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Abstract. SystemC is a new C-based system level design language
whose ultimate objective is to enable System-on-a-Chip (SoC) design
and verification. Fixed-point design based on the SystemC data types is
rapidly becoming the standard for optimizing DSP systems. In this pa-
per, we propose to create a formalization of SystemC fixed-point arith-
metic in the HOL theorem proving environment. The SystemC fixed-
point number representation which contains a new generalized format
and different rounding and overflow modes is described, and then it is
formalized in higher-order logic. This formalization is then compared
with the formalization of IEEE standard based floating-point arithmetic
in HOL. A set of theorems are proved to bound the error in fixed-point
rounding and to verify the fixed-point arithmetic operations against their
abstract mathematical counterparts. Finally, we show by an example
how this formalization can be used in verification of the translation from
floating-point and fixed-point algorithmic, down to register transfer and
netlist gate levels in the design flow of SoC systems.

1 Introduction

High complexity of modern digital signal processing systems versus increasing
demand for a short time-to-market are current challenges of today’s VLSI de-
signers. With improvements in silicon technology and the increase in the number
of logic gates that can be implemented on a single chip, various functionalities
such as memories, logic gates, analogue blocks, CPU and digital signal process-
ing (DSP) cores can be integrated into a single silicon chip. These functionalities
are implemented by using System-on-a-Chip (SoC) [7] solutions that generally
integrate diverse hardware and software. On the other hand, the use of inex-
pensive, high speed, and low power DSPs is on the rise. For DSP the problem
is to decide whether a fixed-point or a floating-point math unit should be used
[17]. Several factors should be taken into account in this regard. An important
first step is to gain an understanding of how the hardware representations differ
and how they affect precision and range. Also needed is a grasp of the types
of applications to which particular chips are best suited and which hardware
vendors provide these chips. Performance is also a driving factor behind the
use of DSPs for which cost, speed, and power consumption are key ingredients.
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The final consideration is the availability of development tools and the program-
ming paradigms they support. Recently, significant effort has gone into building
high level languages for both fixed- and floating-point DSPs. The most popular
language has been C. Since C has a built-in type for floating-point, this is an
attractive solution for those chips. The standard ANSI C language, however,
does not support fixed-point data types, thus forcing programmers to write in
assembly language and to deal with complicated and error-prone scaling issues.
A significant breakthrough to allow a systematic approach for fixed-point design
has been achieved by the Open SystemC Initiative. Fixed-point design based on
the SystemC [31] data types is rapidly becoming the standard for optimizing
DSP systems, and Electronic Design Automation (EDA) tools supporting this
design flow are available today.

With ever increasing complexity of the design of digital systems the role of
design verification has gained a lot of importance. Design errors can cause seri-
ous failures, resulting in the loss of time and money. It takes a very large amount
of time and effort to correct the error, especially when the error is discovered
late in the process. For these reasons, we need approaches that enable us to
discover errors and validate designs as early as possible. Verification is defined
as the validation of the circuit for its correctness. The verification of floating-
point hardware has always been an important part of processor verification.
The importance of arithmetic circuit verification was illustrated by the famous
floating-point division bug in Intel’s Pentium processor [18]. Floating-point al-
gorithms are usually very complicated. They are composed of many modules
where the smallest flaw in the design or the implementation can cause a very
hard-to-discover bug, as occurred in Intel’s case. Traditional approaches for ver-
ifying floating-point circuits are based on simulation. However, these approaches
cannot exhaustively cover the input space of the circuits. Therefore, new meth-
ods are needed for the economical and reliable verification of digital systems.
Formal verification [19] have recently paved a path, showing the utility of find-
ing bugs early in the design cycle. Formal verification techniques are usually
classified in two categories: interactive theorem proving and automatic decision
diagram based model checking and equivalence checking. Theorem proving con-
sists in expressing the specification and implementation in a formal logic. Their
relationship, stated as equivalence or implication, is regarded as a theorem to be
proven within the logic system, using axioms and inference rules. Powerful math-
ematical techniques such as induction and abstraction are strengths of theorem
proving and make it a very flexible verification technique. In model checking, one
checks if the design satisfies some properties (formal specification). With equiv-
alence checking, we check if two designs exhibit the same behavior. The latter
techniques have been successfully applied to real industrial designs. However,
since most of the tools are based on Binary Decision Diagrams (BDDs), they
require the design to be described at the Boolean level. In practice, they often
fail to verify a large-scale design because of the so-called state space explosion.

There exist several related works in the open literature on the formalization
and verification of floating-point arithmetic. For instance, Barett [3] specified
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parts of the IEEE-754 [15] standard in Z, and Miner [25] formalized the IEEE-
854 [16] floating-point standard in PVS. Carreno [6] formalized the same IEEE-
854 standard in HOL. Harrison [12] defined and formalized real numbers using
HOL. He then developed a generic floating-point library [14] to define and verify
the most fundamental terms and lemmas of the IEEE-754 standard. This former
library was used by him to formalize and verify floating-point algorithms such
as the square root and the exponential function [13] against their behavioral
specification.

