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Abstract. Power electronics is an active area of research which has
widespread applications in safety and cost critical domains such as power
grids, biomedical devices and avionics systems. The complexity of power
electronic systems is rapidly reaching a point where it will become diffi-
cult to verify the correctness and robustness of underlying designs. In this
paper, we propose to use a recent formalization of signal-flow-graphs in
higher-order-logic for the formal analysis of power electronic converters,
which are the foremost components of modern power electronic systems.
In particular, we demonstrate the necessary steps to formally reason
about the critical properties (e.g., efficiency, stability and resonance)
of power electronic converters by using their corresponding signal-flow-
graph based high-level models. In order to demonstrate the utilization
of the proposed infrastructure, we present the formal analysis of a cou-
ple of widely used power converters, namely a pulse width modulation
push-pull DC-DC converter and a 1-boost cell DC-DC converter.

1 Introduction

Power electronic circuits are networks composed of electronic components and
semiconductor devices which are connected together to form a functioning
machine or an operational procedure. Nowadays, power electronics is a rapidly
expanding field in electrical engineering, where power electronic devices are inte-
gral part of our everyday tasks at home, at work and in industrial settings [17].
For example, power electronic converters have found widespread applications
in petrochemical [18], water-power stations [17], transportation [3], renewable-
energy sources [4] and reactive-power compensators [17]. In the last few decades,
high-power devices have been one of the most active areas in research and devel-
opment of power electronics. Several industrial processes have increased their
power needs which are mainly driven by the economy of scale (i.e., production
levels and efficiency). In order to cope with future challenges, new paradigms
have been developed such as power semiconductors, converter topologies and
control methods. As a result, the verification and validation of such systems
have become challenging due to the increased design complexities and shorter
time-to-market.

One of the core steps in power electronic systems design process is the phys-
ical modeling of the circuit components. A significant portion of time is spent
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finding bugs through the validation of such models in order to minimize the
failure risks and monetary loss. In particular, this step is more important in
the applications, where failures directly lead to monetary loss and safety issues.
For example, power electronic convertors are used for pipeline pumps in the
petrochemical industry [18] and in grid integration of renewable-energy sources
[4]. Generally, there are several kinds of power electronic systems which need to
be analyzed; however, the focus of this paper is DC-DC power converts which
form the core of power electronic systems. The first step to analyze the behav-
ior of power electronic systems is to obtain the transfer function which relates
the input and output signals (voltage or current). Consequently, the test for the
stability (which ensures that the system output is always finite) and resonance
(which ensures the oscillation of input alternating current at certain frequencies)
conditions of the circuit are the foremost design criterion.

Once the stability and resonance of a circuit have been determined, the final
step is to obtain the circuit efficiency which is a ratio of output and input pow-
ers. One primary analytical approach is to compute the transfer function by
explicitly writing node and loop equations which can further be utilized to ana-
lyze some physical aspects of power electronic systems. Signal-flow graph (SFG)
theory (originally proposed by Mason [13]) has also been used to compute the
transfer function of power electronic systems. The main motivation of this choice
is inspired by its successful applications to model control systems with minimum
mathematical manipulations. Indeed, the problem of finding the transfer func-
tion reduces to the identification of forward paths and loops which further can
be plugged into the Mason’s gain formula (MSG) [14] (which provides an easy
way to find the transfer function). Traditionally, the analysis of complex power
electronic systems is performed using numerical simulation [24]. To measure the
effect of different initial conditions or parametric variation over the circuit oper-
ation, it is necessary to perform exhaustive simulations and tests. However, even
by doing this, there is no guarantee about the correctness of results, because
it is impossible to simulate the system for an infinite number of operating con-
ditions. Another issue of such analysis methods is the approximations in terms
of numerical accuracy and types (e.g., real or complex) of variables used to
encode the algorithms. For example, a MATLAB program [7] for computing
transfer functions treats system parameters as a string of characters; which is
indeed a complex-valued function. Considering the above mentioned verification
and analysis constraints, we believe that there is a dire need to build a frame-
work which can assist in designing accurate and high assurance power electronic
systems.

