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Abstract
In this paper we present our results on verifying the imple-
mentation of a SCI-PHY (Saturn Compatible Interface for
ATM-PHY devices) Level 2 protocol engine, commercial-
ized by PMC-Sierra, Inc. Using the FormalCheck tool, we
first established a proper verification environment, then
defined a number of relevant liveness and safety proper-
ties, which we checked on an abstracted (8 PHY devices)
as well as the original (32 PHY devices) hardware model.
Throughout our verification efforts, we uncovered a num-
ber of mismatches between the hardware design in VHDL
and the SCI-PHY protocol specification. Some of these are
pertinent design bugs which were not caught during the
simulation process.

1.  Introduction
With the increasing reliance of digital systems, design er-
rors can cause serious failures, resulting in the loss of time,
money, and long design cycle. Large amounts of effort are
required to correct design errors, especially when the error
is discovered late in the design process. For these reasons,
we need approaches that enable us to discover errors and
validate designs as early as possible. Conventionally, simu-
lation has been the main debugging technique. However,
due to the increasing complexity of digital systems, it is be-
coming impossible to simulate large designs adequately.
Therefore, there has been a recent surge of interest in alter-
native/complementary techniques, such as formal verifica-
tion [4]. In formal verification, a mathematical model of the
design is compared with a formal specification describing
the correctness criteria for the design. The verification is ex-
haustive: all possible behaviors of the model are considered.

In this paper, we describe the functional verification of a
protocol engine implementing SCI-PHY—Saturn Com-
patible Interface for ATM-PHY (Asynchronous Transfer
Mode physical layer devices). The SCI-PHY Level 2 pro-
tocol is a superset of UTOPIA (Universal Test & Opera-
tions PHY Interface for ATM) Level 2 protocol [1]. The
design we considered implements the output port of a cell
interface and is product of PMC-Sierra, Inc. [6]. It can be
configured to operate either as a bus master or bus slave. In
this paper, we present our results of formally verifying the
SCI-PHY protocol engine using FormalCheck [3]. Formal-
Check is a model checking tool from Cadence, that is used
to verify synthesizable Register Transfer Level (RTL)
VHDL or Verilog design models.

The rest of the paper is organized as follows. In Section 2,
we briefly describe the structure of the SCY-PHY protocol
hardware design and behavior. In Section 3, we overview

the FormalCheck tool. In Section 4, we present the verifi-
cation environment we adopted for verifying the SCI-PHY
protocol design. In Section 5, we describe sample proper-
ties we checked using FormalCheck. In Section 6, we dis-
play our experimental results and discuss some of the
errors we uncovered. In Section 7, we conclude the paper.

2.  The SCI-PHY Protocol Engine

The SCI-PHY protocol was defined within the SATURN
Group [5] as a standardized cell-based interface between
ATM layer and PHY layer devices to support single-PHY
and multi-PHY applications. The SCI-PHY Level 2 proto-
col is a superset of UTOPIA (Universal Test & Operations
PHY Interface for ATM) Level 2 protocol [1]. SCI-PHY
Level 2 is an extension of SCI-PHY, that leaves all of the
basic specifications and operations unchanged, but adds
two important interface specifications (1) a Physical Medi-
um Dependant (PMD) to Transmission Convergence (TC)
interface specification that is compatible with all major
vendors of 155 and 622 Mbit/s PMD and TC devices, and
(2) an ATM Layer to Switch interface specification that
provides a general purpose “extended-cell” format that
will accommodate most ATM Layer implementations [5].

The SCI-PHY protocol engine we consider here is a Tele-
com System Block (TSB) designed by PMC-Sierra, Inc. It
implements the output port of a cell interface and can out-
put the cell data either in 8-bit or 16-bit wide format at
clock rates up to 52 MHz [6]. Data transfers are cell-based,
that is an entire cell is transferred to one PHY device be-
fore another is selected.

