
MODELING AND VERIFICATION OF FIREWALL CONFIGURATIONS USING DOMAIN
RESTRICTION METHOD

Amjad Gawanmeh Sofiène Tahar

Khalifa University Concordia University
Sharjah Campus, PO.Box 573 Sharjah, UAE Montreal, Quebec, H3G 1M8 Canada

amjad.gawanmeh@kustar.ac.ae tahar@ece.concordia.ca

ABSTRACT

Firewalls play an important role in the security of communi-
cation systems. They are widely adopted for protecting pri-
vate networks by filtering out undesired network traffic in and
out of the secured network. The verification of firewalls is a
great challenge because of the dynamic characteristics of their
operation, their configuration is highly error prone, and fi-
nally, they are considered the first defense to secure networks
against attacks and unauthorized access. In this paper, we pro-
pose a new approach for modeling and verification of firewall
configuration rules using domain restriction method. Our ap-
proach is implemented in Event-B formal techniques, where
we model firewall configuration rules, and then use invariant
checking to verify the consistency of firewall configurations
in Event-B theorem proving framework.

1. INTRODUCTION

With the growing complexity of computer networks, security
has become a crucial issue. Firewalls are part of network se-
curity that were designed to enable secure connections be-
tween private networks and outside networks, the growing
complexity of networks made them indispensable to control
information flow within a network. Therefore, they are widely
adopted for protecting private networks by filtering out un-
desired network traffic in and out of the secured network.
Therefore, firewalls are the front defense for secure networks
against attacks.

The configuration of a firewall is highly error prone and
solutions are needed in order to analyze its correctness. A
firewall configuration error can create security holes that will
allow undesired traffic to pass into a private network or blocks
legitimate traffic and disrupts normal firewall operation, which
can lead to undesired consequences. Therefore, the central
role of firewalls in the security of the organization informa-
tion make their management a critical task.

Testing and verification of firewalls is a great challenge
because of the dynamic characteristics of their operation, their
configuration is highly error prone, and finally, they are con-
sidered the first defense to secure networks against attacks and

unauthorized access. In addition, firewalls can be used exten-
sively before it turns out that they are vulnerable to attacks,
even though they receive intensive analysis, and thought to
be correct. This shows that the informal design of firewall
and their configuration is error prone because reasoning about
them is difficult. In addition, most firewalls operation depends
on the existing sequence of rules, which is intentionally made
dynamic in order to eliminate certain DoS attacks, therefore
it is essential to detect conflicting rules in firewalls configura-
tions, and at the same time be able to decide if they conform
to the security requirement of the firewall.

Formal verification [1] uses mathematical reasoning to
verify that design specifications are correct against certain de-
sign requirements. Formal methods have been successfully
used for the precise analysis and verification of a verity of
systems including protocols, security systems, software and
hardware systems.

In this paper we propose a new approach for analyzing
firewall configurations based on formal techniques in order
to show that they are correctly implemented. Our method
for verification of firewall configuration rules is based on cal-
culating domain restricted sets. A formal model for firewall
configuration rules is defined, then, domain restriction opera-
tions are defined on this model. Finally, these operations are
used to formally verify the consistency of the configuration
rules. For illustration purpose, we use the Event-B [2] formal
method in order to apply our approach on firewall example,
where we model firewall rules in Event-b, then define an ap-
propriate invariant to check consistency in firewalls rules.

The rest of the paper is organized as follows. Section
2 discusses related work. In Section 3, we present a for-
mal model for firewall configurations and domain restriction
based method for their verification. In Section 4, we present
an implementation of the method in Event-B, and illustrate it
on a case study. Finally, Section 5 concludes the paper with
open issues and future work directions.