In recent years, formal methods based techniques (in particular model check-
ing and theorem proving) have been proven to be an effective approach to analyze
physical, hybrid and digital engineering systems (e.g., [12]). Despite the fact that
formal methods based techniques have the potential to analyze various aspects
of physical systems, it is rare to find the usage of formal methods to analyze
power electronic systems. The most relevant work for analyzing and modelling
power electronic systems using model checking is reported in [15]. However,
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the authors do not study the stability and resonance which are critical require-
ments in designing power electronic systems. Therefore, the main motivation of
our work is to fill this gap by proposing a generic framework to analyze power
converters. In particular, we review the main functions of our higher-order logic
formalization of signal-flow-graph theory along and the Mason’s gain formula [2].
We also formalize the notion of stability and resonance along with the formal
verification of some important properties such as the finiteness and the cardinal-
ity of the set of poles (complex-valued parameters at which the system becomes
unstable) and zeros (parameters which determine the resonance condition in
the system). In order to demonstrate the practical utilization of our work, we
formally verify the transfer functions of 1-boost cell DC-DC converter [24] and
push-pull pulse-width-modulation (PWM) DC-DC converter [9]. Consequently,
we derive the general stability and resonance conditions, which greatly simplifies
the verification for any given circuit configuration. Next, we verify the efficiency
of 1-boost cell DC-DC converter circuit. In our work, we use the HOL Light
theorem prover [8] due to its rich multivariate analysis libraries and interesting
related formalizations about Laplace transform [21] and Z-transform [20]. The
source code of our formalization is available for download [1] and can be utilized
by other researchers and engineers for further developments and the analysis of
various types of power engineering systems.

The rest of the paper is organized as follows: some fundamentals of signal-
flow-graph theory and the Mason’s gain formula are described in Sect. 2. In
Sect. 3, we highlight some definitions of our formalization of signal-flow-graph
theory and Mason’s gain formula along with the system properties. We present
the analysis of the 1-boost cell DC-DC and push-pull PWM DC-DC converters
in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Signal-Flow-Graph Theory and Mason’s Gain Formula

A signal-flow-graph (SFG) [13] is a special kind of directed graph which is widely
used to model engineering systems. Mathematically, it represents a set of linear
algebraic equations of the corresponding system. An SFG is a network in which
nodes are connected by directed branches. Every node in the network represents
a system variable and each branch represents the signal transmission from one
node to the other under the assumption that signals flow only in one direction.
An example of an SFG is shown in Fig. 2 consisting of five nodes. An input or
source node and an output or sink node are the ones which only have outgoing
branches and incoming branches, respectively (e.g., nodes 1 and 5 in Fig. 2). A
branch is a directed line from node i to j and the gain of each branch is called
the transmittance. A path is a traversal of connected branches from one node
to the other and if no node is crossed more than once and connects the input
to the output, then the path is called forward path, otherwise if it leads back
to itself without crossing any node more than once, it is considered as a closed
path or a loop. A loop containing only one node is called self loop and any two
loops in the SFG are said to be touching loops if they have any common node.
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Fig. 1. RC circuit

Fig. 2. Signal-flow-graph of RC circuit

The total gain of forward path and a loop can be computed by multiplying the
transmittances of each traversed branch.

The procedure for transforming power electronic circuits into a signal-flow-
graph is straightforward. We start by representing each variable of the circuit as
a node in the graph. Next, these nodes are interconnected depending upon their
physical behavior in a specific system configuration. The technique of driving-
point impedance (DPI) [19] is used to derive the transmittance of the graph
branches (capacitor or resistor). Indeed, the DPI analysis is based on the trans-
formation of circuit nodes to their Norton’s or Thevenin’s equivalent represen-
tation along with the application of the principal of superposition [6]. Moreover,
Kirchhoff’s voltage and current laws are used to derive the relations between
voltage and current. Kirchhoff’s current law or principle of conservation of elec-
tric charge states that at any node (junction) in an electrical circuit, the sum of
the currents flowing into that node is equal to the sum of currents flowing out
of that node. Kirchhoff’s voltage law or the principle of conservation of energy
implies that the directed sum of the potential differences around any closed
network is zero. For example, consider a simple RC circuit as shown in Fig. 1,
where vg is the input voltage, vc is the voltage across the capacitor, ic is the
capacitor current, iR is the resistor current, and vR is the output voltage. We
can transform this circuit into its equivalent signal-flow-graph by finding the set
of equations from the physical network of the circuit by first using: Kirchhoff’s
voltage and current laws for Eqs. 1 and 3, then the branch equations for the
capacitor and resistor for Eqs. 2 and 4. The next step consists in assigning to
each equation a signal (voltage or current) that will be represented as a node
representing each variable of the circuit as a node in the graph. Next, these
nodes are interconnected depending upon their physical behavior in a specific
system configuration. Note that for each signal-flow-graph a set of independent
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equations must be chosen, an equation must only be used once, and the variables
of interest must be represented.

