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Abstract. Dynamic reliability block diagrams (DRBDs) are introduced
to overcome the modeling limitations of traditional reliability block dia-
grams, such as the inability to capture redundant components. However,
so far there is no algebraic framework that allows conducting the anal-
ysis of a given DRBD based on its structure function. In this paper, we
propose a new algebra to formally express the structure function and the
reliability of a DRBD with spare constructs based on basic system blocks
and newly introduced DRBD operators. We present several simplification
properties that allow reducing the structure of a given DRBD. We for-
malize the proposed algebra in higher-order logic to ensure its soundness,
and formally verify its corresponding properties using the HOL4 theorem
prover. This includes formally verifying generic reliability expressions of
the spare costruct, series, parallel and deeper structures in an extensible
manner that allows verifying the reliability of complex systems. Finally,
we demonstrate the applicability of this algebra by formally analyzing
the reliability of two real-world systems in HOL4.

Keywords: Dynamic reliability block diagrams · Algebra · Theorem
proving · HOL4

1 Introduction

Reliability of a system is the probability that it will continue to provide its
desirable service in a given period of time. Fault trees (FTs) [14] and reliabil-
ity block diagrams (RBDs) [8] are the most commonly used reliability modeling
techniques. FTs graphically model the sources of failure of a system using FT
gates. An RBD, on the other hand, is a graphical representation of the reliability
of a system. The components of a system are modeled as blocks and are con-
nected using connectors (lines) to create a path or multiple paths from the RBD
input to its output. These paths represent the required working blocks (system
components) for the system to have a successful operation. The modeled system
fails when components fail in such a manner that leads to the disconnection of
all the paths between the input and the output. RBDs can be connected in a
series, parallel, series-parallel or parallel-series fashion to create the appropriate
modeling structure depending on the behavior and the components redundancy
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of the modeled system, which provides flexible and extensible modeling configu-
rations to represent complex systems. However, both the traditional RBDs and
FTs are unable to model the dynamic behavior of system components, where
the change of state of one component can affect the state of other components.

Dynamic fault trees (DFTs) [14] are proposed as an extension to traditional
FTs by introducing DFT gates, such as spare gates, to overcome the above-
mentioned limitation. However, the only behavior that is captured by DFTs is
the dynamic failure effect of one system component in the failure or activation
of other components. To overcome the modeling limitations of DFTs, RBDs are
extended to dynamic reliability block diagrams (DRBDs) to model the dynamic
dependency among system components by introducing new DRBD blocks [4],
which enable capturing the effect of sharing a load and spare constructs that
model the reliability of spare parts in a DRBD.

Formal methods have been used in the analysis of RBDs and DRBDs. In [16],
the formal semantics of DRBD constructs in Object-Z formalism [15] have been
proposed. However, analyzing and verifying the behavior of DRBDs based on this
formalism are not feasible due to the non-availability of tool support. Thus, the
DRBDs have been proposed to be converted into a Colored Petri Net (CPN) to
be analyzed using Petri nets tools [15]. An algorithm to automatically convert
a DRBD into a CPN has been also proposed in [13]. However, due to the usage
of CPNs, only a few state-based properties of the modeled system can be ana-
lyzed. In [1], Ahmed et al. used the HOL4 theorem prover [9] to formalize several
configurations of static RBDs. However, this formalization can only analyze the
combinatorial behavior of systems and cannot be extended to formalize and rea-
son about the dynamic aspects, and hence DRBDs. One of the main reasons for
this deficiency is the lists based formalization of independence between multiple
failure events. In this paper, we propose a completely new and different formaliza-
tion from [1] that supersedes these deficiencies. In particular, we propose a more
generic formalization of dynamic failure dependencies [7], based on a set-theoretic
definition of independence [12] and Lebesgue integral. Thus, our proposed formal-
ization can model and analyze both dynamic and static RBDs.

In system engineering, it is important to be able to analyze DRBDs qual-
itatively to identify the sources of system vulnerability, and quantitatively to
evaluate the system reliability. However, to the best of our knowledge, there is
no algebraic approach that mathematically models a given DRBD and enables
expressing its function based on basic components just like the DFT algebra
[10]. Using such algebra in the reliability analysis will result in simpler and
fewer proof steps than the DFT-based algebraic analysis [10], since the proba-
bilistic principle of inclusion and exclusion will not be invoked. In this paper,
we propose, for the first time, a new algebraic approach for DRBD analysis that
allows having a DRBD expression to be used for both qualitative and quantita-
tive analyses. We introduce new operators to mathematically model the dynamic
behavior in DRBD structures and constructs. In particular, we use these opera-
tors to model a DRBD spare construct besides traditional series, parallel, series-
parallel and parallel-series structures. Moreover, we provide simplification theo-
rems that allow reducing the structure of a given DRBD. This DRBD structure
can be then analyzed to obtain a generic expression of the system reliability.
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The reliability expressions obtained using this approach are generic and inde-
pendent of the distribution and density functions that represent the system com-
ponents. Although basic operators, such as OR and AND, were introduced in [4],
they are only useful to model parallel and series constructs of dependent compo-
nents. In addition, these constructs [4] are quite complex, which makes the mod-
eling of large systems quite difficult. Therefore, we use the constructs proposed in
[16] as they are much simpler. Leveraging upon the expressive nature of HOL, we
formally verify the soundness of the proposed DRBD algebra using HOL theorem
proving. We choose the HOL4 theorem prover for our work to benefit from our
existing formalization of DFT algebra. Our ultimate goal is to develop a formally
verified algebra that follows the traditional reliability expressions of the series
and parallel structures in an easily extensible manner and at the same time can
capture the dynamic behavior of real-world systems. Our formalization totally
differs from and overcomes the formalization of static RBDs presented in [1] in
the sense that it can formally express the structure function of a DRBD using
the introduced DRBD operators. In addition, it can formally model and analyze
DRBD spare constructs. Furthermore, we model the static RBD structures, i.e.,
series, parallel and deeper structures in a way similar to the mathematical mod-
els available in the literature, which makes it easily understood and followed by
reliability engineers that are not familiar with HOL theorem proving. Finally, we
illustrate the usefulness of the proposed developments in conducting the formal
analysis of two real-world systems: the terminal reliability of a shuffle-exchange
network and the reliability of a drive-by-wire system.