Moore et al. [26] have verified the AMD-K5 floating-point division algorithm
using the ACL2 theorem prover. Also, Russinoff [28] has developed a library for
ACL2 prover and applied it successfully to verify the K5 square root, and the
Athlon multiplication, division, square root, and addition algorithms. Daumas
et al. [10] have presented a generic library for reasoning about floating-point
numbers within the Coq system. Berg et al. [4] have formally verified a theory of
IEEE rounding presented in [27] using the theorem prover PVS, and then used
the theory to prove the correctness of a fully IEEE compliant floating-point unit
used in the VAMP processor.

Aagaard and Seger [1] combined BDD based methods and theorem proving
techniques to verify a floating-point multiplier. Chen and Bryant [9] used word-
level SMV to verify a floating-point adder. Miner and Leathrum [24] verified a
general class of subtractive division algorithms with respect to the IEEE-754
standard in PVS. Leeser et al. [20] verified a radix-2 square root algorithm and
its hardware implementation using theorem proving methods. Cornea-Hasegan
[8] used iterative approaches and mathematical proofs to verify the correctness of
the IEEE floating-point square root, division and remainder algorithms. O’Leary
et al. [21] reported on the verification of the Intel’s floating-point unit at the gate
level using a combination of model-checking and theorem proving.

While the above works are concerned with floating-point representation and
arithmetic, in [2] we proposed the first machine-checked formal development on
properties of fixed-point arithmetic according to Cadence SPW (Signal Process-
ing WorkSystem) tool. Unlike floating-point arithmetic which is standardized in
IEEE-754 [15] and IEEE-854 [16], current fixed-point arithmetic does not follow
any particular standard and depends on the tool and the language used to design
the DSP chip. Based on higher-order logic, we proposed to encode a fixed-point
number by a pair composed of a boolean word, and a triple indicating the word
length, the length of the integer portion and the sign format. Then, we formalized
the concepts of valuation and rounding as functions that convert respectively a
fixed-point number to a real number and vice versa, taking into account different
rounding and overflow modes. Fixed-point arithmetic operations are formalized
as functions performing operations on the real numbers corresponding to the
fixed-point operands and then applying the rounding on the real number result.
We supported three kinds of exceptions, two overflow modes and five rounding
modes as described in SPW documentation. Finally, we proved different lemmas
regarding the error analysis of the fixed-point quantization and correctness of
the basic operations like addition, multiplication, and division. The formaliza-
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tion of the fixed-point arithmetic has been inspired mostly by the work done by
Harrison [13]. Indeed we followed similar steps as in formalization of floating-
point arithmetic for modeling fixed-point arithmetic, and used an analogous set
of lemmas to his work to check the validity of operation results and to carry out
the error analysis of the fixed-point rounding.

In this paper, we significantly extend this work to the SystemC fixed point
description. In comparison to SPW, SystemC represents the numbers in a dif-
ferent more comprehensive format. SystemC also covers a more complete set
of overflow, rounding, and exception handling parameters. SystemC supports
seven rounding modes, of which four correspond exactly to the rounding modes
of SPW. The other three modes are specific to SystemC and are not supported
by the other tools. SystemC supports five overflow modes covering those of SPW.
These features motivated EDA companies, including Cadence, to adapt SystemC
for fixed-point design and verification1. In the new fixed-point theory, we have
included the parameters representing the overflow, rounding mode, and the num-
ber of saturation bits which have been introduced in SPW theory in the definition
of arithmetic operations, directly in the format to make a generalized SystemC
fixed-point attributes. Also new enumerated data types are defined to cover the
SystemC rounding and overflow modes. Specific functions are then defined to
handle the overflow in SystemC wrap around modes. Finally new theorems are
proved to bound the error in SystemC special rounding modes. The modularity
of SPW theory has facilitated the extension process. This is of great importance
since the design of modular and reusable theories remains a big challenge in the
theorem proving era.

The organization of this paper is as follows: Section 2 describes the SystemC
fixed-point arithmetic including the format of the fixed-point numbers, and over-
flow and quantization modes. Section 3 describes in detail their formalization in
HOL in parallel with the formalization of IEEE-754 based floating-point arith-
metic in HOL. In Section 4, we discuss the rounding error analysis and the
verification of the SystemC fixed-point arithmetic operations. Section 5 presents
an illustrative example on how this formalization can be used through the mod-
eling and verification of a Notch filter algorithm. Finally, Section 6 concludes
the paper.

2 Fixed-Point Types in SystemC

In this section we describe SystemC based fixed-point arithmetic. SystemC is a
C++ based modeling platform supporting design abstractions at the register-
transfer, behavioral, and system levels. Consisting of a class library and a simu-
lation kernel, the language is an attempt at standardization of a C/C++ design
methodology, and is supported by the Open SystemC Initiative (OSCI), a con-
sortium of a wide range of system houses, semiconductor companies, intellectual
property (IP) providers, embedded software developers, and design automation
1 In fact the latest release of the Cadence SPW tool supports both the old SPW

fixed-point arithmetic as well as the SystemC one.
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tool vendors. The advantages of SystemC include the establishment of a com-
mon design environment consisting of C++ libraries, models and tools, thereby
setting up a foundation for hardware-software co-design; the ability to exchange
IP easily and efficiently; and the ability to reuse test benches across different
levels of modeling abstraction. An important element of SystemC is the sup-
port for fixed-point data-types, which is essential for the refinement of complex
algorithms to a hardware or software implementation.

