
On the Simulation Performance of Contemporary
AMS Hardware Description Languages

Rajeev Narayanan, Naeem Abbasi, Mohamed Zaki, Ghiath Al Sammane, Sofìene Tahar
Dept. of ECE, Concordia University Montreal, Quebec, Canada

Email: {r naraya, nab, sammane, mzaki, tahar}@ece.concordia.ca

Abstract— Mixed-Signal extensions to VHDL, Verilog, and
SystemC languages have been developed in order to provide
a unifying environment for the modeling and verification of
Analog and Mixed Signal (AMS) designs at different levels of
abstraction. In this paper, we model the behavior of a set of
benchmark designs in VHDL-AMS, Verilog-AMS and SystemC-
AMS and compare the simulation performance with HSPICE.
The various experimental results observed for the benchmark
circuits show the superiority of VHDL-AMS and Verilog-AMS
against SystemC-AMS and HSPICE in terms of simulation run-
times at lower level of abstraction.

I. I NTRODUCTION

Verification of Analog and Mixed Signal (AMS) circuits
and systems is a challenging task because it requires both
an accurate model of the system and an efficient method of
simulation. For a simulator, a tradeoff exists between accuracy
of the results and the simulation speed.

Traditionally, circuit simulators are used to simulate and
analyze the AMS design described as a netlist in SPICE.
Circuit simulators face a bottleneck of long simulation run-
times for complex circuits. An alternate approach would be
to capture the behavior of AMS designs at higher level
of abstraction using AMS hardware description languages
(HDLs). This approach brings down the simulation run-times,
but is less accurate compared to SPICE simulation. For a
tradeoff between accuracy and run-time, designers need to
look at modeling AMS designs at appropriate levels of ab-
straction. This paper compares the performance of different
AMS HDLs in terms of simulation run-times. Figure 1 shows
the methodology used for comparing the simulation run-times
of three contemporary AMS HDLs, namely, VHDL-AMS,
Verilog-AMS and SystemC-AMS against HSPICE. During
the past few decades, several work in the Computer-aided
design (CAD) literature were concerned with studying possible
frameworks for the simulation of mixed signal designs. For
instance, in [6], the authors discuss a new methodology for the
Jiles-Atherton model of ferromagnetic core hysteresis using
mixed-domain SystemC and VHDL-AMS implementation to
ensure numerically reliable integration of the magnetisation
slope. In [1], the authors proposed a SystemC/Simulink co-
simulation framework for embedded systems that relies on
Simulink for the continuous simulation and SystemC for
the discrete simulation based on one or more synchroniza-
tion model. A single unified simulation framework for the
simulation of AMS designs using two parallel stand alone
simulators (Xyce for SPICE, SAVANT for VHDL) designed

Fig. 1. Modeling and Simulation Environment

for high performance simulation in their respective solution
spaces was described in [2]. Another mixed-domain simulation
framework was proposed in [3] based on VHDL and ELDO.
The commercial tool Nexus-PDK [4] supports co-simulation
of cycle accurate C/C++ with SystemC, MATLAB/Simulink,
and VHDL/Verilog simulators. In [5], the authors implemented
a mixed-signal, functional level simulation framework based
on SystemC for system-on-a-chip applications. The framework
includes a C++ mixed-signal modules. In [15], the authors
present a preliminary approach for the modeling and simula-
tion of a simple but complete Wireless Sensor Network with
two nodes using SystemC-AMS. This paper also explains the
advantage of SystemC-AMS over other HDL’s in modeling
and simulation of such network. In [7], the authors focus on
commonalities and differences between the two mixed-signal
hardware description languages, VHDL-AMS and Verilog-
AMS, in the case of modeling heterogeneous or multidiscipline
systems.

The above related work focus mainly on combining the
discrete-time and continuous-time of an AMS design in a
single framework and none compares the performance of
the co-design simulation environment in terms of simulation
run-time. In this paper, we address the simulation run-time
comparison of AMS designs described using different HDLs,
namely, VHDL-AMS, Verilog-AMS and SystemC-AMS. We
also investigate the effect of design and input stimulus param-
eters on the simulation run-times.