2 DRBD Algebra

In this section, we present, for the first time, an algebra for DRBD analysis
that allows modeling the structure function of DRBDs with spare constructs.
Moreover, we present some simplification properties that enable reducing the
structure function when possible. Throughout this work, we assume that system
components or blocks are represented by random variables that in turn repre-
sent their time-to-failures. In addition, we assume that system components are
non-repairable, i.e., we are interested in expressing the reliability of the system
considering that the failed components will not be repaired. It is worth mention-
ing that our proposed algebra follows the general lines for the DFT algebra [10].

The reliability of a single component, which time-to-failure function is rep-
resented by random variable X, is mathematically defined as [8]:

RX(t) = Pr{s | X(s) > t} = 1 − Pr{s | X(s) ≤ t} = 1 − FX(t) (1)

where FX(t) is the cumulative distribution function (CDF) of X. We call
{s | X(s) > t} as a DRBD event as it represents the set that we are interested
in finding the probability of until time t:

event (X, t) = {s | X(s) > t} (2)
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2.1 Identity Elements, Operators and Simplification Properties

Similar to the identity elements of ordinary Boolean algebra and DFT algebra
[10], we introduce two identity elements, i.e., ALWAYS and NEVER, that repre-
sent two states of any system block. The ALWAYS element represents a system
component that stops working from time 0 (ALWAY S = 0). While the NEVER
element represents a component that continues to work until +∞, i.e., its fail-
ure time is +∞ (NEV ER = +∞). These identity elements play an important
role in the reduction process of the structure functions of DRBDs. We introduce
operators to model the relationship between the various blocks in a DRBD.
These operators can be divided into two categories: (1) The AND and OR oper-
ators that are not concerned with the dependencies among system components.
(2) Temporal operators, i.e., After, Simultaneous and Inclusive After, that can
capture the dependencies between system components. DRBDs are concerned
with modeling the several paths of success of a given system. Thus, if we are
concerned in the success behavior of a DRBD until time t, it means that we are
interested in how the system would not fail until time t. As a result, we can use
the time-to-failure random variables in modeling the time-to-failure of a given
DRBD, i.e., its structure function. It is assumed that for any two system compo-
nents that possess continuous failure distribution functions, the possibility that
these components fail at the same time can be neglected.

In [4], AND and OR operators were introduced to model the parallel and
series constructs between dependent components only without providing any
mathematical model to these operators. We propose to use the AND (·) and OR
(+) operators to model series and parallel blocks in a DRBD, respectively, with-
out any restriction. We provide a mathematical model for each operator based
on the time of failure of its inputs, as listed in Table 1, to be used in the proposed
algebra. The AND operator models the series connection between two or more
system blocks. For example, the 2-block series DRBD in Table 1 continues to
work only if components X and Y are working. We model the AND operator
as the minimum time of its input arguments. Similarly, the OR operator models
the connection between parallel components in a DRBD, i.e., all the components
in a parallel structure should fail for this DRBD to fail. We model the OR oper-
ator as the maximum time of failure of its input arguments that represent basic
system blocks or sub-DRBDs. This approach facilitates using these operators
to model even the complex structures. If X and Y are independent, then the
reliability of the 2-block systems can be expressed as given in Table 1. To reach
these expressions, we need to express the DRBD events as the intersection and
union for the AND and OR operators, respectively.

Table 1. Mathematical and reliability expressions of AND and OR operators

Operator Math. Model Reliability 2-block Structure

AND X·Y =min (X,Y ) R(X·Y )(t) =RX (t) × RY (t) Series

OR X+Y =max (X,Y ) R(X+Y )(t) =1−((1−RX (t))×(1−RY (t)))
Parallel
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Table 2. Mathematical expressions of temporal operators

After (�) Simultaneous (Δ) Inclusive after (�)

X�Y =

⎧
⎨

⎩

X, X>Y

+∞, X≤Y
XΔY =

⎧
⎨

⎩

X, X=Y

+∞, X �=Y
X�Y =

⎧
⎨

⎩

X, X≥Y

+∞, X<Y

event ((X · Y ), t) = event (X, t) ∩ event (Y, t) (3)

event ((X + Y ), t) = event (X, t) ∪ event (Y, t) (4)