The SystemC fixed-point library contains basic types for both unconstrained,
constrained, signed and unsigned fixed-point data types [30]. Constrained data
types use static arguments to specify the functionality of the type while uncon-
strained data types can use argument types that are nonstatic. Static arguments
must be known at compile time, while nonstatic arguments can be variables. In
addition to the standard fixed-point types which use arbitrary precision in calcu-
lations, SystemC also provides limited precision fixed-point types to speed sim-
ulation when limited precision is all that is required. With standard fixed-point
types the mantissa can be virtually any size. With limited precision fixed-point
types the mantissa is limited to 53 bits. Limited precision fixed-point types are
implemented with double precision floating-point values. The fixed-point format
used by the fixed-point data types consists of the following parameters:

– wl: Total word length, used for fixed-point representation. Equivalent to the
total number of bits used in the type. Word length must be greater than 0.

– iwl: Integer word length, specifies the number of bits that are to the left
of the binary point (.) in a fixed-point number. Integer word length can
be positive or negative, and larger than the word length. If this number is
negative, repeated leading sign bits or zeros are added to the object. If this
number is greater than the total number of bits, trailing zeros are added to
generate the equivalent binary value.

– q mode: Quantization mode, determines the behavior of the fixed point type
when the result of an operation generates more precision in the least signifi-
cant bits (LSB) than is available as specified by the word length and integer
word length parameters.

– o mode: Overflow mode, determines what happens when the result of an
operation generates more bits on the most significant bits (MSB) side than
are available for representation.

– n bits: Number of saturated bits, only used for overflow mode and specifies
how many bits will be saturated if a saturation behavior is specified and an
overflow occurs.

In comparison with the fixed-point format defined in SPW [29], the param-
eters wl and iw in SystemC correspond to parameters #bits and #integer bits
in SPW fixed-point attributes. The parameters q mode and o mode which have
been used in SPW during the definition of arithmetic operations, are inserted
directly in the format to make a generalized fixed-point attributes for SystemC.
Also the argument n bits is not used by SPW and is specific to SystemC. In
SPW the type of the fixed-point numbers as signed or unsigned are defined by
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the parameter sign format in the attributes; however, in SystemC there is not
such a parameter in the format and separate types are defined for signed and
unsigned fixed-point numbers.

Operations performed on fixed-point data types are done using arbitrary and
full precision. After the operation is complete, the resulting operand is cast to fit
the fixed-point data type object. The casting operation applies the quantization
behavior of the target object to the new value and assigns the new value to the
target object. Then, the appropriate overflow behavior is applied to the result
of the process which gives the final value.

Quantization effects are used to determine what happens to the LSBs (Least
Significant Bits) of a fixed-point type when more bits of precision are required
than are available. The quantization modes available in SystemC are shown in
Table 1:

Table 1. SystemC Quantization Modes

Quantization Mode Name
Rounding to plus infinity SC RND

Rounding to zero SC RND ZERO
Rounding to minus infinity SC RND MIN INF

Rounding to infinity SC RND INF
Convergent Rounding SC RND CONV

Truncation SC TRN
Truncation to zero SC TRN ZERO

Figure 1 shows the behavior of each quantization mode. The diagonal line
represents the ideal number representation given infinite bits. The small hori-
zontal lines show the effect of the rounding. Any value of the X axis within the
range of the line will be converted to the value of the Y axis. The symbol q in
the figure refers to the quantization step, that is, the resolution of the data type.
As shown in this figure modes SC RND, SC RND ZERO, SC RND MIN INF,
SC RND INF, and SC RND CONV will round the value to the closest rep-
resentable number if the two nearest representable numbers are not an equal
distance apart. Otherwise, rounding towards plus infinity, to zero, towards mi-
nus infinity, towards plus infinity if positive or minus infinity if negative, and
towards nearest even will be performed respectively (Figure 1 (a-e)). SC TRN
mode is the default for fixed-point types and will be used if no other value is
specified. The result is always rounded towards minus infinity (Figure 1 (f)). In
other words, the result value is the first representable number lower than the
original value. Finally, for SC TRN ZERO the result is the nearest representable
value towards zero (Figure 1 (g)). Rounding modes SC RND, SC RND CONV,
SC TRN, and SC TRN ZERO in SystemC correspond exactly to Round, Con-
vergent Round, Truncate, and Round To Zero loss of precision modes in SPW,
respectively. The other three rounding modes are specific to SystemC and are
not supported by SPW.
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Fig. 1. The Behavior of SystemC Quantization Modes

In addition to quantization modes, we can use overflow modes to approximate
a higher range for fixed-point operations. Usually, overflow occurs when the result
of an operation is too large or too small for the available bit range. Specific
overflow modes can then be implemented to reduce the loss of data. Overflow
modes are specified by the o mode and n bits parameters to a fixed point type.
The supported overflow modes are listed in the Table 2.