2.1.  SCI-PHY Cell Format

The 8-bit wide, variable data structure at the SCI-PHY in-
terface is shown in Figure 1. A user defined (UDF) byte is
included in the data structure to allow Header Error Con-
trol (HEC) generation to be performed either in the ATM
layer device or the PHY layer device. The prepended bytes
are used by ATM switch cores in system specific ways to
route the cell through those cores [5].

The SCI-PHY protocol TSB is designed to interface directly
to a Multi-channel Cell FIFO (MCF). It directly supports up
to 32 logical channels each corresponding to a physical lay-
er (PHY) ATM device. Each logical channel corresponds to
a FIFO channel in the external FIFO. When the TSB is op-
erated as a bus slave, it autonomously multiplexes the traffic
from up to 32 logical channels and presents them as a single
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cell stream. The logical channel is identified by the first
word of the cell data received from the FIFO.

Figure 1:  8-bit SCI-PHY Cell Format

2.2.  SCI-PHY Protocol TSB

The SCI-PHY protocol TSB design consists of two major
blocks, the CBI block and SCAN block (Figure 2). The
CBI block is used only for the configuration and the test in-
terface and the SCAN block drives the main functionality.
The SCAN block consists of four main blocks, namely,
Datapath, Polling controller, FIFO interface controller and
Transfer controller. The Polling controller block handles
the control signals related to the polling of the protocol en-
gine in the Receive-Slave mode and polling the PHY de-
vices in Transmit-Master mode. The FIFO interface
controller block decides if any of the 32 FIFOs has a cell
available and also decides which FIFO channel should be
selected. The Transfer controller block determines when
the transmission of a cell starts, and the Datapath block ac-
tually handles the transmission of data.

3.  The FormalCheck Tool

FormalCheck [3] is a functional verification (model check-
ing) tool commercialized by Cadence intended to augment
conventional simulation techniques. It is used to verify
synthesizable Register Transfer Level (RTL) VHDL or
Verilog design models using model checking. Formal-
Check provides an intuitive graphical interface to simplify
the verification process.

A model checker verifies that a design model exhibits spe-
cific behaviors (properties) that are required by the design
specification. Properties that form the basis of a model
checker’s queries fall into two categories:safetyandlive-
ness. Safety properties describe behaviors that can be
shown to be false by a finite simulation trace. Safety prop-
erties use one of the two formats: thealwaysformat and the
neverformat.Livenessproperties describe behaviors that

are eventually exhibited. Liveness properties cannot be
checked with a simulation tool, unless the maximum num-
ber of steps before the fulfillment of the eventuality is
known. Liveness properties use one of the three formats:
theEventuallyformat, theEventually Alwaysformat, and
theStrong Liveness format.

FormalCheck works by checking aquery. A query is a
group of properties that are to be checked together subject
to specifiedConstraints. FormalCheck provides run op-
tions that are used to select which algorithms are used in a
verification run. Proper use of run options will ensure an
efficient verification.

Figure 2:  SCI-PHY Protocol TSB

4.  Verification Environment

In following we describe the environment set-up we built
in order to verify the SCI-PHY protocol design within For-
malCheck in an efficient way.

4.1.  Model Reduction and Abstraction

The SCAN block of the SCI-PHY protocol TSB consists of
four main blocks (Figure 2), namely, Datapath, Polling
controller, FIFO interface controller and Transfer control-
ler, where the Polling controller, FIFO interface controller
and Transfer controller were of interest in our study. To re-
duce the state space and speed-up the verification, we tried
to trim the protocol design by eliminating the blocks that
did not have any or very little effect on the three control
blocks. The abstractions and reductions adopted are as fol-
lowing:
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- We isolated the SCAN block, hence, eliminating the CBI block
used for test purposes.

- We removed the INPUT_MUX module from the SCAN block.
We modeled the outputs of this block which were used by the
control blocks, inside the SCAN block.

- We removed the DATAPATH module from the SCAN block.
- We made an abstracted model of the SCAN block to support

only 8 PHY devices, to reduce the verification time and also the
memory used by FormalCheck. Once we succeeded verifying
the properties for the abstracted model, we verified the same
properties on the model which supports 32 PHY devices.