6th International Conference on Internet Technology and Secured Transactions, 11-14 December 2011, Abu Dhabi, United
Arab Emirates

978-1-908320-00-1/11/$26.00 ©2011 IEEE 642

2. RELATED WORK

Many methods have been proposed for the detection of rules
conflicts in firewalls configurations. Abbes et al. [3] proposed
a method to detect overlaps between packet filters within one
firewall, they classify rules based on the conditions of each
filtering rule to separate non overlapping rules. Ben Youssef
et al. [4] proposed a method for checking whether a firewall
reacts correctly with respect to a security policy given in an
high level declarative language, the method is implemented
in satisfiability solver modulo theories (SAT solver). These
work are limited to the problem conflict avoidance, and do
not consider the more general problem of verifying whether a
firewall reacts correctly with respect to a given security policy.
Brucker et al. [5] presented a case study to model firewalls
and their policies in higher-order logic (HOL) throughout a
set of derived theories for simplifying policies. Cuppens et al.
[6] proposed an automatic process generating firewall rules
from an abstract specification of a security policy.

Liu [7] verifies in his work wither a firewall policy sat-
isfies a given property. The method is based on checking
whether a the property rule does not conflict with any rule
defined by a decision path of the firewall decision diagram.
Yuan et al. [8] introduced FIREMAN, a static analysis toolkit
for firewall modeling and analysis that treats firewall config-
urations as specialized programs and applies static analysis
techniques to check problems configurations, such as policy
violations, inconsistencies, and inefficiencies in firewalls. Jef-
fery and Samak [9] used SAT solvers for the model analysis
of reachability and cyclicity properties of interest in firewall
policies. In another work Matoušek et al. [10] introduced
a formal method approach for verification of security con-
straints on networks with dynamic routing protocols in use.

In fact, there is good amount of work in the literature on
detecting firewall policies conflict, approaches only checks
for conflicts between rules which is obtained by inspecting
certain fields in the policy, in addition, it considers only fire-
wall policies at high level of abstraction. On the other hand,
the policy itself can be wrongly implemented in the firewall
configuration in the absence of conflicts, therefore there is a
need to check the consistency of firewall configuration with
regards to firewall policies. We believe the use of first-order
theorem proving will be more efficient in this particular case.
Even though fully automatic verification will not be feasible,
with some effort the verification can still be conducted within
reasonable amount of interaction.

3. DOMAIN-BASED RESTRICTION METHOD

In this section we present our formal model for firewall con-
figurations, where we formally define components and re-
lations in firewalls, then our verification methods based on
this model. Firewalls [11] are network elements that controls
packets in a secured network based on a set of rules. These

rules define the actions performed by the the firewall based
on certain and configured filtering conditions. Firewall rules
filter traffic based on protocol type, port used, or source and
destination IP addresses Firewall actions are either to accept,
or deny. The first allows packets to pass through, while the
second blocks them. Rules are examined in sequence, the
packet is accepted or denied by a specific rules if it matches
the required network addressing fields of this rule. Other-
wise, the following rule is examined until a matching rules is
found. In case no rule is found, a default policy action can be
performed.

In order to provide a formal and precise model for the
above description, we will use first-order logic that allows rea-
soning about firewall operations and primitives, while at the
same time, can be implemented directly in supporting verifi-
cation Methods such as Event-b.

We assume a finite domain containing the possible net-
work addresses pairs in a firewall configuration ⟨s, d⟩, i.e.
source and destination, let N be the set of possible network
address pairs for packets incoming to and outgoing from a
network such that ⟨s, d⟩ ∈ N . We define two sets based on
N , the first, Ns, is for source addresses, and the second, Nd,
is for destination addresses. N is an abstract set that will be
refined in order to represent actual network addresses, it can
be refined further to represent protocol type or port numbers
in IP network addressing scheme. Let A be the abstract set
of all possible actions a firewall can perform, This set can be
defined as follows: A = {accept, deny}. We define every
firewall rule to be a mapping relation from an address pair in
N into an action in A, formally, r = n 7→ a, where n ∈ N ,
a ∈ A and 7→ is a mapping relation from addresses to actions
that maps one element in N to an element in A. We define R
be the set of firewall rules such that R = N × A, therefore,
r ∈ R. A sequence of rules is a subset of the power set of R,
a firewall configuration F is a finite sequence of rules of the
form r1, r2, . . . ri, therefor, we can write: F ∈ P(N × A),
where P is the power set.