Table 2. SystemC Overflow Modes

Overflow Mode Name
Saturation SC SAT

Saturation to zero SC SAT ZERO
Symmetrical Saturation SC SAT SYM

Wrap-around SC WRAP
Sign magnitude wrap-around SC WRAP SM

Figure 2 shows the behavior of each overflow mode for a 3 bit type. The
diagonal line represents the ideal value if infinite bits are available for represen-
tation. The dots represent the values of the result. The X axis is the original
value and the Y axis is the result. From this figure it can be seen that MAX = 3
and MIN = −4 for a 3 bit type. SC SAT mode will convert the specified value
to MAX for an overflow or MIN for an underflow condition (Figure 2 (a)).
SC SAT ZERO mode will set the result to 0 for any input value that is outside
the representable range of the fixed point type. If the result value is greater than
MAX or smaller than MIN the result will be 0 (Figure 2 (b)). In SC SAT SYM
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Fig. 2. The Behavior of SystemC Overflow Modes

mode, positive overflow will generate MAX and negative overflow will generate
−MAX for signed numbers or MIN for unsigned numbers (Figure 2 (c)). With
SC WRAP mode the value of an arithmetic operand will wrap around from
MAX to MIN as MAX is reached. There are two different cases within this
mode. The first is with the n bits parameter set to 0 or having a default value
of 0. All bits except for the deleted bits are copied to the result number (Figure
2 (d)). The second is when the n bits parameter is a nonzero value. In this case
the specified number of most significant bits of the result number are saturated
with preservation of the original sign, the other bits are simply copied. Posi-
tive numbers remain positive and negative numbers remain negative. A graph
showing this behavior with n bits = 1 is shown in Figure 2 (e). Notice that
positive numbers wrap around to 0 while negative values wrap around to −1.
The SC WRAP SM overflow mode uses sign magnitude wrapping. This overflow
mode behaves in two different styles depending on the value of parameter n bits.
When n bits is 0 no bits are saturated. This mode will first delete any MSB bits
that are outside the result word length. The sign bit of the result is set to the
value of the least significant deleted bit. If the most significant remaining bit is
different from the original MSB then all the remaining bits are inverted. If MSBs
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are the same, the other bits are copied from the original value to the result value.
A graph showing the result of this overflow mode is shown in Figure 2 (f). As the
value of X increases, the value of Y increases to MAX and then slowly starts
to decrease until MIN is reached. The result is a sawtooth like waveform. With
n bits greater than 0, n bits MSB bits are saturated to 1. A graph showing this
behavior with n bits = 1 is shown in Figure 2 (g). Notice that while the graph
looks somewhat like a sawtooth waveform, positive numbers do not dip below 0
and negative numbers do not cross −1. Overflow modes SC SAT and SC Wrap
in SystemC cover the two overflow modes Clip and Wrap in SPW. The other
three overflow modes are not supported by SPW and are specific to SystemC.

3 Modeling SystemC Fixed-Point Arithmetic in HOL

In this section, we present the formalization of SystemC based fixed-point arith-
metic in higher-order logic, based on the general purpose HOL theorem prover
[11]. HOL’s basic types include the natural numbers and booleans. It also in-
cludes other specific extensions like John Harrison’s reals library [12] which
proved to be essential for our fixed-point arithmetic formalization.

Fixed point numbers are modeled in HOL as a pair of elements composed
of a bit string (string) and a set of attributes (attrib). The bit string is rep-
resented by a boolean word and the set of attributes is itself a combination
of six elements representing the word length (wordlength), integer word length
(integerwordlength), sign type (signtype), rounding mode (roundmode), overflow
mode (overflowmode), and the number of saturation bits (satbits), respectively.
In comparison to the SPW formalization we have included three extra param-
eters to define a generalized fixed-point format. The fixed-point numbers are
then partitioned using special predicates into signed (is signed) and un-signed
(is unsigned) numbers. The validity of a fixed-point number (is valid) and a
set of attributes (validAttr) is defined using special predicates. In a valid set
of attributes the word length is in the range of 1 and 53 corresponding to fast
fixed-point data types, in comparison to 256 in SPW. Also, the sign type in a
valid set of attributes is either 0 or 1, and the number of saturation bits is less
than the word length. The fixed-point data types are defined in bijection with
the appropriate subset of boolword × N

3 × roundingmode × overflowmode × N

using functions Fxp and deFxp. Then, we defined the valuation function (value)
to specify a real value to fixed-point numbers using separate formulas for signed
and unsigned numbers. The constants for the smallest (bottomfxp) and largest
(topfxp) fixed-point numbers for a given format together with their correspond-
ing real values (MIN,MAX ) are also defined using specific functions. Then, we
defined enumerated data types for seven rounding modes and five overflow modes
in SystemC fixed-point arithmetic. The rounding function (fxp round) is then
defined case by case on the rounding modes and special functions are defined to
handle the overflow in Wrap-around (WRAP) and Sign magnitude wrap-around
(WRAP SM ) modes. Then, we defined the operations on fixed-point numbers
(fxpAdd,fxpSub,fxpMul,fxpDiv) which are performed using the arbitrary preci-
sion in real domain and then the result is casted to the output format.
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Our effort in formalization of fixed-point arithmetic can be compared to
the formalization of IEEE standard based floating-point arithmetic in HOL [13]
which is performed as in the following steps:

– Floating Point Numbers: A floating-point number is modeled as a triple
of natural numbers interpreted as a sign, an exponent, and a fraction. The ex-
ponent is usually added to a constant (bias) to make the biased exponent’s
range nonnegative. The floating-point numbers are partitioned into not a
numbers (NaN), infinities, normalized numbers, denormalized but nonzero
numbers, and zeros as specified in IEEE-754 standard. Predicates for testing
the validity and finiteness of a triple for a given format are defined. Also
extractors for the three fields of a floating-point number together with con-
stants for convenient values such as largest representable positive number
and the most negative number in a format are defined.

– Format Parameters: The floating-point format for single, double preci-
sion, and extended numbers is defined as a pair of two natural numbers
representing the width in bits of the exponent field, and the width in bits of
the significand field. From these parameters three other characteristic num-
bers are defined for the total word length, the maximum exponent value,
and the bias in the exponent.

– Representation and Valuation: The next step in formalization of
floating-point numbers is the definition of the concrete representation of the
numbers as the fields are laid out with the sign as the most significant bit,
the exponent in the middle and the fraction in the bottom. Then, a real value
is specified to non exceptional numbers. The valuation is meaningless when
applied to infinities and NaNs. The denormalized numbers and normalized
numbers are treated separately. Then, a few significant real values such as
the real value of the largest representable number, the overflow threshold,
and the notion of the unit in the last place for a given floating-point number
are defined.

– Rounding: The definition of the valuation function is fundamental of the
definition of the inverse operation of rounding which coerces a real number
into a given floating-point format. The rounding is controlled by a rounding
mode, specifying whether a real number is to be mapped to the nearest
floating-point number (using round to even to choose a unique number if
necessary), towards zero, or towards positive or negative infinity. The modes
are represented in HOL via an enumerated type definition.

– Arithmetic Operations: Then, the arithmetic operations are defined
where they first deal with the exceptional cases, either where the arguments
involve a NaN or infinity, or are invalid for other reasons (e.g. ∞ − ∞) and
generate a NaN. Apart from that, they basically just take the values of the
arguments, perform the mathematical operations and then round the result
according to the desired rounding mode.

– Float and Double Types: Finally, the above considerations are speci-
fied to actual HOL type of single precision and double precision numbers
called float and double. These types are defined to be in bijection with the
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appropriate subset of N
3, with the bijections written in HOL as float and

defloat. The operations are defined by mapping out of the type, performing
the operations, and mapping back.

4 Verification of SystemC Arithmetic Operations

The correctness of fixed-point operations can be specified by comparing the
operation’s output with the true mathematical result. Since the operations are
defined as if they first performed using infinite precision and then the result is
rounded to fit in the destination format, the verification of operations is closely
related to bounding the error in rounding function. On the other hand, the
analysis of error in fixed-point rounding is very similar to the error analysis in
floating-point rounding. In the following discussion, we first explain the details
of floating-point rounding error analysis and then describe how similar steps are
followed and analogous theorems are proved to bound the error in fixed-point
rounding and to verify the fixed-point arithmetic operations.

4.1 Floating-Point Verification

The steps in analysis of floating-point rounding error in HOL [13] are as follows2:

– Lemmas for Analyzing the Rounding Operation: In the first step,
prove some lemmas about the properties of the approximating a real num-
ber with a floating-point number. First, prove a theorem that ensures the
existence of the best approximation to a given real number in a finite non
empty set of floating-point numbers. Then, prove that the chosen best ap-
proximation to a real number satisfying a property p from a finite and non
empty set of floating-point numbers is unique and is itself a member of the
set and is itself the best approximation of the real number. Then, prove that
the set of all valid and finite floating-point numbers are finite and non empty.
Then, prove that the chosen best approximation to a real number satisfying
a property p from the set of all finite floating-point numbers is a finite and
valid floating-point number. Finally, prove that the result of rounding a real
number to a floating-point number is valid.

– Preliminary Theorems about Rounding Error: In the second step,
define the error as the difference between a real number and the value of its
rounding result for rounding to nearest even. Then, prove that if the absolute
value of a real number is less than the threshold value of a given floating-point
format, then the rounding result is the nearest value to the real number and
the corresponding error is minimum comparing to the other floating-point
numbers. Also, if for a given real number we can find a floating-point number
with equal value then the rounding-error is zero.