In order to model the dynamic behavior of systems in DRBDs, we introduce
new temporal operators: after (�), simultaneous (Δ), and inclusive after (�), as
listed in Table 2. The after operator represents a situation where it is required to
model a component that continues to work after the failure of another. The time
of failure of the after operator equals the time of failure of the last component,
which is required to fail. However, if the required sequence does not occur, then
the output can never fail, i.e., the time of failure equals +∞. The behavior of the
simultaneous operator is similar to the one introduced in the DFT algebra [10].
The output of this operator fails if both its inputs fail at the same time, otherwise
it can never fail. Finally, the inclusive after operator encompasses the behavior
of both the after and simultaneous operators, i.e, it models a situation where it
is required that one component continues to work after another one or fail at
the same time, otherwise it can never fail. When dealing with basic components,
the inclusive after will behave in a similar way as the after operator. Therefore,
their probabilities can be expressed for independent random variables as:

R(X�Y )(t) = 1 −
∫ t

0

fX(x) × FY (x) dx (5)

where fX is the probability density function (PDF) of X and FY is the CDF of Y .
We introduce several simplification properties to reduce the structure function
of a DRBD. These simplification properties range from simple ones, such as the
associativity and idempotence of the operators, to more complex theorems. The
idea of these properties is to reduce the algebraic expressions based on the time
of failure. For example, X · ALWAY S = ALWAY S means that if a component
in a series structure is not working, i.e., always fails, then the series structure is
not working. The full list of simplification theorems is available at [6].

2.2 DRBD Constructs and Structures

The spare construct, shown in Table 3 [16], is introduced in DRBDs to model
situations where a spare part is activated and replaces the main part, after its
failure, by introducing a spare controller to activate the spare [16]. Depend-
ing on the failure behavior of the spare part, we can have three variants, i.e.,
hot, warm and cold (H|W |C) spares. For the hot spare (HSP) construct, the
spare possesses the same failure behavior in both its active and dormant states.
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Table 3. Mathematical and reliability expressions of spare constructs

Math. Model Reliability
QWSP =(Xa�Y )·(Y �Xd) RWSP (t)=1−∫ t

0
∫ t
y f(Xa|Y =y)(x) fY (y)dxdy

− ∫ t
0 fY (y)FXd

(y)dy

QCSP =Xa�Y Rcold spare(t)=1−∫ t
0

∫ t
y f(Xa|Y =y)(x) fY (y) dx dy

QHSP =X+Y RHSP (t) =1−((1−RX (t))×(1−RY (t)))

Fig. 1. DRBD Structures: (a) Series, (b) Parallel, (c) Series-Parallel (d) Parallel-Series

The cold spare (CSP) cannot fail in its dormant state and is only activated after
the failure of the main part. The failure behavior of the warm spare (WSP) in
the dormant state is attenuated by a dormancy factor from the active state. In
order to distinguish between the dormant and active states of the spare, just
like the DFT algebra [10], we use two different symbols to model the spare part
of the DRBD spare construct, one for the dormant state and the other for the
active one. For the WSP construct, in Table 3, the spare X is represented by Xa

and Xd for the active and dormant states, respectively. After the failure (F ) of
the main part Y , X will be activated (A) by the spare controller. We model the
structure function of the WSP construct (QWSP ) using the DRBD operators
based on the description of its behavior as given in Table 3. Thus, we need two
conditions to be satisfied in order for the spare to work. Firstly, the active state
of the spare will continue to work after the failure of the main part (Xa � Y ).
Secondly, the main part will continue to work after the failure of the spare in its
dormant state (Y � Xd). However, since the spare part can only fail in one of
its states (Xa,Xd) but not both as it is non-repairable, only one of the terms of
the QWSP affects the behavior and the other can never fail, i.e., it fails at +∞.

Since the DRBD spare construct and the DFT spare gate exhibit complemen-
tary behavior, i.e., the DRBDs consider the success and the DFTs consider the
failure, we can use the probability of failure of the warm spare DFT gate [10] to
find the reliability of the WSP DRBD construct. It is assumed that the dormant
spare and the main part are independent since the failure of one does not affect
the failure of the other. However, the failure of the active spare is affected by the
time of failure of the main part, since it will be activated after the failure of the
main part. Thus, we express the reliability of the WSP as given in Table 3, where
f(Xa|Y =y) is the conditional density function of Xa given that Y failed at time
y. QWSP and RWSP represent the general behavior of the spare, i.e., the warm
spare. The hot and cold spares represent its special cases and can be expressed
as given in Table 3. For QHSP , the spare part X has the same behavior in both
states and thus there is no need to distinguish both states. The reliability of
CSP and HSP (using the OR operator) can be expressed as given in Table 3.
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Table 4. Mathematical and reliability expressions of DRBD structures

Structure Math. Model Reliability expression

Series ⋂n
i=1(event (Xi, t))

∏n
i=1 RXi

(t)

Parallel ⋃n
i=1(event (Xi, t)) 1−∏n

1=1(1−RXi
(t))

Series-Parallel ⋂m
i=1

⋃n
j=1(event (X(i,j), t))

∏m
i=1(1−∏n

j=1(1−RX(i,j) (t)))