The domain of firewall configuration rules, D, is defined
as follows:
D(F) = {n|n ∈ N ∧∃a, r · (a ∈ A∧ r ∈ R∧ r = n 7→ a)}

Furthermore, two domains can be defined for source and
destination addresses, Ns and Nd, respectively, are defined
as:
Ds(F) = {s|n = ⟨s, d⟩ ∧ n ∈ N ∧ ∃a, r · (a ∈ A ∧ r ∈
R ∧ r = n 7→ a)}
Dd(F) = {d|n = ⟨s, d⟩ ∧ n ∈ N ∧ ∃a, r · (a ∈ A ∧ r ∈
R ∧ r = n 7→ a)}

Similarly, The configuration co-domain, D, defined as:
C(F) = {a|a ∈ A∧ ∃n, r · (n ∈ N ∧ r ∈ R∧ r = n 7→ a)}

Domain restriction is applied on firewall configurations
in order to obtain a subset of R. The operator � is used to
represent domain restriction based on source and destination
addresses. First, we formally define domain restriction based
on a set of network address pairs, then we refine this definition

643

further for source and destination addresses.
Domain restriction is defined using the operator � over a

set of network addresses, N , where N ∈ P(D(F)), and a set
of firewall rules R as follows:
N �R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈ R ∧ r =
n 7→ a)}

Domain restriction of firewall configurations for any set of
network source and destination addresses,Ns and Nd, where
Ns ∈ P(Ds(F)) and Nd ∈ P(Dd(F)), is defined respec-
tively as:
Ns�R(F) = {n 7→ a|n ∈ N∧a ∈ A∧∃r·(r ∈ R∧∃d·(d ∈
Dd ∧ n = ⟨s, d⟩ ∧ r = n 7→ a))}
Nd�R(F) = {n 7→ a|n ∈ N∧a ∈ A∧∃r·(r ∈ R∧∃s·(s ∈
Ds ∧ n = ⟨s, d⟩ ∧ r = n 7→ a))}

Domain restriction operation is closed under N , Ns, and
Nd. In addition N � R(F), Ns � R(F), and Nd � R(F)
obtain the same set, namely, R.

Co-domain restriction is defined for a chosen set of ac-
tions Ac ∈ P(A), the operator � is used to represent this
operation, which is formally defined as follows:
Ac �R(F) = {n 7→ a|n ∈ N ∧ a ∈ A ∧ ∃r · (r ∈ R ∧ r =
n 7→ a))}

To verify that a given configuration rules, Rn, for a spe-
cific network range of addresses N are reselected by the fire-
wall configurations rules R, we define two simple sets of ac-
tions Aa = {accept} and Ad = {deny}, then we calculate
two sets of rules where this network occurs in their domain,
one as source, Rs, and another as destination, Rd, where
Rs = N �R(F) and Rd = N �R(F). Next, we calculate
two sets of rules using co-domain restriction for Aa and Ad

by applying co-domain restriction operators on the calculated
sets Rs and Rd as follows:

Rsa = Aa �Rs

Rsd = Ad �Rs

Rda = Aa �Rd

Rds = Ad �Rd

The configurations is considered consistent if the calcu-
lated rules above does not coincide with each others for source
addresses and for destination addresses, formally:

(Rsa ∩Rsd = ∅) ∧ (Rda ∩Rdd = ∅).
This method is implemented in Event-B framework by

providing a model for the firewall configuration rules, then
calculating the domain restricted sets. The consistency of the
rules is obtained through Event-B invariants.

4. CASE STUDY

4.1. Event-B

Event-B [2] is a formal method for modeling guarded oper-
ations. Event-B method provides invariants proofs for state-
based systems that are updated by guarded events. Event-B
has been shown suitable to perform verification of wide range

of systems, but have not been explored for checking proper-
ties over firewall configurations. Since Event-B provides a
library of operators for set operations in first-order logic, we
can use it efficiently for the implementation of our method.
On the other hand, the Event-B language [12] allows model-
ing firewall specifications at different levels of abstraction.

In Event-B 1 [2], the guard is a predicate built on state
variables while an action is a generalized substitution that de-
fines a state transition. A guard activates an event when it
evaluates to true. A descriptive specification describes what
the system does by using a set of variables, constants, prop-
erties over constants and invariants which specify properties
that the machines state verify.

