
Checking Properties of PLL Designs using
Run-time Verification

Zhi Jie Dong, Mohamed H. Zaki, Ghiath Al Sammane, Sofiène Tahar and Guy Bois?

ECE Dept., Concordia University
Email: {zh do, mzaki, sammane, tahar}@ece.concordia.ca

?Génie Informatique, École Polytechnique de Montreal
Montreal, Québec, Canada
Email: guy.bois@polymtl.ca

Abstract— Due to challenges associated with its verification
process, analog and mixed signal designs like PLLs require a
considerable portion of the total design time. In this paper, we
propose a run-time verification approach for PLL designs. The
essence of this approach is to monitor properties of interest
by timed automata integrated within an automatic stimulus
generation framework. The objective is to guide simulation by
an appropriate simulation trace in order to quickly detect errors
by the property monitor.

I. INTRODUCTION

Analog and Mixed Signal (AMS) designs are integrated
parts of embedded systems, dedicated for realizing control and
signal processing functions. The verification of AMS designs
is one of the major tasks in computer aided design (CAD).
However, steadily increasing design sizes and functional com-
plexity make the verification a bottleneck in the design flow.

Usually, simulation is used in the verification of large
designs. However, such method is not enough to validate
interesting properties of the expected behavior, involving for
instance, temporal requirements. By contrast, formal verifica-
tion techniques, like model checking [4], provide full verifica-
tion coverage. Unfortunately, model checking of AMS designs
is computationally expensive and suffers from the problem
of state-space explosion that makes complete verification of
real designs impossible [4]. To tackle the drawbacks of the
above-mentioned verification techniques, the integration of
both simulation and formal methods was advocated. Among
the proposed approaches is checking whether the simulation
results are conforming to the formal specification. This ap-
proach is known as run-time verification [8].

In run-time verification, the AMS design is simulated with
an associated testbench which models the environment. In
fact, the testbench provides inputs stimulus necessary to drive
the design into a desired behavior. Meanwhile, the output and
internal signals are monitored to detect possible errors, by
means of logical models that describe the property of interest.
Classically, stimulus can be manually developed (directed ) or
randomly generated. While, the monitor could be as simple
as observing the current or voltage at different nodes of the
design, or more complex like checking temporal behavior.
In [5], a run-time verification approach for VHDL-AMS

designs is proposed, in which the properties of interest are
monitored by timed automata. In this paper, we integrate
this methodology within an automatic stimulus generation
framework interfaced with the VHDL-AMS simulator. The
objective is to guide simulation by an appropriate simulation
trace in order to quickly detect the errors by the timed
automata monitor. We explain our method using a PLL
design as a verification case study.

Related Work. In [10], the authors classified run-time
verification in two different groups: offline and online
monitoring. In offline monitoring, the property is only verified
after the whole simulation trace is provided, while in online
monitoring, the monitoring is interleaved with the simulation
process, hence, providing the ability to detect violation as
soon as they happen. Recently, several run-time approaches
have been proposed for the verification of AMS designs.
An online monitoring approach was proposed in [7], where
template monitors described by linear hybrid automata
are used to model the time domain features of oscillatory
behavior. The monitors are implemented within the model
checking tool PHAver. In [12], the authors used interval
arithmetics to describe the reachable states of the design
behavior. However, instead of creating template automata
to use as monitor, the authors synthesize timed automata
monitor from a subset of the timed computational temporal
logic (T-CTL) properties. The work in [7] and [12] are
only limited to analog behaviors. In addition, the techniques
used are computationally expensive, due to the requirement
to build an overapproximated solution flow for the system
equations, making them only adequate for small designs.

An offline approach was used in [9], for monitoring Matlab
simulation traces of continuous-time analog signals to check
for property violation. The authors extended the PSL [1] logic
to support analog signals. Synthesized timed automata are then
generated from the PSL properties to monitor the traces. The
main disadvantage of this method is that property violation can
be checked only at the end of the simulation process, which
can consume time and memory resources.

The methodology we present in this paper can also be
related to the work done in [11], where the authors proposed



an online monitoring verification technique of hybrid systems
using timed and linear hybrid automata. With respect to this
work, we distinguish ourselves in the fact that we build
the stimulus generator and the property monitor as timed
automata within the VHDL-AMS environment. In addition,
we provide a mechanism to guide simulation by an appropriate
simulation trace in order to quickly detect the errors by the
timed automata monitor.

The rest of the paper is organized as follows: we describe the
verification methodology in Section II, followed by the PLL
verification in Section III, before concluding with Section IV.