– General Error Bound Theorems: Next, prove two main theorems quan-
tifying the error. In the first theorem, prove that if the absolute value of a real

2 This analysis is performed using the HOL Light theorem prover which is an older
version of the tool. The code is recently ported by the first author from HOL Light
to HOL4 which is the latest version of HOL tool.
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number is in the representable range of normalized floating-point numbers
and located in the j’th binade, i.e. its absolute value is less than 2j+1/2126

and greater than or equal to 2j/2126, then the absolute value of error is
less than or equal to 2j/2150. In the second theorem, prove that if the real
number is in the denormal range, i.e. its absolute value is less than 2−126,
then the error is less than or equal to 2−150. To prove these main theorems,
a set of eight lemmas and four theorems about general rounding error are
established.
The error bounding theorems can be explained as follows. The single preci-
sion format in IEEE standard for binary floating-point numbers is 32 bits
wide and has an 8 bit exponent field with the exponent bias of 127 and has
a 23 bit significand considering the hidden bit which is always 1. The single
precision floating-point numbers are distributed on the real axis as shown in
Figure 3. Figure 3(a) shows the number distribution pattern and the various
subranges in this format. Figure 3(b) illustrates the relative magnitudes of
normalized and denormalized numbers. In the context of numbers of a spe-
cific precision, it is useful to speak of rounding in terms of units in the last
place (ulp). A ulp is naturally understood as the magnitude of the least sig-
nificant digit, or in the other words, the distance between the floating point
number a and the next floating point number of greater magnitude. For ex-
ample, one ulp of the denormalized region in the single precision format of
IEEE standard is 2−149, and one ulp for the j ’th binade in the normalized
region is equal to 2j+1/2150 as shown in Figure 3(b). The rounding error can
be easily bounded in term of ulps. For rounding to nearest the absolute value
of error is less than or equal to half a ulp. This means that the absolute value
of error is less than or equal to 2−150 for denormalized region, and less than
or equal to 2j/2150 for the j ’th binade in the normalizerd region as stated
in the last two main theorems mentioned before.

– Rounding Error in Arithmetic Operations: At the end, prove theorems
that relate the arithmetic operations such as addition, subtraction, multipli-
cation, division, reminder, square root, negation and absolute value to their
abstract mathematical counterparts according to the corresponding errors.
The theorems are composed of two parts. In the first part which is about
the finiteness of the floating-point operation output prove that for each pair
of finite floating-point numbers, if the real result is less than the overflow
threshold value then the output result is also finite. In the second part of
the theorems, prove that the value of the floating-point result is equal to the
value of the real result plus an error which is already quantified using the
previous error bound theorems.

4.2 Fixed-Point Verification

Similar steps are followed for the error analysis of fixed-point rounding:

– Lemmas for Analyzing the Fixed-Point Rounding Operation: We
first proved lemmas concerning with the approximation of a real number
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Fig. 3. Single Precision Floating-Point Numbers on the Real Number Line

with a fixed-point number. We proved (FXP IS CLOSEST EXISTS ) that
in a finite nonempty set of fixed-point numbers we can find the best ap-
proximation to a real number based on a given valuation function. Then,
we proved that the chosen best approximation to a real number satisfy-
ing a property p from a finite and non empty set of fixed-point numbers is
unique (FXP CLOSEST IS EVERYTHING) and is itself a member of the
set (FXP CLOSEST IN SET ) and is itself the best approximation of the real
number (FXP CLOSEST IS CLOSEST ). Finally, we proved (FXP IS VAL
ID CLOSEST ) that the chosen best approximation to a real number satis-
fying a property p from the set of all valid fixed-point numbers with a given
attributes is itself a valid fixed-point number. Since in the definition of fixed-
point rounding we have used the same approximating functions (is closest,
closest) as in floating-point case, the proof of these theorems are very close
to their corresponding floating-point lemmas. Then, we proved that the
set of all valid fixed-point numbers with a given attributes is finite (FI-
NITE VALID ATTRIB). We also proved (FXP IS VALID NONEMPTY )
that the set of all valid fixed-point numbers is nonempty. The proof of
the first lemma is a bit complicated. For this purpose we made use of
some built-in theorems about the finite sets in HOL pred sets library [22].
Among these are the two fundamental theorems FINITE EMPTY and FI-
NITE INSERT, which state that the empty set is indeed finite and the inser-
tion of an element to a finite set constructs a finite set. Other theorems state
that the union of two finite sets (FINITE UNION ), the image of a func-
tion on a finite set (IMAGE FINITE ), a singleton set3 (FINITE SING),
the cross combination of two finite sets (FINITE CROSS ), and any subset
of a finite set (SUBSET FINITE ) is itself a finite set. Using these theo-

3 a set that contains precisely one element
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rems together with the definition of a valid fixed-point number helped us
to break down the proof of the finiteness of all valid fixed-point numbers
to the proof of finiteness of the set of all boolean words with a given word
length (WORD FINITE ) and the set of all natural numbers less than a
given value (FINITE COUNT ). The last theorems are proved by induc-
tion on the word length of the boolean word and the maximum limit of
the natural numbers, respectively. For SystemC fixed-point, we also need
to prove that the set of all elements of type roundmode and overflowmode
are finite (FINITE ROUNDMODE, FINITE OVERFLOWMODE ). This is
obvious since these sets contain only seven and five elements, respectively.
Finally, we proved (FXP IS VALID ROUND) that the result of rounding a
real number which is in the range representable by a given valid attributes
is a valid fixed-point number.