The correctness of an event-B model is established by
proof obligations for the invariants, where each event, includ-
ing the initialization event, should preserve these invariants.
Event-B guards are used to define preconditions that should
hold before the event can be executed. The guard and the
action of an event defines a relation between variables be-
fore the event holds and after. Proof obligations are produced
from events in order to state that the invariant condition is pre-
served. These proof obligations need to be verified in Rodin
in order to proof the correctness of the invariants.

Event-B models can be refined with events or variables.
We use R(v, v′) to represent events that models firewall rules.
In the refined model, we will use the same relation, we call
it Rc(vc, v

′
c) that models the updated set of rules, vc, in the

refined model MC based on a refined address.
The correctness of firewall policy consistency with re-

gards to the event-B concrete model Mc is achieved through
the correctness of the gluing invariant J(v′, v′c). Figure 1 be-
low illustrates the link between the abstract and refined model
of firewall configurations.

 !"

 # "

$ $%

$# $#%

&
'()*+,-!

.,/01+0,2
&

345210#2!6)78(

6.!"!

 89+,87!6)78(

6#

φ

φ#.!"!

:+18*0((

;),5+528,#<

Fig. 1. Modeling Firewalls Two Levels of Abstraction

The abstract and concrete state variables, v and vc, respec-
tively, are linked together using the gluing invariant J(v, vc).
AM represents an abstract model for firewalls at the network
level, where variable v and invariant I(v) are refined by a con-
crete model CM of the firewall at the IP address level, with

1This subsection is a description of Event-B method from Event-B refer-
ences, mainly [2], we follow the same description we presented in a previous
work in [13]

644

variables vc and gluing invariant J(v, vc). If RA(v, v
′) and

RC(vc, v
′
c) are, respectively, the abstract and concrete before-

after predicates of the same event, then we obtain the follow-
ing implication:

(I(v)∧J(v, vc)∧RC(vc, v
′
c)) ⇒ ∃v′.(RA(v, v

′)∧J(v′, v′c))
Under the abstract invariant I(v) and the gluing invariant

J(v, vc), a concrete step RC(vc, v
′
c) can be simulated by an

abstract one RA(v, v
′) in such a way that the gluing invariant

J(v′, v′c) is preserved. This leads to the following statement:
I(v) ∧ J(v, vc) ∧ RC(v, v

′
c) ⇒ J(v, v′c). The gluing invari-

ant, J(v, vc), is used to represent the consistency of firewall
configurations.

Rodin tool [14] is a theorem prover that is designed to run
automatically and use a large library of mathematical rules,
provided with the system, however, interactive guidance from
the user is required for certain proof obligations. We use the
Rodin platform in order to define and implement two models
for the firewall: an abstract model at the network address level
and a refined model at the IP address level. In addition, the
consistency of firewalls configurations are defined as Event-
B invariants, and then are verified for the refined model by
discharging all the proof obligations generated by the tool.

4.2. Verification of Firewall Configurations

An example of a firewall is given in Figure 2, where net a,
net b, net c, and net d, along with their architecture, in ad-
dition to the IP addresses are only illustrative. The firewall
contains filter rules, when a packet arrives to its entry, the
corresponding chain of rules decides if the packet must be
dropped or must continue its traversal of the rules. The chain
is made up of a list of rules, when inspecting packets chains
use the following: the source and destination network, the IP
source address, the IP destination address, the protocol, the
source port and the destination port.

net_c
net_d

net_b
net_a

 !"#$%&&

1.1.1.0 2.1.1.0

2.2.1.03.2.1.0

Host

2.1.1.1

DNS

3.2.1.2

FTP

2.2.1.5

Fig. 2. A Firewall Controlling Traffic in a Network

We consider representing the network a different levels
of abstraction, with each refinement of the network, we add
more details about the address, and hence, we obtain more
concrete firewall rules. In order to illustrate our verification

method, we chose a network represented by three zones con-
trolled by a firewall whose initial configuration corresponds to
a given set of rules. For the firewall controlled network given
in Figure 2, will consider the a security policy, which can be
implemented in a firewall configuration that is composed of a
set of rules, for instance, consider the following set of rules:

R1 : net a has the right to access net b.
R2 : net b has the right to access net c.
R3 : net c has no right to access to net a.
R4 : host in net b has the right to access DNS and FTP

servers.
R5 : net c has no right to access to FTP server in net d.
The above firewall rules can contain any of the follow-

ing parameters: Network, IP address, protocol or and port.
At the first level of abstraction, we consider network param-
eters, where we abstract rules to be at the network level. The
abstract rules are contained in the concrete ones, an Event-B
model is defined for this level of abstraction along with certain
invariants to check the consistency of the firewall configura-
tion.

Abstraction of the above set of rules results in an abstract
configuration at the network level. Note that this abstraction
may result in contradiction in case certain part of one network
is granted access to an outer network, and another part of the
same network is denied access to that outer network. Ab-
straction here will definitely result in contradiction between
the abstract rule and one of the concrete rules. To overcome
this, we consider both rules result in an undefined action. This
issue, however, will be resolved at the refined level when we
consider the model at the IP address level where both cases
can be defined with the appropriate action.

In the first step we will present an abstract model of the
above policy at the network level. We define two types AC-
TION and NET, the first type define behavior of the firewall
on filtered packets: ACCEPT or DENY. In order to have a
complete specification, which is necessary for proof obliga-
tions discharge, we assume that an there is always a default
last rule that is either ACCEPT or DENY.

CONTEXT X0
SETS

ACTION NET

CONSTANTS
ACCEPT DENY

net a net b net c net d

AXIOMS
axm1 : partition(ACTION , {ACCEPT}, {DENY },)
axm2 : partition(NET , {net a}, {net b}, {net c}, {net d})
axm3 : DENY ̸= ACCEPT

usu
END

MACHINE F0
SEES X0
VARIABLES

RULE

INVARIANTS
inv7 : RULE ∈ NET × NET � ACTION

645

EVENTS
Initialisation

begin
act2 : RULE :=

{(net a 7→ net b) 7→ ACCEPT ,
(net b 7→ net c) 7→ ACCEPT ,
(net c 7→ net a) 7→ DENY ,
(net b 7→ net d) 7→ ACCEPT ,
(net c 7→ net d) 7→ DENY }

end

END

In this Event-B model, the set RULE is defined as a total
injection function from the set of NET × NET into the set
ACTION. The actual rules of the firewall configurations are
defined in the initialization event, where the address of every
rules is abstracted into the network address. This may result
in merging two or more rules into one single rule.

This model is refined by defining the network address
NET over the range of possible IP addresses in the axioms
below. In order to make the variants below readable and sim-
ple, we assume IP addresses are of class A only, however, the
invariants can simply be extended to include other classes by
adding the constraints below.

Firewall configuration is defined at this level by mapping
every pair of addresses(source and destination) into its pos-
sible action throughout the term RULE below. Rules are
checked for consistency in Rodin by evaluating the invariant
RuleCheck below for the rules map that defines the firewall
configurations. This invariant generates a number of proof
obligations were discharged using Rodin proof control.

CONTEXT X1

CONSTANTS
RN NET

AXIOMS
axm1 : RN ∈ 0 ..255

axm2 : NET ∈ RN × RN × RN × RN

END

MACHINE F1

SEES X1

VARIABLES
RULE

INVARIANTS
inv1 : RULE ∈ NET × NET � ACTION

RuleCheck : ∀src1 , src2 , dst1 , dst2 · src1 ∈ NET ∧
src2 ∈ NET ∧ dst1 ∈ NET ∧ dst2 ∈ NET ∧
(RULE(src1 7→ dst1) = ACCEPT ∧
RULE(src2 7→ dst2) = DENY) =⇒
¬(src1 = src2 ∧ dst1 = dst2) ∧
((NetAdd(src1) = ⊤) ∨ (NetAdd(src1) = ⊤ ∧
SUBNET(src1) ̸= SUBNET(src2))) ∧
((NetAdd(src2) = F) ∨ (NetAdd(src2) = ⊤ ∧
SUBNET(src1) ̸= SUBNET(src2))) ∧
(NetAdd(dst1) = ⊤) ∨ (NetAdd(dst1) = ⊤ ∧
SUBNET(dst1) ̸= SUBNET(dst2))) ∧
((NetAdd(dst2) = F) ∨ (NetAdd(dst2) = ⊤ ∧
SUBNET(dst1) ̸= SUBNET(dst2)))