4.2.  Environment Constraints

In FormalCheck, environment abstraction is possible using
Reduction Seeds, Electronic Scissors, andConstraints[3].
By adding Constraints to the properties, we reduce the
state space explored in verification and therefore improve
the overall performance, which means less CPU time and/
or memory usage [3].

Correct design behavior requires certain input behavior. In
FormalCheck, primary signals are assumed to be non-de-
terministic, meaning they could acquire any value within
their range on any edge of the clock. However, in most cas-
es correct design operation is allowed on a single edge of
the clock. For this reason, properties should be observed
using the appropriate clock edge. Examples of Constraints
we defined for properties checking on the TSB are:
- A ClockConstraint on OFCLK and SYSCLK signals (refer to

Figure 2), starting with high for one cycle and then low for one
cycle.

- A ResetConstraint on the RST signal (Figure 2), starting with
high for 2 clock cycles and then goes to low forever.

- A GroupConstraint to drive to SCI-PHY slave mode.
- A Group Constraint to drive the TSB to default mode of

operation.

5.  Properties Specification

Once the proper environment established, we defined a set
of relevant properties based on the SCI-PHY Level 2 pro-
tocol specification. Table 1 shows a brief description of the
properties established to verify the Receive Slave SCI-PHY
mode of the protocol engine TSB. In this section, we de-
scribe three sample properties, including liveness and safe-
ty properties. A complete description of all properties is
reported in [2]. The experimental results of the properties
verification are summarized in Tables 2 and 3 (Section 6).

Property_2: According to the SCI-PHY protocol: “Each
PHY link shall have a unique address corresponding to a
value between 0 and 31. Upon sampling its address with the
rising edge of the RFCLK, a PHY must drive RCA to indi-
cate whether it has an entire cell in its buffer” [6]. For the
TSB design, this property is expressed as following: “When
OAVALID_I and TSBSEL are asserted (TSB is polled) and
all CMTY[31:0] lines are high or the prefetch of the next
FIFO is not finished, OCA_O will be deasserted” [5]. In
FormalCheck, this property is described as follows.

Property: property_2

Type: Always

After: (@TSBpolled) and
(Polling_Sm_Inst:Allfifoempty = 1)
and (@RstDone) and (@CLKrising)

Always: (not @RCAhigh)

Property_7: According to the SCI-PHY protocol: “The
ATM layer device may pause the transfer at any time by
deasserting RRDENB” [6]. For the TSB design, this prop-
erty is expressed as following: “The Slave Transfer State

Table 1:  Properties for the Receive Slave SCI-PHY mode

Property Source(s) Brief Description of Property

Property_1 SCI-PHY Doc. &
Test bench

OENB_I = 0 & TSB Selected then OSOC = 1 & @StartTxState

Property_2 SCI-PHY Doc. &
TSB Spec.

If TSB is polled and all CMTY[31:0] lines are high or the prefetch of the next FIFO
is not finished, OCA_O will be deasserted

Property_3 TSB Spec. In Back To Back Transfer Mode: @TransferDone & OENB_I = 0 & AllFifoEmpty =
1 then ODAT_OEB = 1

Property_4 SCI-PHY Doc. No PHY shall drive RCA (OCA_O) upon sampling RAVALID (OAVALID_I) low
Property_5 SCI-PHY Doc. &

TSB Spec.
@TSBpolled & (more cell available to transfer & @PrefetchDone) then OCA_O = 1

Property_6 TSB Spec. In Back To Back Transfer Mode: @TransferDone & OENB_I = 0 &
New_Cell_Transf_Rdy = 1 then Eventually OSOC = 1 & @StartTxState

Property_7 SCI-PHY Doc., TSB
Spec. & Test bench

TSB always expects a complete cell transfer but supports transfer interruption by
deassertion of OENB_I

Property_8 SCI-PHY Doc. If master selects the TSB before the prefetch cycle is done, the TSB will not start a
cell transfer in the next C.C.