2008 International Conference on Microelectronics

1-4244-2370-5/08/$20.00 ©2008 IEEE 390

The rest of the paper is organized as follows. In Section II,
we describe the AMS simulation approaches used in Verilog-
AMS, VHDL-AMS and SystemC-AMS with emphasis on
the concept of simulation cycle. In Section III, we illustrate
and compare the simulation experiments using a set of AMS
benchmark circuits [11], before concluding with an outlinefor
future directions in Section IV.

II. AMS SIMULATION APPROACH

VHDL-AMS, Verilog-AMS and SystemC-AMS allow the
modeling of discrete and continuous-time signals, or a com-
bination of both in a single design. Connecting functional and
behavioral models is accomplished with the help of termi-
nals and quantities. VHDL-AMS, Verilog-AMS and SystemC-
AMS can capture the behavior of AMS designs at higher levels
of abstraction, which brings down the simulation time, while
preserving the functionality of the design.

A. VHDL-AMS

VHDL-AMS [9] was developed as an extension to VHDL to
describe AMS circuits and systems. Systems in both electrical
and non-electrical domains can be described and specified at
various levels of abstraction.

The VHDL-AMS simulation cycle starts with the initializa-
tion phase (Figure 2), which consists of four main steps. The
initial values of the driving signals, and quantities defined by
attributes are first computed. The processes are then executed
once until they suspend. At the end of the processes execution,
the simulation time is set to zero. Both Verilog-AMS and
SystemC-AMS follow a similar initialization technique. TheInitializedrivingsignals Initialize signals andquantities defined byattributes Execute processesonce until theysuspend Set simulationtime to zero

Fig. 2. VHDL-AMS Simulation Cycle- Initialization [9].

actual VHDL-AMS simulation cycle (Figure 3) begins with
the computation of analog solution points (arrow 1). This
continues until the next digital event is scheduled or an
event occurs on the analog and digital interface (arrow 2).
To compute a digital evaluation point, signals are updated
first. After that, any triggered processes are executed until they
settle. If the time for the next digital evaluation Tn is equal
to current time Tc, the digital simulator is called again (arrow
3). If Tn is not equal to Tc, the analog solver is called, and
the next cycle begins (arrow 4). This continues until the end
of simulation is reached (arrow 5).

B. Verilog-AMS

Verilog-AMS HDL [16], [17] allows a designer to capture
the behavior of an AMS designs (both discrete and continuous)
at different levels of abstraction.

Figure 4, illustrates a typical Verilog-AMS HDL simulation
cycle which includes:

Tc =Tn orUpdate signals Determine the time Tc ofthe next analog calculationA 2D Ev ent2Execute sensitive ProcessesDetermine the time for next Determine the analogTn >Tc 13 simulation cycle time TnSimulation complete solution at TcTc =Tn Tn >TcTn =T IME`HIGH5 4
Fig. 3. VHDL-AMS Simulation Cycle- Execution [9].Init ialize Updat eT ime Ev aluat eEquat ions Solut ionConv erg e?y es noEnd ofSimulat ion? y esnoA ccept t heT ime St ep?Endy es Updat eValue nono y es

Fig. 4. Verilog-AMS Simulation Cycle [16]

1) Initialization: The initialization phase of a transient
analysis is the process of initializing the circuit state
at time zero.

2) Synchronisation: A Verilog-AMS simulation consists of
a number of analog and digital processes communicating
via events, shared memory and conservative nodes. All
conservative nodes (macro process) are represented by
matrices and solved jointly.

3) Evaluation: The design description consists of differen-
tial and non-linear equations which are discretized and
solved iteratively.

4) Update: Analog processes are sensitive to changes in
all variables and digital signals read by the process
unless that access is only in statements guarded by event
expressions. Upon waking up, the process computes a
new solution point, schedules its next wake up event
appropriately and then deactivates itself.