EVENTS
Initialisation

begin

act1 : RULE := {
(1 7→ 1 7→ 1 7→ 0 7→ 2 7→ 1 7→ 1 7→ 0) 7→ ACCEPT ,
(2 7→ 1 7→ 1 7→ 0 7→ 3 7→ 2 7→ 1 7→ 0) 7→ ACCEPT ,
(2 7→ 2 7→ 1 7→ 0 7→ 1 7→ 1 7→ 0 7→ 0) 7→ DENY ,
(2 7→ 1 7→ 1 7→ 1 7→ 3 7→ 2 7→ 1 7→ 2) 7→ ACCEPT ,
(2 7→ 1 7→ 1 7→ 1 7→ 2 7→ 2 7→ 1 7→ 5) 7→ ACCEPT ,
(3 7→ 2 7→ 1 7→ 0 7→ 2 7→ 2 7→ 1 7→ 5) 7→ DENY }

end

Event evt1

any
w4 w3 w2 w1

where
grd1 : w1 = 0 ∧ w4 ∈ 0 ..255 ∧ w3 ∈ 0 ..255 ∧ w2 ∈

0 ..255
then

act1 : NetAdd(w4 7→ w3 7→ w2 7→ w1) := TRUE
end

Event evt2

any
w4 w3 w2 w1

where
grd1 : w1 = 0 ..255 ∧w4 ∈ 0 ..255 ∧w3 ∈ 0 ..255 ∧w2 ∈

0 ..255
then

act1 : SUBNET(w4 7→ w3 7→ w2 7→ w1) := w4 7→
w3 7→ w2

end

END

Next step is to implement the set primitives and their do-
main restriction operators in Event-B, these operators are em-
bedded in the platform, therefore, we directly use them to
implement our model. The consistency of firewall configu-
rations is defined using the invariant, inv3, in Rodin platform
as shown below, the tool generates proof obligations that were
successfully discharged using Event-B proof control.

MACHINE F2

SEES X2

VARIABLES

n Rs Rd Aa Ad Rsa Rsd Rda Rdd

INVARIANTS

inv1 : Rs ∈ RULE ∧ Rd ∈ RULE ∧ Rsa ∈ RULE ∧
Rsd ∈ RULE ∧ Rda ∈ RULE ∧ Rdd ∈ RULE

inv2 : Aa ∈ ACTION ∧ Ad ∈ ACTION

inv3 : Rsa ∩ Rsd = ∅ ∧ Rda ∩ Rdd = ∅
EVENTS

Initialisation

begin
act1 : Aa := {ACCEPT}
act2 : Ad := {DENY }

end

Event evt1

any
n

where
grd1 : n ∈ NET

then
act1 : Rs := n � RULE
act2 : Rd := n � RULE
act3 : Rsa := Aa � Rs
act4 : Rsd := Ad � Rs
act5 : Rda := Aa � Rd
act6 : Rdd := Ad � Rd

end

END

646

The results achieved here are important because our method
allows modeling the firewall configurations at different levels
of abstraction. We presented a high level model at an abstract
network address level. This model is further refined in order
to include more details about the addresses in firewall rules,
while preserving the correctness of the invariants. The verifi-
cation of a more refined model will be straight forward, and
will require a refinement of this model based on addresses by
including protocol types or port numbers. This is going to be
covered in future work. In order to make this method more
appealing and applicable on industrial size firewalls, an inter-
face is required in order to map firewall rules into Event-B
data structure model, the semantics of this translation can be
deduced using our model, and the interface can provide auto-
matic translation from firewall configuration rules into Event-
B syntax. This issue will be addressed in the future work.