Property_9 SCI-PHY Doc. &
TSB Spec.

When operating in the Slave mode the TSB monitors the input signal OENB_I to val-
idate the data transfer

Property_10 SCI-PHY Doc. &
TSB Spec.

TSB Selected & OENB_I = 0 then ODAT_OEB = 0

Property_11 TSB Spec. TSB not Selected & @TransferComplete then ODAT_OEB = 1
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Machine always expects a complete cell transfer but sup-
ports transfer interruption by deassertion of the OENB_I
signal” [5]. In FormalCheck, this property is described as
follows.

Property: property_7
Type: Eventually Always
After: (not @TransferDone) and (OENB_I =1)

and (@RstDone) and (@CLKrising)
Eventually Always: @TransferDone
Unless: (OENB_I =1)

Property_10: According to the SCI-PHY protocol:
“When RRDENB is sampled low by the PHY layer device,
the RDAT bus will be accepted by the ATM layer device
on the next rising edge of RFCLK” [35]. In the TSB when
operating in Slave mode, this property is expressed as fol-
lowing: “ODAT_OEB is low when OENB_I was asserted
low in the previous clock cycle, and the TSB is selected for
a cell transfer” [34]. In FormalCheck, this property is de-
scribed as follows.

Property: property_10
Type: Always
After: (@TSBselected) and (@RstDone) and

(@CLKrising)
Always: ODAT_OEB = 0
Unless: (OENB_I =1)

6.  Experimental Results
After completing the set-up of the proper environment and
the specification of the properties, we verified both an ab-
stracted model (with 8 PHY devices) and the original (with

32 PHY devices) TSB models. The experimental results
are shown in Tables 2 and 3, respectively, including the re-
duction algorithm used, the status of the property verifica-
tion, the number of reached states, the number of states in
the model, the average state coverage, the CPU time (real
time) in seconds, and the memory usage in megabytes. All
experiments were conducted on a HP9000 (440MHz) with
6144 MB RAM and HP-UX11 operating system.

Tables 2 and 3 report that the verification of Property_1
and Property_6 were “Terminated”. To discover the cause
of the termination, these properties were decomposed into
two sequential sub-properties each (e.g., Property_1A and
Property_1B), which provide the same behavior as the
original properties and could be proved independently [2].

During the verification process, we found several mis-
matches between the RTL implementation of TSB and the
TSB specification with respect to the SCI-PHY protocol
(e.g., Property_3). We hence suggested concrete modifica-
tions to the design and specification of the TSB which were
considered acceptable by the designers, and the specifica-
tion was revised to reflect these corrections. An example of
such errors is given below (a full list of the uncovered er-
rors can be found in [2]).

According to the SCI-PHY protocol: “To ensure backwards
compatibility with single-PHY devices, the PHY for which a cell
transfer is in progress shall not be polled until completion of the
cell transfer” [5]. The TSB was basically designed to be polled
while transmitting a cell, so naturally it is not compatible with
single-PHY devices. In Receive Slave SCI-PHY mode the TSB
relies on the master device. If the master device is not compatible
with single-PHY devices and it polls the TSB during a cell
transfer, the TSB will reply and will not care being backwards
compatible with single-PHY devices.

Table 2:  Experimental results of model checking of the abstracted (8 PHY) design

Properties Reduction
Algorithm Status States

Reached
State

Variables

State Var.
Avg.