vc = vg − vR (1)
ic = Csvc (2)

iR = ic (3)
vR = RiR (4)

where C is the capacitance, R is the resistance, and s is the Laplace Transform
variable (i.e., s = σ + jw). Finally, above mentioned results are used to connect
the nodes in Fig. 1, to produce the final SFG (Fig. 2). Note that the path from
node vg to node vR is a forward path whereas the path originating from node
vc, traversing ic, iR, vR and terminating at node vc forms a loop.

In the analysis of practical engineering systems, the main task is to character-
ize the relation among system input and output which is called transfer function.
The total transmittance or gain between two given nodes (usually input and out-
put) describes the transfer function of the corresponding system. In 1953, Mason
[13] proposed a computational procedure (also called Mason’s gain formula) to
obtain the total gain of any arbitrary signal-flow-graph. The formula is described
as follows [14]:

G =
∑

k

GkΔk

Δ
(5)

Δ = 1 −
∑

m

Pm1 +
∑

m

Pm2 −
∑

m

Pm3 + . . . + (−1)n
∑

. . . (6)

where Δ represents the determinant of the graph, Δk represents the value of
Δ for the part of the graph that is not touching the kth forward path and
it is called the cofactor of forward path k, Pmr is the gain product of mth

possible combination of r non-touching loops. The gain of each forward path is
represented by Gk.

For example, we can find the input to output transfer function for the SFG
of Fig. 2 using the MGF as follows:

vR

vg
=

RCs

1 + RCs
(7)

3 Formalization of Signal-Flow-Graph and Mason’s Gain

We model a single branch as a triplet (a, tab, b), where a, tab and b represent
the start node, the transmittance and the end node, respectively. Consequently,
a path can be modeled as a list of branches and furthermore an SFG can be
defined as a composition of a path along with the information about the total
number of nodes in the circuit and the source and the sink nodes at which we
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want to compute the transfer function. As mentioned before, nodes and trans-
mittance represent the system variables and gain, respectively. These parameters
are indeed complex valued, i.e., a, tab, c ∈ C in the context of power electronic
systems. However, the information about the nodes is just used to find properties
of signals (current) transmission and they do not appear in the gain and trans-
fer function computation using Mason’s gain formula. So, we adapted the same
approach as proposed by Mason [13], where nodes of an SFG are represented
by natural numbers (N). In order to simplify the reasoning process, we encode
the above information by defining three type abbreviations in HOL Light1,
i.e., branch, path and signal-flow-graph as follows:

Definition 1 (Branch, Path and SFG).

new type abbrev ("branch", ‘:N × C × N‘)
new type abbrev ("path", ‘:(branch)list‘)
new type abbrev ("sfg", ‘:path × N × N × N‘)

where the second, third, and the fourth elements of sfg represent the size, the
output node and the input node of a signal-flow-graph, respectively.

Our next main task is to find all the forward paths and loops from the source
node to the sink node given by the user. We implemented a search algorithm
proposed in [23] which considers each path only once during the search.

In our formalization, we add a skipping function which helps to ignore the
nodes which do not have any incoming branches. Indeed, we cannot find a loop
which contains a node that does not have incoming branches from the definition
of a feedback loop. Hence, the skipping function greatly improves the perfor-
mance of the search algorithm. Briefly, in our formalization, we take an SFG
and generate a matrix in which nodes are arranged in the first column and each
row represents the branches of the node under consideration. For feedback loops
extraction, we start the process by the first node of the SFG and we go through
all possible paths which start from the node under consideration and test for
each path whether it is a loop or not. In the next iteration, we go to the next
node of the graph and repeat the same process. For forward paths extraction,
we repeat a similar process, but we only consider the paths starting from the
source node rather than exploring all the nodes.