5) Convergence: In the analog kernel, the behavioral de-
scription is evaluated iteratively. On the first iteration,
the signal values used in the expressions are approx-
imate. As the iterations progress, the signal values
approach the solution. Iterations continue until the dif-
ference between two consecutive solutions is less than
an absolute tolerance value and the Kirchoff’s flow laws
are satisfied.

C. SystemC-AMS

SystemC-AMS [13] is an extension of SystemC that uses an
open and layered approach [14]. The base layer is the existing
SystemC 2.0 kernel as shown in Figure 5. On top of the base
layer, two sets of layers are defined: Interface to the existing
SystemC layers, (e.g., discrete event channels), and a new set
of AMS layers such as the synchronisation layer, the solver
layer, and the user layers.

The user view layer provides methods to describe the
continuous-time models in terms of procedural behavior,

2008 International Conference on Microelectronics

391

SystemClView 1 View 2 View NUser View LayerS l L . . .SystemC Kernel SystemCLayersAMS SynchronizationSolver 1 Solver NSolver LayerSync. LayerSystemC Layer . . .
Fig. 5. SystemC-AMS Architecture [13]

Fig. 6. SystemC-AMS Simulation Cycle [14]

equations, transfer functions, state-space formulations, and
as netlists of primitives. Due to its open source architec-
ture, the user can add additional features to the simula-
tor depending on their application. SystemC-AMS uses a
Synchronous Data Flow (SDF) [12] model of computation
for modeling and simulation [8]. Thesolver layer provides
different implementations of solvers (such as linear solver to
solve electrical network) that are required to simulate specific
AMS descriptions. Thesynchronization layer implements a
mechanism to organize the simulation of a SystemC-AMS
model that may include different continuous-time and discrete-
event parts. SystemC-AMS defines a generic interface for
various continuous-time solvers [14] and provides methodsto
synchronize analog solvers and the discrete kernel of SystemC.
The SystemC-AMS simulation cycle [14] is shown in Figure 6
and is summarized below:

1) Initialization: The initialization methods registered in
SystemC-AMS modules are executed including the ini-
tial condition definitions.

2) Evaluation: Processes are only executed at delta 0 in
the order defined by the static scheduling (delta cycles
provide a standard way to emulate concurrency when
simulating discrete-event models). The cluster processes
will be reactivated, always at delta 0, at every time step
defined for the cluster.

3) Repeat step 2 while there are still processes ready to
run, else go to step 4.

4) Update: Signals are updated with their new values.
5) Go to step 2 if the updated signal generates events with

zero delay (delta cycle), else go to step 6.
6) Finish simulation if there are no more pending events,

else go to step 7.
7) Advance the time to the earliest pending event.
8) Determine ready to run processes and go to step 2.

III. C OMPARISON AND SIMULATION RESULTS

For the comparison, we have chosen four small to medium
sized analog and switch capacitor circuits. We modeled those
circuits in VHDL-AMS, Verilog-AMS, SystemC-AMS and in
HSPICE and simulated them for transient and AC analysis run-
time measurements. HSPICE run-time measurement results are
provided as reference since it is still the dominant and widely
accepted simulator for analog circuits to-date. We define the
simulation run-time as the time taken by a given machine to
simulate the design for a specified duration. VHDL-AMS,
Verilog-AMS, and HSPICE designs were simulated using
Mentor Graphics Tools on an ULTRA SPARC-IIIi machine
(177 MHz CPU, 1024 Mbyte memory). The SystemC-AMS
design descriptions were also compiled and executed on the
same workstation.

The four circuits selected for the simulation are:

1) Continuous-Time State Filter [11].
2) Low Pass Active Filter [10].
3) Leap Frog Filter [11].
4) First Order Switch Capacitor Filter [10].

For all the circuit parameter values and detail simulation
results, please refer to [18].