Parallel-Series ⋃n
i=1

⋂m
j=1(event (X(i,j), t)) 1−(

∏n
i=1(1−∏m

j=1(RX(i,j) (t))))

The series structure (Fig. 1(a)) represents a collection of blocks that are con-
nected in series. The system continues to work until the failure of one of these
blocks. We define a series structure that represents the intersection of all events
of the blocks in this structure as in Table 4, where Xi represents the ith block in
the series structure and n is the number of blocks. Interestingly, any block in our
proposed algebra can represent a basic system component or a complex struc-
ture, such as a spare construct. Moreover, since we are dealing with the events,
we can use the ordinary reliability expressions for the series structure assum-
ing the independence of the individual blocks. The parallel structure (Fig. 1(b))
represents a system that continues to work until the failure of the last block in
the structure. The behavior of the parallel structure can be expressed using the
OR operator. We represent the parallel structure as the union of the individual
events of the blocks. The series-parallel structure (Fig. 1(c)) represents a series
structure, where the blocks of the series structure are parallel structures. The
structure function of this structure can be expressed using AND of ORs oper-
ators. Table 4 lists the model for this structure with its reliability expression,
where n is the number of blocks in the parallel structure and m is the number
of parallel structures that are connected in series. The parallel-series structure
(Fig. 1(d)) represents a group of series structures that are connected in parallel.
Its structure function can be expressed using OR of ANDs operators.

3 Formalization of DRBDs in HOL

In this section, we present our formalization for the newly proposed DRBD alge-
bra including DRBD events, operators, constructs, simplification theorems and
reliability expressions. First, we review some HOL probability theory prelimi-
naries required for understanding the rest of the paper.

3.1 HOL Probability Theory

The probability space is defined in HOL as a measure space, where the measure
(probability) of the entire space is 1. It is defined as a triplet (Ω,A,Pr), where
Ω is the space, A are the probability events and Pr is the probability [11]. Two
functions are defined in HOL; p space p and events p, that return the space
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(Ω) of the above triplet and the events (A), respectively. A random variable is
a measurable function that maps the probability space p to another space [11].

The cumulative distribution function (CDF) is defined as [7]:

Definition 1. � ∀p X t. CDF p X t = distribution p X {y | y ≤ (t:real)}

where p is a probability space, X is a real-valued random variable, t is a variable
of type real that represents time and distribution is defined as the probability
that a random variable belongs to a certain set; {y|y≤(t:real)} in this case.

Independence of random variables is an important property that ensures that
the probability of the intersection of the events of these random variables equals
the product of the probability of the individual events. We use indep vars p
M X ii [12] to ensure that a group X is composed of random variables indexed
by the elements in set ii and that the events represented by the preimage of
these random variables are independent using indep sets. indep var is defined,
based on indep vars, to capture the behavior of independence for two random
variables [12]. More details about these definitions can be found in [6].

Finally, the Lebesgue integral is defined in HOL4 based on positive simple
functions and then extended for positive functions and functions with positive
and negative values [11]. Throughout this work, we use the Lebesgue integral for
positive functions, i.e., pos fn integral, since we are integrating distribution
and density functions, which are always positive. The integration is over the real
line and thus we use the Lebesgue-Borel measure (lborel) [12] for this purpose.
For the ease of understanding, we use the regular mathematical expressions.

3.2 DRBD Event

In our formalization, we define the inputs, or the random variables representing
the time-to-failure of system components, as lambda abstracted functions with a
return datatype of extended-real (extreal), which represents real numbers and
±∞. We define the DRBD event of Eq. (2) as:

Definition 2. � ∀p X t. DRBD event p X t = { s | Normal t < X s} ∩ p space p

where Normal typecasts the real value of t from real to extreal. This type
conversion is required since we need real-valued random variables. However, we
need to deal with extreal datatype to model the NEVER element. Thus, we
define the time-to-failure functions to return extreal and typecast the values
from extreal to real using the function real and vice versa using Normal.

We define the reliability as the probability of the DRBD event (Eq. (1)):

Definition 3. � ∀p X t. Rel p X t = prob p (DRBD event p X t)

We verify the reliability-CDF relationship (Eq. (1)) as:

Theorem 1. � ∀p X t. rv gt0 ninfinity [X] ∧
random variable (real o X) p borel ⇒ (Rel p X t = 1- CDF p (real o X) t)
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where real typecasts the values of the random variable from extreal to real as
the CDF is defined for real-valued random variables, random variable (real
o X) p borel ensures that (real o X) is a random variable over the real line
represented by the borel space [12], and rv gt0 ninfinity ensures that the
random variable is greater than or equal to 0 and not equal to +∞, which means
that the time of failure of any component cannot be negative or +∞. Theorem 1
is verified based on the fact that the DRBD event and the set of the CDF are the
complement of each other. Therefore, the probability of one of them equals one
minus the other. For the rest of the paper, we will denote CDF p (real o X) t
by FX(t) to facilitate the understanding of the theorems.

3.3 Identity Elements, Operators and Simplification Theorems

Our formalization of the identity elements and DRBD operators is listed in
Table 5, where extreal is the extended-real datatype in HOL4, PosInf repre-
sents +∞, and min and max return the minimum and maximum values of their
arguments, respectively. This formalization follows the proposed definitions in
Tables 1 and 2. However, we define the operators as lambda abstracted func-
tions to be able to conduct the probabilistic analysis later. We verify several
simplification theorems based on the properties of extreal numbers in HOL.
The full list of these theorems and the proof script are available at [6] and [5],
respectively.