For the sake of conciseness, we present a list of some of the main functions of
our formalization of signal-flow-graph theory with a brief description in Table 1,
while more details can be found in [2].

Finally, we utilize the definitions described in Table 1 to formalize the Mason’s
gain formula given in Eq. 5, as follows:

Definition 2 (Mason’s gain formula).
� ∀(system : sfg). Mason Gain system =

PRODUCT FORWARD DELTA (EC system) (FC system)
DETERMINANT (EC system)

1 In this paper, we use minimal HOL Light syntax in the presentation of definitions
and theorems to improve the readability.
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Table 1. Some important functions of SFG formalization

where the function Mason Gain accepts an SFG (i.e., system, which is a model
of the given system in our case) and computes the Mason’s gain as given in
Eq. 5. Note that the function PRODUCT FORWARD DELTA accepts the list of loops
(computed by EC) and forward paths (computed by FC) in the system and com-
putes

∑
k∈system

GkΔk, where Gk and Δk represent, respectively, the product of

all forward path gains and the determinant of the kth forward path considering
the elimination of all loops touching the kth forward path as described in Sect. 2.
The function DETERMINANT takes the list of loops and gives the determinant of
the system as described in Eq. (6).

In practice, the physical behavior of any power electronic system is described
by the transmittance of each path (or a single branch) involved in the signal-
flow-graph. We can consider each path as a system component which processes
the input current signal to achieve the desired functionality. Indeed, the SFG of
the given power electronic system is expressed as a function of the parameter “s”
and we need to consider this physical aspect in the formalization of the transfer
function which describe the overall behavior of the system. It is mentioned in
Sect. 2 that the Mason’s gain formula describes the total gain between the input
and the output of the system and hence it can be used to describe the transfer
function of the power electronic system provided the given signal-flow-graph can
be described as a function of a complex parameter “s”. We use the Mason’s gain
formalization and the above description to formalize the transfer function of a
given power electronic system as follows:
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Definition 3 (System Transfer Function).
� ∀ system. transfer function system = Mason Gain (λs. system s)

where the function transfer function accepts a system which has type
C → sfg and returns a complex (C) number which represents the transfer func-
tion of the power electronic system (i.e., system).

We have automatized the different steps for finding the transfer function of
any arbitrary signal-flow-graph by developing some new simplification tactics
using derived rules and tactics of HOL Light. In terms of automation, these
tactics can be divided into three varieties: the first proves the extracted list of
feedbacks, the second proves the extracted list of forward paths, and the third
proves Mason’s gain formula. In Table 2, we provide some of these tactics with
corresponding descriptions. Using these tactics we prove all transfer functions
given in [1]. The availability of these tactics provides the effective automation to
the user, so that an application to a particular system does not involve the painful
manual proofs often required with interactive theorem proving. Developing such
tactics represents a first step towards building an automated tool to carry the
verification of transfer functions of power electronic circuits on the basis of their
signal-flow-graphs representations.

Table 2. HOL automation tactics

3.1 Formalization of System Properties

In order to verify that the given model meets its specification, we need to build
the foundations based on which we can formally describe the main system prop-
erties (i.e., stability, resonance) in HOL. Physically, the stability and resonance
are concerned with the identification of all the values of s for which the system
transfer function becomes infinite and zero, respectively. In the control theory
literature, these values are called system poles and system zeros which can be
computed by the denominator and numerator of the transfer function, respec-
tively. Furthermore, all poles and zeros need to be inside the unit circle which
means that their magnitude should be less or equal to 1. We formalize the above
mentioned informal description of the system properties in HOL as follows:
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Definition 4 (System Poles).
� ∀ system. poles system = {s | denominator (system s) = 0}
� ∀ system. zeros system = {s | numerator (system s) = 0}

where the functions poles and zeros take the system as a parameter and return
the set of poles and zeros, respectively. Next, we formalize the notion of stability
and resonance as follows:

Definition 5 (System Stability and Resonance).