Table I summarises the experimental results. The first and
second column represents the circuit and the frequency of
operation. The next columns represent the simulation run-
times of, respectively, VHDL-AMS, Verilog-AMS, SystemC-
AMS and HSPICE in seconds. From the table statistics, we
note that for all frequency ranges, the simulation run-times for
VHDL-AMS and Verilog-AMS are almost comparable and in
some cases negligible. Both VHDL-AMS and Verilog-AMS
outperform SystemC-AMS and HSPICE in their simulation
run-times. On the other hand, the simulation run-times are
comparable for SystemC-AMS and HSPICE with SystemC-
AMS performing slightly better in some cases.

For higher frequency inputs the simulation run-time is
slightly higher than for low frequency inputs. This is because
when the input signal changes at a faster rate (higher fre-
quency) the analog solver requires more iterations to converge
to an analog solution point for a given accuracy requirements
and hence results in a slight increase in simulation time.
This is seen for each circuit described in the VHDL-AMS,
Verilog-AMS, SystemC-AMS and HSPICE as one looks at
the simulation run-time numbers starting from low frequency
to high frequency values.

The circuit simulation times of the first-order switch capac-
itor filter are larger because of the non-linear switches in the
filter circuit, which cause the simulator to iterate more often
at the instants of time when the switches change states from
ON to OFF or vice-versa. Since the switches are turned ON
and OFF a fixed number of times during 10ms, the run-time is
independent of the input signal frequency but rather depends
on the clock signal frequency used for controlling the switches.
A more detailed discussion is available in [18].

2008 International Conference on Microelectronics

392

TABLE I

EXPERIMENTAL RESULTS FOR 10MS SIMULATION RUNS.

Circuit Frequency VHDL-AMS Verilog-AMS SystemC-AMS HSPICE
(Hertz) (Seconds) (Seconds) (Seconds) (Seconds)

Low 1k 0.13 0.12 48.24 48.72
Pass 2k 0.17 0.21 48.45 48.73
Active 4k 0.26 0.26 48.16 48.74
Filter 40k 0.96 1.32 48.20 48.75
First 500 6.72 21.04 70.28 184.34
Order 1k 6.84 21.94 70.27 185.65
Switch 2k 6.97 19.98 70.39 186.13
Capacitor 4k 7.06 18.77 70.40 185.38
Continuous 100 0.07 0.09 49.20 57.24
Time 795 0.07 0.07 48.26 56.61
State 1k 0.10 0.13 49.07 56.62
Filter 10k 0.38 0.50 49.71 56.61

40k 1.34 1.95 49.55 56.66
Leap 1k 0.09 0.22 50.26 66.85
Frog 1.4k 0.12 0.15 50.56 66.89
Filter 10k 0.52 0.82 50.66 66.70

100k 4.99 6.92 51.27 66.73

IV. D ISCUSSION ANDCONCLUSION

The simulation of analog and mixed signal circuits is both
memory and CPU intensive. The simulation speed depends
on the complexity of the circuit, the length of simulation,
and the frequency of the input signals. In this paper, we
give an overview about the simulation cycles of VHDL-AMS,
Verilog-AMS and SystemC-AMS. Four benchmark circuits
were described, simulated and their run-times were compared
with that of HSPICE simulation.

Our experience can be summarised as follows: First, the
results show that for all filter circuits, the simulation run-times
increase as the input signal frequency increases. This is again
due to the fact that the simulator requires more iterations for
each analog solution point if the input signal changes faster as
compared to a slowly varying signal for a given time resolution
and accuracy requirements. We observe the superiority of
VHDL-AMS and Verilog-AMS against SystemC-AMS and
HSPICE simulation run-times. However, the HSPICE and
SystemC-AMS run-times are comparable for all filter circuits.

Unfortunately, SystemC-AMS is still in its development
phase, so there is a lack of available libraries that would
have allowed us to explore more complex case studies. We
believe that with a growing user and developer community
for SystemC-AMS, such library would be available allowing
us to conduct more experiments with this language.

Future plans include a detailed investigation about the
simulation cycle algorithms and also to tackle larger case
studies to get a more indepth knowledge about the quantitative
properties of the language simulators.