Coverage

Real Time
(seconds)

Memory
Usage
(MB)

Property_1 Iterated Terminated N/A N/A N/A N/A N/A

Property_1A 1-Step Verified 5.09e+09 114 97.37% 493 34.61

Property_1B 1-Step Verified 5.09e+09 114 97.37% 189 34.59

Property_2 1-Step Verified 5.09e+09 114 97.81% 126 34.73

Property_3 1-Step Failed 3.28e+08 115 95.22% 160 36.23

Property_4 1-Step Verified 5.09e+09 114 97.81% 84 34.20

Property_5 1-Step Verified 5.09e+09 115 97.39% 256 36.82

Property_6 1-Step Terminated N/A N/A N/A N/A N/A

Property_6A 1-Step Verified 3.83e+08 114 98.25% 161 29.90

Property_6B 1-Step Verified 3.83e+08 114 98.25% 256 29.51

Property_7 1-Step Verified 5.09e+09 114 98.25% 208 34.74

Property_8 1-Step Verified 5.09e+09 114 97.37% 34 5.27

Property_9 1-Step Verified 5.45e+09 115 97.39% 23 5.27

Property_10 1-Step Verified 4.61e+03 20 97.50% 18 21.68

Property_11 1-Step Verified 5.14e+09 116 97.41% 136 34.63
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7.  Conclusions
In this paper, we investigated the formal verification of a
SCI-PHY (Saturn Compatible Interface for ATM-PHY de-
vices) Level 2 protocol engine, commercialized by PMC-Si-
erra, Inc. Using the FormalCheck tool, we first established a
suitable verification environment, then defined a number of
relevant liveness and safety properties covering essential be-
haviors of the SCI-PHY protocol. We checked these proper-
ties on an abstracted (8 PHY devices) as well as the original
(32 PHY devices) hardware model. Throughout our verifi-
cation efforts, we uncovered a number of mismatches be-
tween the hardware design in VHDL and the SCI-PHY
protocol specification. Some of these are pertinent design
bugs which were not caught during the simulation process.
Human time is a very important factor in formal verifica-
tion. In this study as shown in Table 4, a lot of time was
spent for understanding the specifications to define the
right queries and also for understanding the implementa-
tion to be able to apply the features of FormalCheck like
Reduction Seeds, Constraints and State Variables. Since
the designer has a thorough knowledge of the design and
the specification, assuming he/she is trained to use Formal-
Check, it would take him/her only 3-4 weeks to define the

queries and formally verify this design. This is much short-
er in comparison to the 13 weeks spent for simulation.
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Table 3:  Experimental results of model checking of the full (32 PHY) design

Properties Reduction
Algorithm Status States

Reached
State

Variables

State Var.
Avg.

Coverage

Real Time
(seconds)

Memory
Usage
(MB)

Property_1 Iterated Terminated N/A N/A N/A N/A N/A

Property_1A Iterated Verified 2.93e+18 195 97.95% 29 7.22

Property_1B Iterated Verified 2.94e+18 195 97.95% 31 7.22

Property_2 Iterated Verified 4.12e+25 193 99.48% 21 7.21

Property_3 1-Step Failed 1.76e+18 251 97.41% 10370 126.79

Property_4 Iterated Verified 2.93e+18 196 98.21% 76 42.50

Property_5 Iterated Verified 2.93e+18 197 97.97% 73 38.87

Property_6 Iterated Terminated N/A N/A N/A N/A N/A

Property_6A Iterated Verified 2.06e+17 195 98.46% 86 42.03

Property_6B Iterated Verified 2.06e+17 195 98.46% 92 43.16

Property_7 Iterated Verified 2.93e+18 195 98.46% 73 42.50

Property_8 Iterated Verified 2.93e+18 195 97.95% 72 37.79

Property_9 Iterated Verified 3.09e+18 196 97.96% 69 38.33

Property_10 Iterated Verified 2.93e+18 195 98.21% 75 38.96

Property_11 Iterated Verified 2.94e+18 196 98.21% 380 38.90

Table 4:  Detailed time frame for the design and verification project

Design and Verification Phases Time (weeks)

Designing the RT level model 4

Writing test benches and simulation 13

Reading documents (SCI-PHY, UTOPIA, and TSB Spec.) 2

Reading the VHDL RTL code 3

Verifying FSM and Timing Diagrams 2

Defining and verifying properties on the complete TSB 5

Total time spent for model checking 12