� ∀ system. is stable system [p0, ..., pn] ⇔
∀pi. pi ∈ (poles system) ∧ ‖ pi ‖≤ 1

� ∀ system. is resonant system [z0, ..., zn] ⇔
∀zi. zi ∈ (zeros system) ∧ ‖ zi ‖≤ 1

where the predicate is stable accepts the power electronic system signal-flow-
graph model (i.e., system) and a list of poles [p0, ..., pn] and verifies that each
element pi is indeed a pole of the system and its corresponding magnitude
(i.e., norm of a complex number, ‖ pi ‖) is smaller or equal to 1. The predi-
cate is resonant is defined in a similar way by considering the list of zeros
instead of the list of poles of the system.

Next, we verify an important theorem which describes that if the denominator
or the numerator of the transfer function is a polynomial of order n, it will always
have a finite number of poles or zeros and the cardinality of the set of poles and
zeros can only be equal or less than n.

Theorem 1 (Finiteness and Cardinality of poles and zeros).

� ∀n c system. ¬(∀ i. i ∈ {0, 1, ..., n} ⇒ c i = 0)∧
(∀ z. denominator (system z) =

∑
i∈{0,1,...,n}(λi. c i ∗ zi)) =⇒

FINITE (poles (system z)) ∧ CARD (poles (system z)) ≤ n

where n represents the order of the complex polynomial function c. The functions
FINITE and CARD, represent the finiteness and cardinality of a set, respectively.
We also prove the same theorem for the set of zeros of a system, where more
details can be found at [1].

This concludes the signal-flow-graph formalization and system properties. In
the next section, we will show how to apply our formalization in practice by
presenting the formal analysis of two important topologies of power converters
using the previously presented theorems and definitions.
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4 Application: Power Electronics Systems

Power electronics has found an important place in modern technology being a
core of power and energy control. Generally, the interaction between the utility
and the load depends on the topology of the power system. Most of electronic
supplies are switching semiconductor converters thanks to theirs efficiency. Power
electronic converters are constructed by electronic devices, driving, protection
and control circuits. In particular, DC-DC converters change the DC voltage and
current levels using the switching mode of semiconductor devices. As a rule, they
provide means for changing and stabilizing the output DC voltage. A DC-DC
converter consists of the switching circuitry and the filter section, and power
converters with feedback are known as regulators. Power electronics converters
must be suitably controlled to supply the voltages, currents, or frequency ranges
needed for the load and to guarantee the requested power quality. In the following
subsections, we present the formal analyses of two topologies of power electronic
circuits in higher-order-logic using the previous formalization.

4.1 1-Boost Cell Interleaved DC-DC Converter

Interleaved DC-DC converters are composed of N-boost cells connected in paral-
lel which operate in an interleaved fashion. The elementary cell can be a two-level
or multi-level DC-DC converter. The elementary DC-DC cells are driven with
pulse width modulation in which pulses are shifted by 2π

N radians. Some of the
advantages of interleaved parallel converters are the ripple cancellation both in
the input and output waveforms and lower value of ripple amplitude. Interleaved
DC-DC converter are widely used in various critical power conversion applica-
tions, such as voltage regulation modules [10], and automotive applications. Thus
they have been used in aircrafts, to increase flight performance (e.g., thrust and
maneuverability) and enhance onboard mission capability (e.g., sensors, weapons
and communication) [11].

In [24], the authors proposed to use SFG to model N-boost cells interleaved
DC-DC converters and they illustrate the analysis for the case of 1-boost cell,
2-boost cells and 3-boost cells interleaved parallel converters. We use our pro-
posed framework to formally analyze 1-boost cell, 2-boost cells, and 3-boost cells
interleaved parallel converters. For the sake of conciseness, we present the analy-
sis of a 1-boost cell interleaved parallel converter only and more details about
the 2-boost and 3-boost cells interleaved converters can be found in [1].