– Rounding Error in Fixed-Point Arithmetic Operations: Then, we
defined the error resulting from rounding a real number to a fixed-point value
(fxperror). Then, we established the first main theorems (FXP ADD THM,
FXP SUB THM, FXP MUL THM, FXP DIV THM ) on the correctness of
fixed-point arithmetic operations. According to these theorems, if the input
fixed-point operands and the output attributes are valid then the result of
fixed-point operations is valid. Also the result of the operations is related to
the real result considering the error.

– General Fixed-Point Error Bound Theorem: In the next step, we es-
tablished the second main theorem on fixed-point rounding error analysis
which concerns bounding the error. The error is absolutely quantified as in
the theorem FXP ERROR BOUND THM. According to this theorem, the
error in rounding a real number which is in the range representable by a
given set of attributes X is less than the quantity 1/2fracbits(X). To explain
the theorem, we consider the following fact which relates the definition of the
fixed-point numbers to the rationals. An N-bit binary word, when interpreted
as an unsigned fixed-point number, can take on values from a subset P of
rationals of the form p/2b in which p is an integer in the range 0 ≤ p ≤ 2N −1
for unsigned, and −2N−1 ≤ p ≤ 2N−1 − 1 for signed numbers, respectively.
Note that P contains 2N elements and b represents the fractional bits in
each case. Based on this fact, we can depict the range of values covered by
each case as shown by Figure 4. Thereafter, the representable range of fixed-
point numbers is divided into 2N equispaced quantization steps with the
distance between two successive steps equal to 1/2b. Suppose that x ∈ R

is approximated by a fixed-point number a. The position of these values are
labeled in the figure. The error | x − a | is hence less than the length of
one interval, or 1/2b, as mentioned in the second theorem. In comparison to
floating-point case, the fixed-point representation leads to equal spacing in
the set of representable numbers. Thus the maximum absolute error is the
same throughout (ulp with truncation and ulp/2 with rounding).

– Lemmas about General Fixed-Point Rounding Error: To prove the
general fixed-point error bound theorem, a set of five lemmas is established.
We first proved that the rounding result is the nearest value to a real number
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(FXP BOUND AT WORST LEMMA) and the corresponding error is min-
imum (FXP ERROR AT WORST LEMMA) comparing to the other fixed-
point numbers. Then, we proved (FXP ERROR BOUND LEMMA1 ) that
each representable real value x can be surrounded by two successive ratio-
nal numbers. Also we proved (FXP ERROR BOUND LEMMA2 ) that the
difference between the real number and the surrounding rationals is less
than 1/2fracbits(X). Finally, we proved (FXP ERROR BOUND LEMMA3 )
that for each real value we can find a fixed-point number with the re-
quired error characteristics. Since the rounding produces the minimum er-
ror as stated in FXP ERROR AT WORST LEMMA, the proof of the sec-
ond main theorem (FXP ERROR BOUND THM ) is a direct consequence
of FXP ERROR BOUND LEMMA3. In these proofs, we have treated the
case of signed and unsigned numbers separately since they have different
definitions for MAX, MIN, and value functions. For signed numbers special
attention needs also to be paid to dealing with the negative numbers.
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Fig. 4. Fixed-Point Values on the Real Axis

– SystemC Fixed-Point Error Bound Theorem: The theorem FXP ERR
OR BOUND THM is a general theorem for bounding the error in fixed-
point rounding which is valid for all rounding modes. This theorem can
then be extended to prove new theorems for different rounding modes in
SystemC fixed-point arithmetic. For instance, for SC TRN, SC RND ZERO,
SC RND MIN INF,SC RND INF and SC RND CONV modes which round
to nearest representable values, the error is less than ulp/2. For these modes
the error is bounded to 1/2fracbits(X)+1. This fact is proved as in theorem
SYSTEMC FXP ERROR BOUND THM.

