
⋂25

k=0{x | Y k x =

EL k [C;T;T;C;A;T;G;T;G;A;A;A;G;C;A;G;A;C;G;T;A;A;G;T;C;A]}})
= 168395824273397520822651

134217728000000000000000000000000000000000

Thus, as we can see, the SML function is able to return a HOL4 theorem giving
the exact value of the desired probability in a purely automated way. For conve-
nience, the approximated value can also be computed by SML from the HOL4
exact value. Similarly, a result corresponding to Theorem 7 can be obtained au-
tomatically by using best path. In [8], the probability of the best path is e−41.22

and that of the second best path is e−41.71. It is quite likely that the path chosen
by numerical algorithm in the simulation tools is not the best one due to the
numerical approximations. On the other hand, theorem proving based approach
provides the best path with unrivaled accuracy.

This concludes our analysis of the 5’ splice site DNA problem. It is, to the
best of our knowledge, the first such formal analysis. In addition, we demon-
strated how useful are our automation functions, since they allow to reduce the
interaction with the user to a minimum, especially in reducing interactive guide
when computing concrete numerical values in applications. All the proof scripts
corresponding to this work are available at [14].

6 Conclusions

HMMs, which are used to model an observable stochastic process with an under-
lying Markov process, are mainly applied to model and analyze time series data
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in various engineering and scientific systems. This paper presents a formalization
of HMMs based on an enhanced definition of discrete-time Markov chain with fi-
nite state-space in a higher-order logic theorem prover. In particular, we present
a formal definition of time homogeneous DTMC and formally verify some of
their classical properties, such as joint probabilities, Chapman-Kolmogorov Equa-
tion and absolute probabilities, using the HOL4 theorem prover. Furthermore,
some properties of HMMs are verified in HOL4. This work facilitates the formal
analysis of HMMs and provides the foundations for formalizing more advanced
concepts of Markov chain theory, like classified DTMCs and useful properties
of HMMs. In addition, we automatized some of the most common tasks related
to HMMs, thus demonstrating the practical usability of our approach. Due to
the inherent soundness of theorem proving, it is guaranteed to provide accurate
results, which is a very useful feature while analyzing HMMs associated with
safety or mission-critical systems. In order to illustrate the usefulness of the pro-
posed approach, we analyzed an HMM for 5’ splice site DNA recognition using
our formalization and automation. Our results exactly matched the correspond-
ing paper-and-pencil based analysis [8], which ascertains the precise nature of
the proposed approach. Note that our approach is quite general and it can be
applied in DNA models, which usually consist of many states.

As the formal analysis of HMMs cannot be achieved in PRISM , the pre-
sented work opens the door to a new and very promising research direction, i.e.,
integrating HOL theorem proving in the domain of analyzing HMMs. We are
currently working on extending the set of formally verified properties regarding
DTMCs and extending our work to time-inhomogeneous discrete-time Markov
chains, which will enable us to target a wider set of systems. We also plan to for-
mally verify the Forward-Backward, Viterbi and Baum-Welch algorithms [16],
which are widely applied in statistical biology analysis. By improving the effi-
ciency of automation functions and by making their scope broader, we could
also consider the development of a purely automated but formal tool to analyse
HMMs.
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