
 1

 Abstract— To specify, design, and implement complex
system-on-chip (SoC), a new modeling method, transaction level
modeling (TLM), has been proposed recently. TLM allows
designers to focus on functionality while abstracting
implementation details. At the register transfer level (RTL),
however, different modules communicate through detailed pin
level signaling. SoC design methodologies involve the integration
of different intellectual property (IP) blocks modeled at different
levels of abstraction. Therefore a special module or channel is
needed in order to link modules, IPs, designed at different
abstraction levels. This module, called transactor, can be
modeled using a finite state machine (FSM) providing a
functional specification of the protocol's behavior. In this paper,
we propose a methodology to specify transactors using graphical
finite state machine (FSM). This technique enables an automatic
generation of SystemC TLM-RTL transactors via an
intermediate translation of the user-defined FSM to the Abstract
State Machines Language (AsmL). The UTOPIA standard
protocol is provided as an illustration of this approach.

 Index Terms— SystemC, Transactor, Finite State Machine,
AsmL

I. INTRODUCTION

 ransaction level modeling (TLM) is becoming a popular
practice for system-level design and architecture
exploration. It allows the designers to focus on the

functionality of the design, while abstracting away
implementation details that will be added at lower abstraction
levels [5]. The intellectual property (IP) blocks of a system-
on-chip may be composed of different blocks which are
modeled at various levels of abstraction. Transaction level
models (TLM) use software function calls to model the
communication between blocks in a system. This is in contrast
to hardware RTL and gate level models, which use signals to
model the communication between blocks. For example, a
transaction level model would represent a burst read or write
transaction using a single function call, with an object
representing the burst request and another object representing
the burst response. An RTL hardware description language
model would represent such a burst read or write transaction

via a series of signal assignments and signal read operations
occurring on the wires of a bus. In order to be able to link
modules modeled at different levels of abstraction, the notion
of transactor has been recently introduced [3]. A TLM-RTL
transactor connects with TLM and RTL modules using two
explicit interfaces, namely, the TLM interface, which is the
declarations of the TLM functions and the RTL interface,
which is the declaration of the RTL ports. Each TLM function
is implemented inside the transactor module. When a TLM
function is called from the TLM module, signal activities take
place between the transactor and the RTL module. To
accomplish the task of a TLM function on the RTL side, an
FSM can be implemented inside the transactor [10]. Inside a
TLM-RTL transactor, one or more RTL hardware protocols
need to be implemented to accomplish a particular task on the
RTL module. The protocol designers generally specify these
protocols in natural languages such as in English texts. But
natural languages are often imprecise and incomplete. Also,
verification of natural language specification is difficult
because there is no mathematical mean to prove its precision.
Moreover, these specifications are not executable and thus
cannot be validated by simulation for different scenarios.
These problems might cause more bugs and faults in the
product, delays for time to market, etc. In this paper, we
propose to generate a formal model of the transactor protocol
by drawing FSM based on the natural language text
specification. Hardware designers are well familiar with
graphical FSM and thus our approach reduces the overhead to
learn new specification languages. Furthermore, a visual
representation of FSM simplifies the access of protocol
description. After the protocol is drawn, we translate the FSM
description to Abstract State Machine Language (AsmL) [7]
using an AsmL code generation algorithm.

AsmL is an executable modeling language which is fully
integrated in the .NET framework and Microsoft development
tools. AsmL is based on the theory of Abstract State Machines
(ASMs) [4]. An ASM is a state machine which computes in
each step a set of updates of the machines variables. After a
step is completed, all updates are fired simultaneously. AsmL
models are precise, concise and readable to a wide range of

Automatic Generation of SystemC Transactors
from Graphical FSM

Tareq Hasan Khan, Sofiène Tahar, and Otmane

Ait Mohamed

Dept. of ECE, Concordia University
Montreal, Quebec, Canada

Email: {tare_kha, tahar, ait}@ece.concordia.ca

Ali Habibi

MIPS Technologies
Mountain View, California, USA

Email: habibi@mips.com

T

 2

people due its simple and intuitive language constructs [4].
Syntax and semantics of AsmL is formalized and thus it gives
us the opportunity to verify formally the transactor protocol at
early stages of the SoC design. This verification will enhance
the confidence in the correctness of the finally generated
transactor. Once the AsmL model is completed and verified, it
can be used to automatically generate the transactors in other
languages.