5. CONCLUSION

In this paper we present a formal model for firewall configu-
ration rules based on domain restriction. This model is used
to formally verify the consistency of the configuration rules
in firewalls. We use the Event-B based invariant checking
to implement our method to be able to conduct verification
on firewall configurations. We illustrate our method on a case
study by modeling firewall configurations at the network level
of abstraction, then, we refine this model by considering the
network at the IP address level.

Firewall configuration rules are embedded in Event-B, the
consistency of firewall configurations is defined in Event-B
invariants, then Rodin firstorder theorem prover is used to to
proof the consistency of this configuration by proving each of
the proof obligations automatically.

The advantage of our method is the ability to model fire-
wall configurations at different levels of abstraction. A high
level model representing firewall rules at an abstract network
address level is used first. This model is further refined by
using IP network addresses in firewall rules, while preserving
the correctness of the invariants, and hence the consistency of
firewall configurations.

As future work, we will provide a formal proof of the
correctness of the method by showing the completeness and
soundness of the presented model. In addition we intend to
use the same method to proof firewall consistency at more re-
fined levels by allowing rules at the protocol and port number
levels.

6. REFERENCES

[1] A. Gupta, “Formal Hardware Verification Methods: A
Survey,” Formal Methods in System Design, vol. 1, no.
2-3, pp. 151–238, 1992.

[2] J. Abrial, Modelling in Event-B: System and Software
Engineering, Cambbridge University Press, 2009.

[3] T. Abbes, A. Bouhoula, and M. Rusinowitch, “An In-
ference System for Detecting Firewall Filtering Rules
Aanomalies,” in ACM symposium on Applied comput-
ing, New York, NY, USA, 2008, pp. 2122–2128, ACM
press.

[4] N. Ben Youssef, A. Bouhoula, and F. Jacquemard, “Au-
tomatic verification of conformance of firewall configu-
rations to security policies,” in Symposium on Comput-
ers and Communications. july 2009, pp. 526–531, IEEE
Computer Society Press.

[5] A. Brucker, L. Brügger, and B. Wolff, “Model-Based
Firewall Conformance Testing,” in Int. Conf. on Testing
of Software and Communicating Systems, Berlin, Hei-
delberg, 2008, vol. 5047 of Lecture Notes in Computer
Science, pp. 103–118, Springer-Verlag.

[6] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and
A. Miège, “A Formal Approach to Specify and Deploy a
Network Security Policy,” in Formal Aspects in Security
and Trust. 2004, vol. 173 of Lecture Notes in Computer
Science, pp. 203–218, Springer-Verlag.

[7] A.X. Liu, “Formal Verification of Firewall Policies,”
in IEEE Int. Conf. on Communications. May 2008, pp.
1494–1498, IEEE Computer Society Press.

[8] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and P. Mo-
hapatra, “FIREMAN: a Toolkit for Firewall Modeling
and Analysis,” in Symposium on Security and Privacy.
may. 2006, pp. 199–213, IEEE Computer Society Press.

[9] A. Jeffrey and T. Samak, “Model Checking Firewall
Policy Configurations,” in Symposium on Policies for
Distributed Systems and Networks. July 2009, pp. 60–
67, IEEE Computer Society Press.

[10] P. Matoušek, J. Ráb, O. Ryšavý, and M. Švéda, “A
Formal Model for Network-Wide Security Analysis,”
in Int. Conf. on Engineering of Computer Based Sys-
tems. March 2008, pp. 171–181, IEEE Computer Soci-
ety Press.

[11] D. Chapman and E. Zwicky, Building Internet Fire-
walls. 2nd Ed., Orielly & Associates Inc., 2000.

[12] C. Metayer, J. Abrial, and L. Voisin, “RODIN Deliver-
able 3.2: Event-B Language,” Tech. Rep. Project IST-
511599, School of Computing Science, University of
Newcastle, UK, 2005.

[13] A. Gawanmeh, L. Jemni Ben Ayed, and S. Tahar,
“Event-B based Invariant Checking of Secrecy in Group
Key Protocols,” in Local Computer Networks. October
2008, pp. 950–957, IEEE Computer Society Press.

[14] Rodin Platform, “http://www.event-b.org, 2010,” .

647