5 The Notch Filter Example

In this section we demonstrate how to apply the formalization of SystemC fixed-
point arithmetic presented in the previous sections for the verification of DSP
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systems. We have chosen CoCentric Fixed-Point Designer [33] as the application
tool and the case of a second order 60 Hz Notch Filter as an example circuit
(Figure 5). The filter is first designed and simulated using floating-point oper-
ations and parameters (Figure 5(a)). The design is composed of Add (adder),
Gain (multiply by a constant), and Delay blocks together with signal source
and sink elements. The design is then converted to a fixed-point design (Figure
5(b)) in which each block is replaced with the corresponding fixed-point block.
Fixed-point blocks are shown by double circles and squares to distinguish from
floating-point blocks. The attributes of all fixed-point block outputs are set to
< 64, 31, t > to ensure that overflows and quantization do not affect the system
operation. This means that we have used sixty four bits to represent the signal
values, the numbers are in two’s complement format in which the most signifi-
cant bit is the sign bit, and the binary point is fixed at the thirty first position
following the sign bit.
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Fig. 5. A Second Order Notch Filter
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Figure 6 shows the proposed verification methodology. Based on this method-
ology, we first modeled the design in different abstraction levels such as floating-
point and fixed-point levels as predicates in higher order logic (NOTCH
FILTER FLOAT IMP,NOTCH FILTER FXP IMP). The process of specifying
a hardware description language in higher-order logic is commonly known as
semantic embedding. There are two main approaches [5]: deep embedding and
shallow embedding. In deep embedding, the abstract syntax of a design descrip-
tion is represented by terms, which are then interpreted by semantic functions
defined in the logic that assign meaning to the design. With this method, it
is possible to reason about classes of designs, since one can quantify over the
syntactic structures. However, setting up HOL types of abstract syntax and se-
mantic functions can be very tedious. In a shallow embedding on the other hand,
the design is modeled directly by a formal specification of its functional behavior.
This eliminates the effort of defining abstract syntax and semantic functions, but
it also limits the proofs to functional properties. In this example, since our main
concern is to check the correctness of the design based on its functionality, we
propose shallow embedding: translate the intended meaning of the design blocks
into HOL and then complete the formal proof in HOL theorem prover. Primitive
blocks are defined using the corresponding functions in floating-point and fixed-
point theories in HOL. The whole filter is then implemented as a conjunction of
these blocks.
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Fig. 6. Verification Methodology

In the next step, separately and independently from the actual implementa-
tions, we described the designs as a difference equation relating the input and
output samples (NOTCH FILTER FLOAT SPEC,NOTCH FILTER FXP SPE
C ). Then, we established lemmas that ensure the implementation at each level
satisfies the corresponding specification (NOTCH FILTER FLOAT IMP SPEC,



Modeling SystemC Fixed-Point Arithmetic in HOL 223

NOTCH FILTER FXP IMP SPEC ). For the error analysis of transition from
floating-point to fixed-point levels, and based on the theorems FXP ADD THM,
FXP MUL THM, and the corresponding ones in floating-point theory, we proved
a theorem (NOTCH FILTER FXP TO FLOAT THM ) that states the error be-
tween the real values of the floating and fixed-point precision output samples.
According to this theorem, for a valid and finite set of input and output sequences
at times n - 1 and n - 2, we will have finite and valid outputs at time n. Also, the
difference between the output real values at each sample time can be expressed as
the difference in input and output values at previous sample times multiplied by
the corresponding coefficients, taking into account the effects of finite precision
in coefficients and arithmetic operations. Proper assumptions are set for both
floating-point and fixed-point designs to guarantee the validity of output sam-
ples. Based on this theorem, three sources of error can be distinguished: errors
due to the quantization of input samples, errors due to the rounding in arith-
metic operations, and errors due to quantization of coefficients. The errors are
already quantified using the theorem SYSTEMC FXP ERROR BOUND THM
and the corresponding theorems for error analysis in floating-point case.

Next, we generated with CoCentric System Studio [32] the VHDL code corre-
sponding to the Filter design, and used Synopsys to synthesize the code to reach
to the logic gate level netlist. At this point, we used the well known formal tech-
niques to model the design in each of these levels in higher-order logic within the
HOL environment (NOTCH FILTER RTL IMP, NOTCH FILTER NETLIST
IMP). The next step is to verify these different levels using a classical hi-
erarchical proof approach in HOL [23]. Our final goal is to prove that the
gate level implementation implies the floating-point algorithmic design con-
sidering the errors (NOTCH FILTER NETLIST TO FLOAT THM ). This goal
cannot be reached directly, due to the very high abstraction gap between the
gate and floating-point algorithmic levels. The proof scheme need hence to
be changed to hierarchically prove that the gate level implies the more ab-
stract RTL (NOTCH FILTER NETLIST TO RTL THM ). The latter is used
to imply the high level fixed-point algorithmic specification (NOTCH FILTER
RTL TO FXP THM ) which has already been related to the floating-point de-
scription through the error analysis. This can be formalized in HOL using float
and Fxp data abstraction functions which map binary words to floating-point
and fixed-point numbers, respectively. In the proof of these theorems we used the
regular and modular behavior of the design, so that we proved separate lemmas
for different primitive modules such as adder, multiplier, and delay and then
used these lemmas in the proof of the original theorems.

6 Conclusions

As system-on-a-chip (SoC) designs become a driving force in electronics systems,
current verification techniques are falling behind at an increasing rate. Verifica-
tion of today’s SoCs occurs at low levels of abstraction, typically RTL. As the
complexity of SoCs grows, it is important to move the verification to higher levels
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of abstraction. In this paper, we proposed the formalization of SystemC based
fixed-point arithmetic in the HOL theorem prover as a basis for modeling and
verification of SoC designs at floating-point and fixed-point algorithmic levels
against the implementations in RTL and netlist gate levels. The formalization
presented in this paper is an extension to the previous work on formalization of
IEEE standard based floating-point arithmetic and Cadence SPW based fixed-
point arithmetic. We modeled the generalized SystemC fixed-point data types
and extended the verification to cover the different rounding and overflow modes
in SystemC fixed-point arithmetic. Finally, we used our formalization for mod-
eling and verification of a second order Notch filter system.
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