In order to verify the reliability of the DRBD constructs, such as the spare, we
need first to verify the reliability of the DRBD operators that are used to express
the structure function of these constructs. For the AND and OR operators, we
verify their reliability expressions as in Theorems 2 and 3, respectively.

Theorem 2. � ∀p X t. rv gt0 ninfinity [X;Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(Rel p (X·Y) t = Rel p X t * Rel p Y t)

Theorem 3. � ∀p X t. rv gt0 ninfinity [X;Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(Rel p (X + Y) t = 1 - (1 - Rel p X t) * (1 - Rel p Y t))

We verify Theorem 2 by first rewriting using Definition 3. Then, we prove that
DRBD event of the AND operator equals the intersection of the individual events,
as in Eq. (3). Utilizing the independence of the real-valued random variables
(real o X) and (real o Y), the probability of intersection of their events equals
the product of the probability of the individual events. Since X and Y are greater
than 0 and are not equal to +∞, based on the function rv gt0 ninfinity, the
events in the probability space that correspond to X and Y are equal to the
ones that correspond to real o X and real o Y. As a result, the DRBD events
of X and Y are independent. Hence, the probability of their intersection equals
the product of the probability of the individual events, i.e., their reliability.
Theorem 3 is verified in a similar way. However, we prove that the DRBD event
of the OR operator equals the union of the individual events, as in Eq. (4).
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Table 5. Definitions of identity elements and DRBD operators

Element/Operator Mathematical expression Formalization

Always element ALWAY S = 0 � R ALWAYS = (λs. (0:extreal))

Never element NEV ER = +∞ � R NEVER = (λs. PosInf)

AND X·Y =min(X,Y ) � ∀X Y. R AND X Y =(λs. min (X s) (Y s))

OR X+Y =max(X,Y ) � ∀X Y. R OR X Y = (λs. max (X s) (Y s))

After X�Y =

{
X, X > Y

+∞, X ≤ Y

� ∀X Y. R AFTER X Y =

(λs. if Y s < X s then X s else PosInf)

Simultaneous XΔY =

{
X, X = Y

+∞, X �= Y

� ∀X Y. R SIMULT X Y =

(λs. if X s = Y s then X s else PosInf)

Inclusive After X�Y =

{
X, X ≥ Y

+∞, X < Y

� ∀ X Y. R INCLUSIVE AFTER X Y =

(λs. if Y s ≤ X s then X s else PosInf)

We verify that this union of events equals to the complement of the intersection
of the complements of the individual events. Then, Theorem 3 can be proven
using the independence of random variables.

We extend the definition of the AND and OR operators to n-ary operators,
nR AND and nR OR, that can be used to represent the relationship between an
arbitrary number of elements. We formally define nR AND and nR OR as:

Definition 4.
� ∀X s. nR AND X s = ITSET (λe acc. R AND (X e) acc) s R NEVER

Definition 5.
� ∀X s. nR OR X s = ITSET (λe acc. R OR (X e) acc) s R ALWAYS

where ITSET is the HOL function to iterate over sets. These definitions apply the
R AND and R OR over the elements of X indexed by the numbers in s. R NEVER and
R ALWAYS are the identity elements of the R AND and R OR operators, respectively.
The reliability of these operators is similar to the reliability of the series and
parallel structures, respectively, as will be described in the following section.

Finally, we verify the reliability expression of the after operator as:

Theorem 4. � ∀X Y p fx t. rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ∧
indep var p lborel (real o X) lborel (real o Y) ∧
distributed p lborel (real o X) fx ∧ (∀x. 0 ≤ fx x) ∧
cont CDF p (real o Y) ∧ measurable CDF p (real o Y) ⇒
(Rel p (X � Y) t = 1-

∫ t

0
fX(x) × FY (x) dx)

where distributed p lborel (real o X) fx ensures that random variable
real o X has a PDF fx, cont CDF and measurable CDF ensure that Fy is con-
tinuous and measurable [7]. The proof of this theorem is based on Pr(Y < X <

t) =
∫ t

0
fX(x) × FY (x) dx, which is verified in [7] using the properties of the

Lebesgue integral and independence of random variables. As the DRBD and
DFT events complement one another, the above expression allows us to verify
the reliability expression of the after operator, since it represents a situation
where the system continues to work until two components fail in sequence.
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3.4 DRBD Constructs and Their Reliability Expressions

We present the formalization of the warm spare (WSP) construct. The expres-
sions of the rest of the spares; hot and cold, can be found in [6].