The circuit representation of 1-boost cell interleaved parallel DC-DC con-
verter system is shown in Fig. 3. The circuit parameters L1, D1, and r1 represent
the inductance of individual boost cell, the duty ratios of the 1st state, and the
inductor series resistance, respectively. The parameters R and C are the load
resistance and the circuit capacitor, respectively. The parameters Vg, Ig and
V1 are the supply voltage, the source current and the voltage across inductor,
respectively. Similarly, V0 and I0 are the output voltage and the output cur-
rent, respectively. The SFG model of 1-boost cell interleaved parallel DC-DC
converter is shown in Fig. 4.
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Fig. 3. 1-Boost Cell DC-DC Converter Fig. 4. SFG of 1-Boost Cell DC-DC
Converter

Our main interest is to evaluate the circuit behavior at the output node which
is represented by node 6©2, when the signal is applied at the input, i.e., node 1©.
We keep all above mentioned parameters in the general form which further can
be used to model different 1-boost cell DC-DC converter circuit configurations.
We formally define 1-boost cell DC-DC converter in HOL as follows:

Definition 6 (1-Boost Cell DC DC Converter Model).

� ∀ C R D1 r1 L1 s ∈ C.
DC model R C D1 r1 L1 s =

([(1, 1, 2); (2, 1
s∗L1+r1

, 3); (3, 1, 4); (3, D1, 5); (5, R
1+s∗R∗C , 6); (6,−D1, 2)], 6, 6, 1)

where DC model accepts complex-valued circuit parameters, and returns the
signal-flow-graph which has 6 nodes, where the output node is 6© and the input
node is 1© as shown in Fig. 4. Next, we verify the transfer function of the 1-boost
cell DC-DC converter circuit as follows:

Theorem 2 (Transfer Function of 1-Boost Cell DC DC Converter).

� ∀ C R D1 r1 L1 s ∈ C.
(1 + s ∗ R ∗ C = 0) ∧ (s ∗ L1 + r1 = 0) =⇒
transfer function (DC model R C D1 r1 L1 s) =

D1 ∗ R

R ∗ C ∗ L1 ∗ s2 + (R ∗ C ∗ r1 + L1) ∗ s + r1 + D21 ∗ R

The proof of this theorem is mainly based on the extraction of forward paths and
feedback loops in the circuit and then using the Mason’s gain formula. We have
2 Here the output node has an outgoing branch that does not follow the conventional

designation of output (e.g., no outgoing branches). However, the transfer function is
the same as the one obtained by adding a new output node and connecting it to the
node 6© with transmittance equal to 1. Therefore, for the sake of simplicity, we did
not add a new node that does not have physical meaning in the circuit.
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made efforts to provide the effective automation using derived rules and tactics,
so that the application to a particular system does not involve the painful manual
proofs often required with interactive (higher-order logic) theorem proving. For
example, the formal proof of Theorem2 requires only three lines of HOL light
code. A brief summary of developed tactics can be found in [2] (Appendix I).

The efficiency of any system is the useful power output divided by the total
electrical power consumed. As the power in electronic circuit is the product of
the voltage (V ) and current (I), we can define the 1-boost cell DC-DC converter
efficiency as follows:

Definition 7 (1-Boost Cell DC DC Converter Efficiency).

� ∀ R C D1 r1 L1 s ∈ C.

Efficiency (DC model R C D1 r1 L1 s) =
I0 ∗ V0
Ig ∗ Vg

=
V0
Vg

∗ Vg
Ig

∗ I0
Vg

Repeating the same process for calculating the transfer function in Theorem2
we can compute the transfer functions of Ig

Vg
and I0

Vg
by replacing the output

node 5© by 4© and 6©, respectively.
Based on the three transfer functions and the Definition 7 of the efficiency,

we can prove the expression of the efficiency of 1-boost cell converter as follows:

Theorem 3 (1-Boost Cell DC DC Converter Efficiency).

� ∀ C R D1 r1 L1 s ∈ C.
(1 + s ∗ R ∗ C = 0) ∧ (s ∗ L1 + r1 = 0) ∧
(R ∗ C ∗ L1 ∗ s2 + (R ∗ C ∗ r1 + L1) ∗ s + r1 + D21 ∗ R = 0) =⇒
Efficiency (DC model R C D1 r1 L1 s) =

D21 ∗ R

R ∗ C ∗ L1 ∗ s2 + (R ∗ C ∗ r1 + L1) ∗ s + r1 + D21 ∗ R

The denominator of the transfer function of 1-boost cell DC-DC converter can
be represented as a second order polynomial which leads to the useful information
that the 1-boost cell DC-DC circuit can only have 2 poles at maximum according
to Theorem 1. Next, we present the verification of the stability conditions of the
1-boost cell DC-DC convertor circuit as follows:

Theorem 4 (Stability Conditions for 1-Boost Cell DC DC Converter).