II. METHODOLOGY

The proposed verification methodology is illustrated in
Figure 1. Given the environment constraints and the property
of interest for the design under verification, we construct the
stimulus generator and the property monitor as deterministic
timed automata. A deterministic Timed Automaton (TA) is a
finite state machine with a set of timers constraints specified
on each state location. The timer constraints are defined
over a set of clock variables. On the edges between these
locations, constraints guards on the state variables along with
the evaluation updates of the variables are specified. Variables
updates holding on a certain edge if the constraints are satisfied
on that edge. In addition, a set of clock variables constraints
and resets are also specified on the edges. The monitoring au-
tomaton is an extended timed automaton, with the acceptance
condition that determines the set of allowable states; therefore
rejecting bad states. The stimulus and monitoring automata
are implemented as components written in VHDL-AMS [3].
Together with the VHDL-AMS design and the PLL libraries
they are input to the ADM simulator [2] to perform run-time
verification.

To enhance the verification coverage, we have extended
the run-time verification with a communication mechanism
between the stimulus generator and the monitor automata.
For instance, the communication signals from the stimulus
automaton to the monitor automaton are used as trigger signals
to start a new monitoring process. While the feedback signals
from the monitor to the stimulus are used to guide the stimulus
to choose next test vector. In fact, the generator automata
must produce an input test vector for the design, such that
the property constraints will be satisfied.

III. PLL BASED FREQUENCY SYNTHESIZER DESIGN

Phase-locked loops (PLLs) are a class of AMS designs
widely used for synchronization purposes, demodulation or
to synthesize new frequencies. In this paper, we apply our
verification methodology to a PLL design based frequency
synthesizer.

Figure 2 shows the PLL based frequency synthesizer block
diagram which consists of four blocks: comparator, voltage-
controlled oscillator (VCO), digital phase and frequency de-
tector (PFD), and analog loop filter with charge pump. The
PFD is composed of two D Flip-Flops followed by a charge
pump and an analog passive lead-lag loop filter. The input

Fig. 1. Proposed Verification Methodology

Comparator

VCO

Ref_sig 

‘0’

comparator
‘0’

VCO_sig

D

CP

Q

Clr

FF

D

CP Q

Clr

FF

VC

UP

DN

‘1’

‘1’
C1

R2

C2

R1

Analgo Filter with 
Charge Pump

Digital Phase and 
Frequency Detector

Fig. 2. Frequency Synthesizer PLL

reference signal Ref sig is a sine wave signal with frequency
ref freq. The VCO output VCO sig is a cosine wave signal
with frequency equal to ref freq if the PLL is locked.

The first property that we have considered is the lock time
property. It is the time necessary for the PLL to switch
from one frequency to another within a given range. Such
property is important because during the lock time, no data
can be transmitted, so having a larger lock time can reduce
the data rate of the system. The property to be verified is
described as follows: if the input reference signal changes to
a new frequency, the VCO output signal should be able to
keep up with the new frequency within the lock time. The
corresponding stimulus and monitor automata are shown in
Figure 3(a). The stimulus automata generates the stimulus
signal ref sig to the PLL. New ref, ref freq and mon ok are
the communication signals between stimulus and monitoring
timed automata. Setting new ref signal to ’1’ triggers the
monitor to go to the LOCK TIME checking state M S1. If
within the LOCK TIME, the VCO output frequency vco freq
equal to ref freq, the monitor will set the signal mon ok to ’1’
triggering the stimulus to reach the end state S S2. However,
if vco freq is not equal to ref freq within LOCK TIME, the
monitor will reach the failure state M S2 and stay there for
ever. Consequently, the signal mon violation will be set to ’1’
indicating the lock time property is violated.



(a) Timed Automata

(b) Simulation Results

Fig. 3. Lock Time Verification

The lock time simulation result is shown in Figure 3(b). We
assume that the requirement of the lock time is 110 µs for a
frequency of 1.5 MHz. By inspecting the violation simulation
trace mon violation, we identify that a violation is detected
at time 120 µs. This is due to the fact that the frequency of
VCO output signal is not equal to 1.5 MHz. In such case the
monitor automaton reaches to the failure state M S2. In fact,
from the simulation result we can see that vco freq will be
equal to ref freq until 200 µs.

The second property that we have verified is the lock range
property. The lock range is defined as the range of frequencies
over which the loop will remain in lock. It is also called the
tracking range or hold-in range. This can be measured by
slowly increasing or decreasing the frequency of the input
until the loop looses lock. The stimulus generator and the
monitor automata along with the communication signals are
shown in Figure 4(a). The monitor automaton is nearly the
same as the one in the lock time monitor except that the
LOCK TIME is replaced by MAX TIME and a frequency out-
of-range constraint guard is added. The MAX TIME is user
defined and is larger than the LOCK TIME.