Definition 6. � ∀Y Xa Xd. R WSP Y Xa Xd = (Xa � Y ) · (Y � Xd)

Since the DRBD and DFT events complement one another, we use our for-
malization of the probability of failure of the warm spare gate [7] to verify the
reliability of the WSP construct:

Theorem 5. � ∀p Y Xa Xd t fY fXaY fXa|Y. 0 ≤ t ∧
(∀s. ALL DISTINCT [Xa s; Xd s; Y s]) ∧ DISJOINT WSP Y Xa Xd t ∧
rv gt0 ninfinity [Xa; Xd; Y] ∧ den gt0 ninfinityfXaY fY fXa|Y ∧
∀y. cond density lborel lborel p (real o Xa)(real o Y) y fXaY fY fXa|Y) ∧
indep var p lborel (real o Xd) lborel (real o Y) ∧
cont CDF p (real o Xd) ∧ measurable CDF p (real o Xd) ⇒(
Rel p (R WSP Y Xa Xd) t)=1-(

∫ t

0
fY(y) ∗ (

∫ t

y
f(Xa|Y=y)(x) dx)dy+

∫ t

0
fY(y)FXd(y)dy)

)

where ALL DISTINCT ensures that the main and spare parts cannot fail at the
same time, DISJOINT WSP Y Xa Xd t ensures that until time t, the spare can only
fail in one of its states and den gt0 ninfinity ascertains the proper values of
the density functions; joint (0 ≤ fXY ), marginal (0 < fY ) and conditional (0 ≤
fXa|Y ) [7]. Theorem 5 is verified by first defining a conditional density function
fXa|Y for random variables (real o Xa) and (real o Y) using cond density.
This is required as the failure of the spare part is affected by the time of failure of
the main part. Therefore, it is required to define this conditional density function
then prove the expression based on the probability of failure of the DFT spare
gate, which is verified based on the properties of the Lebesgue integral.

The formal definitions of the series and parallel structures are listed in
Table 6. We define the series structure as a function that accepts a group of
sets, Y, that are indexed by the numbers in set s and returns the intersection of
these sets. The parallel structure is defined in a similar way but it returns the
union of the sets rather than the intersection. The group of sets, Y, in both struc-
tures represents a family of events, i.e, Y will be instantiated later with DRBD
events. We verify the reliability expressions of the series and parallel structures,
given in Table 4, as shown in Table 6, where s�={} ∧ FINITE s ensures that the
set of indices, s, is nonempty and finite. The reliability of the series structure
is verified based on the independence of the input events using indep sets,
which ensures that for the probability space p, the given group of sets ((λi.
{rv ti event p X t i}) indexed by the numbers in set s are independent. The
family of sets ((λi. {rv to event p X t i}) represents the DRBD events of
the group of time-to-failure functions, X, where rv to event is defined as:

Definition 7. � ∀p X t. rv to event p X t = (λi. DRBD event p (X i) t)

This function enables us to create the group of DRBD event of time-to-failure
functions of system blocks (X). Based on the independence of these sets and
the definition of the series structure (intersection of sets), we verify that the
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probability of the series structure equals to the product of the reliability of the
individual blocks (Rel p (X i) t), where i∈s. The product function (∏) in
HOL4 returns a real value and the probability returns extreal, therefore, it
is required to typecast the product function to extreal using Normal. Simi-
larly, the product function finds the product of real-valued functions, thus, it is
required to typecast the reliability function (Rel) to real using the real func-
tion. Similarly, we replace the parallel structure (the union of events) with the
complement of the intersection of the complements of the events. Then, we ver-
ify that the probability of this complement equals one minus the probability of
the intersection of the complements. This requires the condition that all DRBD
events created using rv to event belong to the events of the probability space p.

We verify that the series and parallel structures are equal to the DRBD
events of the nR AND and nR OR, respectively.

Table 6. Formal definitions and reliability of the series and parallel structures

Series Structure Parallel Structure

Definition � ∀Y s. DRBD series Y s =
⋂
i∈s (Y i) � ∀Y s. DRBD parallel Y s =

⋃
i∈s (Y i)

Reliability

� ∀p X t s. s �= {} ∧ FINITE s ∧
indep sets p
(λi. {rv to event p X t i}) s ⇒

(prob p
(DRBD series (rv to event p X t) s) =
Normal (

∏
i∈s (real (Rel p (X i) t))))

� ∀p X t s. s �= {} ∧ FINITE s ∧
indep sets p
(λi. {rv to event p X t i}) s ∧

(∀i. i ∈ s ⇒
rv to event p X t i ∈ events p) ⇒

(prob p
(DRBD parallel (rv to event p X t) s) =
1 -
Normal
(

∏
i∈s (real (1 - Rel p (X i) t))))

Theorem 6. � ∀p X t s. FINITE s ∧ s 	= {} ⇒
(DRBD event p (nR AND X s) t = DRBD series (rv to event p X t) s)

Theorem 7. � ∀p X t s. FINITE s ∧ 0 ≤ t ⇒
(DRBD event p (nR OR X s) t = DRBD parallel (rv to event p X t) s)

We verify Theorems 6 and 7 by inducting on set s using SET INDUCT TAC that
creates two subgoals to be solved; one for the empty set and another one for
inserting an element to a finite set. Then, we use the fact that the DRBD events of
the AND and OR operators equal the intersection and the union of the individual
events, respectively. For Theorem 7, an additional condition is required, 0≤ t,
to be able to manipulate the sets and reach the final form of the theorem.