� ∀G1 G2 G3 k1 k2 ∈ C.

‖ −(R∗C∗r1+L1)±
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 ‖≤ 1 ∧

(R∗C∗r1−L1)±
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 = 0 ∧

(L1−R∗C∗r1)±
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 = 0 ∧

=⇒ is stable (λs. (DC model R C D1 r1 L1 s)
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[−(R∗C∗r1+L1)−
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 ;

−(R∗C∗r1+L1)+
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 ]

where ‖ . ‖ and √
. represent the complex norm and complex square root, respec-

tively. The first assumption is required to prove that both poles are inside the
unit circle, and the following two assumptions ensure that poles are not equal
to − r1

L1
, − 1

R∗C , respectively.
This concludes our HOL formal analysis of the 1-boost cell DC-DC converter

circuit. The source code of the circuit formalization and the analysis of the 2-
boost and 3-boost cells DC-DC converters circuits can be found in [1].

4.2 Pulse Width Modulation Push-Pull DC-DC Converter

Pulse width modulated (PWM) push-pull DC-DC converters are very popular in
modern power electronic supplies. They have many applications in some sensitive
and critical areas such as aerospace, transportation, and renewable energy [4].
Hence, a robust and secure stability analysis of this type of converter is extremely
important. A PWM constant-frequency control technique is considered as one
of the most widely used component in switched-mode DC-DC power supplies.
Voltage-mode and current-mode controllers allow for achieving a satisfactory
dynamic performance of DC-DC converters is considered as a DC-DC converter
operating under switched-load conditions.

The circuit of linearized model of the power stage with a variable load current
of PWM push-pull converter is shown in Fig. 5. In the circuit, vc is the voltage
across the capacitor C, vT is the averaged control voltage (input voltage), io
is the converter output current, vo is the converter output voltage, L is the
indicator, r is the equivalent averaged resistance in series with the inductor, and
rc is the equivalent series resistance of the capacitor.

Fig. 5. Linearized model of PWM
Push Pull DC-DC Converter

Fig. 6. SFG of PWM Push Pull DC-
DC Converter
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In [9], the authors proposed a block diagram of closed-loop of the circuit
(circuit with the gains of compensation and feedback loop from the output to
the input). The block diagram equivalent signal-flow-graph of PWM push-pull
converter without the control part is shown in Fig. 6. The SFG is composed of
7 nodes the input node is 1 (VT in [9]) and the output node is 4 (Vo in [9]).

Definition 8 (PWM Push Pull DC-DC Converter Model).
� ∀ C L r ky rc ki kv s ∈ C.

PWM model C L r ky rc ki kv s =
([(1, 1

L
, 2); (2, 1

s
, 3); (3, −(r+rc)

L
, 2); (3,−rc, 4); (3, 1

C
, 6); (5, rc, 4);

(5,− 1
C
, 6); (5, rc

L
, 2); (6, 1

s
, 7); (7,− 1

L
, 2); (7, 1, 4)], 7, 4, 1)

where PWM model accepts complex-valued circuit parameters, and returns the
signal-flow-graph which has a total number of 7 nodes where the output node is
4© and the input node is 1© as shown in Fig. 6.

Next, we verify the transfer function of the PWM push-pull DC-DC converter
circuit as follows:

Theorem 5 (Transfer Function of PWM).
� ∀ C L r rc s ∈ C.

(L ∗ C = 0) =⇒
transfer function PWM model C L r rc s =

1 − s ∗ C ∗ rc
C ∗ L ∗ s2 + (rc + r) ∗ C ∗ +1

Next, we present the verification of the stability conditions of the PWM push-
pull DC-DC converter circuit under the circuit global parameters as follows:

Theorem 6 (Stability Conditions for PWM).
� ∀ C L r rc ∈ C.