The signal sim begin starts the lock time checking in the
stimulus automaton, allowing a transition from S S0 transition
to S S1 where the reference signal frequency ref freq is set to
FREQ BEGIN. Meanwhile, new ref will be set to ’1’ trigger-

ing the monitor to go to the lock range checking state M S1.
If within the MAX TIME the VCO output vco freq is equal
to ref freq, then the monitor will go back to M S0, waiting
for another lock range test request. This happens when the
stimulus goes to S S2 increasing ref freq by FREQ STEP. This
process can be repeated until ref freq reaches LOCK END. In
such case, the stimulus will go to the state S S3. On the other
hand, if vco freq is not equal to ref freq within LOCK TIME,
the monitor will reach the failure state M S2, indicating the
lock range property is violated.

The simulation result is shown in Figure 4(b). Assume
that the PLL central frequency is 1.5 MHz, the higher end
of LOCK RANGE is 1.75 MHz and the MAX TIME is 20
µs. As illustration, we set the frequency increasing step
FREQ STEP to 0.1 MHz, the reference signal initial frequency
FREQ BEGIN to 1.5 MHz and the end frequency FREQ END
to 1.75 MHz. We need to verify that if the reference signal
changes from 1.5 MHz to 1.75 MHz with a 0.1 MHz step, the
PLL signal VCO sig will lock to the reference input signal.
The monitor automata will detect a violation at time 186 µs.
This can be explained by inspecting the simulation trace. The
PLL can lock the input reference frequency from 1.5 MHz to
1.72 MHz. However, at 166 µs, the reference signal frequency
changes to 1.73 MHz and there is a violation detected at time
186 µs, where the frequency of the VCO output is not equal



(a) Timed Automata

(b) Simulation Results

Fig. 4. Lock Range Verification

to 1.73 MHz and MON MTA reaches the failure state M S2
1.

IV. CONCLUSION

In this paper, we have used the concept of run-time veri-
fication to check functional properties of AMS designs. The
idea behind the presented approach is based on modeling and
simulating the given AMS design along with the required
properties described using monitoring automata in the VHDL-
AMS environment. The verification is then achieved in an
online fashion, hence avoiding the problem of the state space
explosion. Furthermore, such approach is more reliable than
the manual inspection of simulation traces which is usually
complex and costs lots of time and effort. On the other hand,
combining simulation and properties based verification helps
achieving the benefits of both approaches, while at the same
time avoids some of the drawbacks mentioned earlier. We
have used the methodology to verify functional properties of
a PLL based frequency synthesizer. As a future work, we plan
to investigate possible methods for generating time automata
from temporal properties, which could lead to more compact
representation of the specification.

REFERENCES

[1] Accellera Property Specification Language Reference Manual (2004),
http://www.accellera.org

1Due to lack of space, we refer to [6] for more details about the PLL
verification, including checking clock jitter

[2] ADVance MSTM Reference Manual, Mentor Graphics,
http://www.mentor.com

[3] E. Christen and K. Bakalar. VHDL-AMS: A Hardware Description Lan-
guage for Analog and Mixed-signal Applications. In IEEE Transactions
on Circuits and Systems II, 46: 1263-1272, 1999.

[4] E.M. Clarke, O.Grumberg, D.A. Peled, Model Checking. MIT Press,
2000.

[5] Z.J. Dong, M.H. Zaki, G. Al Sammane, S. Tahar and G. Bois: Run-
time Verification Using the VHDL-AMS Simulation Environment, Proc.
IEEE Northeast Workshop on Circuits and Systems, pp.1513-1516,
2007.

[6] Z.J. Dong, M.H. Zaki, G. Al Sammane, S. Tahar and G.
Bois. A Run-Time Verfication Approach for AMS Designs.
Technical Report, ECE Dept., Concordia University, July 2007,
http://hvg.ece.concordia.ca/Publications/TECH REP/AMS RTV TR07/

[7] G. Frehse, B. H. Krogh, R. A. Rutenbar, O. Maler. Time Domain Veri-
fication of Oscillator Circuit Properties. Electronic Notes in Theoretical
Computer Science. 153(3): 9-22, 2006.

[8] K. Kundert and H. Chang. Verification of Complex Analog Integrated
Circuits. In Proc. IEEE Custom Integrated Circuits Conference, pp.177-
184, 2006.

[9] O. Maler, D. Nickovic. Monitoring Temporal Properties of Continuous
Signals. In Formal Modelling and Analysis of Timed Systems, LNCS
3253, Springer, 2004, pp.152-166

[10] O. Maler, D. Nickovic, A. Pnueli. Real Time Temporal Logic: Past,
Present, Future. In Formal Modelling and Analysis of Timed Systems,
LNCS 3829, Springer, 2005, pp.2-16

[11] L. Tan, J. Kim, I. Lee: Testing and Monitoring Model-based Generated
Program. Electronic Notes in Theoretical Computer Science. 89(2): 128-
148, 2003.

[12] M.H. Zaki, S. Tahar, and G. Bois: A Practical Approach for Monitoring
Analog Circuits; Proc. ACM Great Lakes Symposium on VLSI, 2006,
pp. 330-335.