These structures can be easily extended to model and verify more complex
structures, such as two-level structures, i.e., series-parallel and parallel-series
structures, as shown in Table 7. The main idea in building these two-level struc-
tures is to partition the family of blocks into distinct groups, where we use a
set, J, to index these partitions, i.e., it has the number of groups in the first top
level. For each group in this top level, we have another set, {s j| j ∈ J}, that
has the indices of the blocks in the second level, i.e. the subgroups. For example,
for the parallel-series structure of Fig. 1(d), if n = m = 1, then the outer parallel
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structure has two series structures, where each series structure has two blocks.
Thus, J = {0;1}. For each j∈ J, we have a certain set s j that has the indices of
the blocks in the inner series structure. Thus, s = (λj. if j = 0 then {0;1}
else {2;3}). This also applies to the series-parallel structure. Therefore, the
structure of the DRBD can be determined based on the given sets of indices.

We verify the theorems in Table 7 by extending the proofs of the series and
parallel structures. However, it is required to deal with the intersection of unions
in case of the series-parallel structure and the union of intersections in case of
parallel-series structure. Therefore, we need to extend the independence of sets
properties to include the independence of union and intersection of partitions of
the events. We verify the independence of union of partitions as:

Theorem 8. � ∀p s J Y. indep sets p (λi. {Yi}) ⋃
j∈J (s j) ∧ J 	= {} ∧

(∀i. i ∈ J ⇒ countable (s i)) ∧ FINITE J ∧ disjoint family on s J ⇒
indep sets p (λj. {⋃

i∈s j (Y i)}) J

where sets J and s have the indices of the partitions and the individual blocks
of each partition, respectively, disjoint family on ensures that the indices of
the blocks in different partitions are disjoint and indep sets p (λi. {Y i})⋃

j∈J (s j) ensures the independence of the family of blocks {Y i} where the
indices of the individual blocks are given by the union of s. Similarly, we verify
the independence of intersection of partitions and the details can be found in [6].

In order to verify the reliability of the series-parallel structure, we need
to ensure the independence of the individual blocks. Therefore, we combine
the indices of all blocks into a single set using ⋃

j∈J (s j) to be used with
indep sets. To be able to use the reliability of the series structure in this
proof, we use Theorem 8 to verify the independence of the unions of partitions
of events. This means verifying that the parallel structures are independent, i.e.,
the probability of intersection of these parallel structures equals the product of
the reliability of the parallel structures. Several assumptions related to sets {s

Table 7. Verified reliability of the series-parallel and parallel-series structures

Reliability of Series-Parallel Structure Reliability of Parallel-Series Structure

� ∀p X t s J.
indep sets p
(λi. {rv to event p X t i}) (

⋃
j∈J(s j)) ∧

(∀i. i ∈ J ⇒ s i �= {} ∧ FINITE (s i)) ∧
FINITE J ∧ J �= {} ∧ disjoint family on s J ⇒

(prob p
(DRBD series
(λj. DRBD parallel
(rv to event p X t) (s j)) J) =

Normal
(

∏
j∈J

(1 -
∏

i∈(s j) (real (1 - Rel p (X i) t)))))

� ∀p X t s J.
indep sets p
(λi. {rv to event p X t i}) (

⋃
j∈J(s j))∧

(∀i. i ∈ ⋃
j∈J(s j) ⇒

rv to event p X t i ∈ events p) ∧
(∀i. i ∈ J ⇒ s i �= {} ∧ FINITE (s i)) ∧
FINITE J ∧ J �= {} ∧
disjoint family on s J ⇒
(prob p
(DRBD parallel
(λj. DRBD series
(rv to event p X t) (s j)) J) =

1 -
Normal
(

∏
j∈J

(1 -
∏

i∈(s j) (real (Rel p (X i) t)))))
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i| i ∈ J} and J are required, i.e., these sets are finite and nonempty. Finally,
disjoint family on ensures that every block has a unique index. The reliabil-
ity of the parallel-series structure is verified in a similar manner based on the
reliability of the parallel structure and the independence of the intersection of
partitions of events rather than the union. In addition, it is required that all
DRBD events belong to the events of the probability space.

We extend the reliability of the series-parallel structure to verify the relia-
bility of a four-level nested structure, i.e., series-parallel-series-parallel. For this,
we have four sets (indexed sets) that determine the structure of the DRBD. We
verify the four-level nested structure using two main steps. We first verify the
reliability of the outer series-parallel, which requires verifying the independence
of the intersection of union of partitions of the DRBD blocks, i.e., the inner
series-parallel structures are independent. Then, we verify the reliability of the
inner series-parallel structures based on some set manipulation. This way, we can
verify even deeper structures, which would require verifying the independence of
more nested structures. We use the nested four-level structure to verify the reli-
ability of the series-parallel-series structure as it represents a special case of the
series-parallel-series-parallel, where each of the innermost parallel structures has
only one block. More details about this proof can be found in [6]. Our formaliza-
tion follows the natural definitions of parallel and series structures. Moreover, our
verified lemmas of independence allow verifying deeper structures, which makes
our formalization flexible and applicable to model the most complex systems.

4 Applications

To demonstrate the applicability of our proposed DRBD algebra, we formally
analyze the reliability of a drive-by-wire system (DBW) [2] and a shuffle-
exchange network (SEN) [3] (Fig. 2) to verify generic expressions that are inde-
pendent of the failure distribution of system components, i.e., we can use different
types of distributions to model the failure of components as long as they satisfy
the required conditions, such as the continuity. We present here the details of
the SEN system due to space limitations and the details of the formal reliability
analysis of the DBW system is available at [6].