REFERENCES

[1] F. Bouchhima, M. Brirel, G. Nicolescu1, M. Abid, E. M. Aboulhamid. A
SystemC/Simulink Co-Simulation Framework for Continuous/Discrete-
Events Simulation, In Proc. Behavioral Modeling and Simulation Work-
shop, IEEE, pp. 1-6, 2006.

[2] D.E. Martin, P.A. Wilsey, R.J. Hoekstra, E.R. Keiter, S.A. Hutchinson,
T.V. Russo, L.J. Waters. Integrating Multiple Parallel Simulation Engines
for Mixed-technology Parallel Simulation, In Proc. Simulation Sympo-
sium, IEEE, pp. 45-52, 2002.

[3] H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro, J.J. Mayol. VHD ELDO:
A new mixed mode simulation, In Proc. Design Automation Conference,
IEEE/ACM, pp.546-551, 1993.

[4] Celoxia Website: http://www.celoxica.com/, 2008.
[5] T.E. Bonnerud, B. Hernes, T. Ytterdal. A Mixed-signal Functional

Level Simulation Framework based on SystemC for System-on-a-Chip
Applications, In Proc. Custom Integrated Circuits, IEEE, pp. 541-544,
2001.

[6] H. Al-Junaid, T.Kazmierski. HDL Models of Ferromagnetic Core Hys-
teresis Using Timeless Discretisation of the Magnetic Slope. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 25, No. 12, pp. 2757-2764, 2006

[7] F. Pcheux, C. Lallement, A. Vachoux. VHDL-AMS and Verilog-AMS
as Alternative Hardware Description Languages for Efficient Modeling
of Multidiscipline Systems. IEEE Transactions on Computer-Aided
Design of Integerated Circuits and Systems, Vol. 24, No. 2, pp.204-225,
February 2005.

[8] K. Einwich, C. Clauss, G. Noessing, P. Schwarz, and H. Zojer. SystemC
Extensions for Mixed-Signal System Design. In Proc. Forum on Design
Languages, pp.1-6, 2001.

[9] W. Haas, U. Heinkel, H. Braisz, T. Gentner, M. Padeffke, T. Buerner,
G. Alexander, F. Alexander. The VHDL Reference: A PracticalGuide
to Computer-Aided Integrated Circuit Design Including VHDL-AMS,
Wiley, 2000.

[10] D. A. Johns, K. Martins. Analog Integrated Circuit Design, Wiley, 1996.
[11] B. Kaminska K. Arabi, I. Bell, P. Goteti, J.L. Huertas, B. Kim, A. Rueda,

M. Soma. Analog and Mixed-Signal Benchmark Circuits-FirstRelease,
In Proc. Test Conference, IEEE, pp. 183-190, 1997.

[12] E. A. Lee, D.G. Messerschmidt. Synchronous Data Flow, In Proc. of
the IEEE, Vol.75, Issue.9, September, 1987.

[13] SystemC-AMS USER Community Website: http://www.systemc-
ams.org, 2008

[14] A. Vachoux, C. Grimm, K. Einwich. Towards Analog and Mixed-Signal
SOC Design with SystemC-AMS. In Proc. Electronic Design, Test and
Applications, IEEE, pp.97-102, 2004.

[15] M. Vasilevski, F. Pecheux, H. Aboushady, and L. de Lamarre. Modeling
Heterogeneous Systems Using SystemC-AMS Case Study: A Wireless
Sensor Network Node. In Proc. Behavioral Modeling and Simulation
Workshop, IEEE, pp.1-6, 2007.

[16] Verilog Analog and Mixed Signal Language Reference Manual, 2004.
http://www.eda.org/verilog-ams/

[17] Accellera, Verilog-AMS Language Reference Manual Analog &

Mixed-Signal Extensions to Verilog-HDL. Version 2.1, January 2003.
http://www.designers-guide.org/

[18] R. Narayanan, N. Abbasi, G. Al-Sammane, M. Zaki, S. Tahar. On the
Simulation Performance of Contemporary AMS Hardware Description
Languages, Technical Report, Dept. of ECE, Concordia University, June
2008.

2008 International Conference on Microelectronics

393