‖ −(r+rc)∗C∓
√

((r+rc)∗C)2−4∗C∗L
2∗C∗L ‖≤ 1 ∧

−(r+rc)∗C±
√

((r+rc)∗C)2−4∗C∗L
2∗C∗L = 0 ∧ L ∗ C = 0 =⇒

is stable (λs. PWM model C L r rc s ) s

[−(r+rc)∗C+
√

((r+rc)∗C)2−4∗C∗L
2∗C∗L ; −(r+rc)∗C−

√
((r+rc)∗C)2−4∗C∗L
2∗C∗L ]

The first assumption ensures that both poles are inside the unit circle, whereas
the second assumption is required to prove that the poles are not equal to zero.
Similarly, we verify the resonance condition for the PWM push-pull DC-DC
converter circuit as follows:

Theorem 7 (Resonant Conditions for PWM).
� ∀ C L r rc ∈ C.
‖ 1

C∗rc ‖≤ 1 ∧ rc = 0 ∧ L ∗ C = 0 =⇒
is resonant (λs. PWM model C L r rc s ) s [

1

C ∗ rc
]
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The assumptions in theorem ensure that the systems zero is inside the unit circle
and it is not equal to zero.

Note that the stability and resonance conditions are verified under the gen-
eral parameters of the PWM circuit (e.g., r, rc, L,...) and 1-boost cell circuit
(e.g., L1, D1, r1,...) which is not possible in the case of simulation. One of
the main strengths of the theorem proving based approach is to unveil all the
assumptions under which a theorem can be verified. For example, most of the
assumptions in Theorems 4, 6, and 7 are not mentioned in the paper-and-pencil
analyses reported in [9,24]. However, without these assumptions these theorems
cannot be verified. Moreover, our results are verified under universal quanti-
fiers and the problem of finding the stability and resonance conditions reduces
to just ensuring that the values of the system parameters satisfy the assump-
tions. Remark that the signal-flow-graph models of the two applications involve,
respectively, 6 and 8 nodes SFGs, however, our formalization is general and can
be applied for an arbitrary number of nodes. For example, in [5] we have formally
verified the transfer function of an application which consists of 20 nodes and
14 complex-valued parameters.

We believe that the formal analysis of above mentioned two real-world power
electronic systems provides two main indications: theorem proving systems have
reached to the maturity, where complex physical models can be expressed with
less efforts than ever before; and formal methods can assist in the verification
of power electronic systems which are rapidly reaching a point where it will
be impossible to verify correctness of the design and its robustness. In reality,
verification tools must be largely automatic to be effectively adopted which limits
the usage of interactive theorem prover in industry. On the other hand, computer
algebra systems (CASs), e.g., Mathematica, are more popular than theorem
provers. The most important reason is that CAS tools are easier to use, and
are also increasingly applied in education, which is not the case for theorem
provers. Another important factor is the rapidity of CAS tools compared to
theorem provers. However, higher-order-logic theorem proving systems are more
precise and reliable. Our reported work can be considered as a one step towards
an ultimate goal of building automatic tools which make use of HOL theorem
provers as a certification tool in the design and analysis cycles of safety-critical
real-world systems from different engineering and physical science disciplines
(e.g., signal processing, control systems, power electronics, biology, optical and
mechanical engineering).

5 Conclusion

In this paper, we reported a new application of formal methods in the domain of
power electronics. We presented a formal analysis framework based on higher-
order logic which provides the required expressiveness and soundness to formally
model and verify physical aspects of power electronic systems. In particular, we
presented an overview of our formalization of the signal-flow-graph theory along
with the Mason’s gain formula and transfer functions. Similarly, we presented the
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formalization of the properties of the power electronic systems. Consequently,
we derive the transfer function of two real-world power electronic applications
which are 1-boost cell DC-DC converter and PWM push pull DC-DC converter.
Finally, we described the formal analysis of the stability and resonance conditions
of these two applications.

Our immediate future work is to formally verify a couple of key properties
about the forward and feedback paths extraction: (1) each path is extracted
only once; (2) the transfer function of transposed SFG [16] is the same as the
original one. This requires the formalization of undirected signal-flow-graph [22].
We also plan to verify more complex power electronic engineering systems along
with the formal relation among the signal-flow-graph representation and the
Z-transform [20] and the Laplace Transform [21]. A potential utilization of our
formalization and developed automation tactics is to build a framework to certify
the results produced by informal tools such as MATLAB based SFG analysis
program (available at [7]).
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