A SEN is a single-path multistage interconnection network (MIN) that pro-
vides the necessary switching in multi-processor systems [3]. It consists of sources
(inputs) and destinations (outputs), where only one possible path is available
between each source and destination. To increase the reliability of such network,

Fig. 2. DRBD of: (a) DBW and (b) SEN with spare constructs
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additional switching elements are added to provide additional paths between
each source and destination. A SEN having two paths between each source and
destination is usually called SEN+. The terminal reliability analysis, which is
the reliability of the connection between a given source and destination, is usu-
ally conducted using static RBDs [3]. However, each source and destination are
always connected to single switches, where their failure leads to the failure of
the connection. Therefore, we propose to further enhance the reliability of this
connection by using spare parts that replace these single switches after failure.
Thus, we model the reliability of the modified SEN+ system using DRBDs, as
shown in Fig. 2(b), where Y and Z are the main single switches that are con-
nected to the source and destination with their spares Y s and Zs, respectively.
The parallel structure in the middle represents the reliability model of the two
alternative paths between the source and the destination. We formally express
the structure function of this DRBD as:

QSEN = nR AND (λi. if i = 0 then R WSP Y Ysa Ysd
else if i = 1 then

(
(nR AND X L1) + (nR AND X L2)

)
else R WSP Z Zsa Zsd) {0; 1; 2}

Thus, the outer series structure is expressed using the nR AND operator over
the set {0; 1; 2} as this structure has three different structures; i.e., two spare
constructs and one parallel structure, and L1 and L2 are the sets that have the
indices of the components in the inner series structures. In order to re-utilize
the verified expressions of reliability, we verify that the DRBD event of the QSEN
is equal to a nested series-parallel-series structure to verify a generic expression
for the reliability of the SEN+ system:

Theorem 9. � ∀p X Y Ysa Ysd Z Zsa Zsd t L1 L2.

SEN set req p L1 L2 (ind set [{0}; L1; L2; {3}])
(ind set [{0}; {1; 2}; {3}]) {0; 1; 2}
(event set[(DRBD event p (R WSP Y Ysa Ysd) t,0);

(DRBD event p (R WSP Z Zsa Zsd) t,3 )] (rv to event p X t)) ⇒
(prob p (DRBD event p QSEN t) =

Rel p (R WSP Y Ysa Ysd) t * Rel p (R WSP Z Zsa Zsd) t *

(1 - (1 - Normal (
∏

l∈L1 (real (Rel p (X l) t)))) *

(1 - Normal (
∏

l∈L2 (real (Rel p (X l) t))))))

where SEN set req ensures that the input sets are finite and nonempty. It also
ensures the independence of the input events over the probability space and
that they belong to the probability events. ind set and event set generate the
proper indices for the blocks in the structure. Their description can be found
in [6]. The reliability of the spare constructs can be further rewritten using Theo-
rem 5 given that the required conditions are ensured. The final theorem with the
expressions of the reliability of the spare constructs is available in [5]. The proof
scripts of the DBW and SEN required around 150 and 1020 lines, respectively,
and are available at [5]. Finally, we evaluate, using MATLAB, the reliability of
the DBW assuming exponential distribution with failure rates as given in Fig. 3.
We also evaluate the reliability of the SEN system (Fig. 3) assuming the same
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Fig. 3. Reliability of (a) DBW (b) SEN with/without spare constructs

failure rate of 1 × 10−5 for all switching elements with 16 switching elements in
each series structure. We evaluate the SEN reliability without and with spares
with a dormancy factor of 0.1. This result shows that considering the spares in
the reliability analysis leads to having a more reliable and realistic system than
static RBDs that are usually used for the analysis of similar SENs.

To sum up, we are able to provide generic expressions of reliability of the
DBW and SEN+ systems that are verified in HOL theorem proving, which
cannot be done using other formal tools. These expressions can be instantiated
with different failure distributions without the need to repeat the analysis. In
addition, we demonstrated that our formalization is flexible and can be used to
model more complex systems of an arbitrary number of blocks by implementing
its hierarchy using sets that can be instantiated later to model a specific system
structure, which is an added feature of our formalized algebra.

5 Conclusion

In this paper, we proposed a new algebra to analyze dynamic reliability block dia-
grams (DRBDs). We developed the HOL formalization of this algebra in HOL4,
which ensures its correctness and allows conducting the analysis within a theorem
prover. Furthermore, this algebra provides formalized generic expressions of reli-
ability that cannot be verified using other formal tools. This HOL formalization
is the first of its kind that takes into account the system dynamics by providing
the HOL formal model of spare constructs and temporal operators. The pro-
posed algebra is compatible with the reliability expressions of traditional RBDs
as demonstrated by the reliability expressions of the series and parallel struc-
tures. It also facilitates extending the verified reliability expressions to model
complex systems using nested structures. Finally, we demonstrated the useful-
ness of this work by formally conducting the analysis of a drive-by-wire and
a shuffle-exchange network systems to verify generic expressions of reliability,
which are independent of the failure probability distribution of system compo-
nents. We plan to extend this algebra to include other DRBD constructs, such
as load sharing, in order to provide a more complete framework to algebraically
analyze DRBDs in HOL.
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