We have developed a technique to automatically generate
SystemC transactors from the generated AsmL description [6].
The AsmL specification is translated to SystemC based on a
set of syntax and semantics translation rules. To test the
efficiency of our approach, we have applied it on several case
studies including an UTOPIA [2] standard protocol which is
presented here.

The rest of the paper is organized as follows. Section II
discusses related work. Section III describes the proposed
methodology to generate SystemC transactor from graphical
FSM and an algorithm for AsmL code generation. In Section
IV, the UTOPIA case study and experimental results are
discussed. Finally, Section V concludes the paper.

II. RELATED WORK
 To formally specify an interface, regular expressions and
temporal logic [9] have been used. They can be expressed
with finite-state automata. Some standard languages like
Property Specification Language (PSL) and the System
Verilog Assertions (SVA) have been proposed recently to
specify system properties. These languages are based on
temporal logic, but both of them also have an ability to specify
regular expressions. In PSL, such an extension is called
Sequential Extended Regular Expressions (SEREs). Balarin et
al. [3] proposed to specify TLM-RTL transactors using PSL.
They took advantage from the SEREs aiming at generating
transactors which must be synthesizable. Hence, it presents a
limitation of the use of transactors in the SystemC design flow
only at RTL. Several commercial tools include features to
generate transactors in SystemC such as SystemC Transactor
Generation Wizard from Aldec’s Active HDL [1], Catapult C
from Mentor Graphics, TransactorWizard from Structured
Design Verification [12], and Cohesive from Spiratech [11].
For instance, the Cohesive tool uses the CY language as
transactor specification. In Active HDL v7.1, SystemC
Transactor Generation Wizard creates the interfaces and a
template for the transactor. Then the user has to write the
transactor code in SystemC manually. In [6], a method and
tool for generating SystemC TLM-RTL transactors from
AsmL specifications has been introduced. The work presented
in this paper is different from [6] and [3] as it allows users to
specify the transactor as graphical FSM.

III. PROPOSED METHODOLOGY
 From the natural language text specification, a formal model
of the transactor protocol is created by drawing the protocol as
a finite state machine (FSM). FSM drawing is common in
hardware design environment, thus it reduces the overhead to

learn new specification language. Also, a graphical FSM is
intuitive, easy to follow, and understand.

Figure 1: Transactor Generation from FSM

To generate a SystemC transactor, the TLM Interface, the RTL
interface and the Graphical FSM description of the protocol
are given as input as shown in Figure 1. The FSM to AsmL
Translator generates AsmL code from the FSM description.
The generated AsmL specification is executable, thus it gives
the opportunity to do validation by simulation. Also, AsmL
specification can be formally verified by model checking tools
like SMV and theorem proving tools like PVS, Isabelle, etc.
Once the AsmL code is verified, it is then passed to the AsmL
to SystemC Translator to generate SystemC code. The Reverse
Port block reverses the ports direction of the transactor w.r.t.
the RTL unit. The Integrator adds other necessary codes to
generate the complete SystemC transactor.

An FSM drawing consists of states, actions, transition lines,
conditions, etc. Our code generation algorithm imposes that
the following rules must be followed when specifying
transactor protocols using FSM.

• The action statements in a state must be written in the
syntax of AsmL. They are executed simultaneously
according to the update semantics.

• State transitions occur after one clock cycle and
updates of the variables and ports are fired.

• The conditions of the transition lines must be also in
the syntax of AsmL. If more than one transition line
come out from a state, we assign priority to each
transition line. This priority sets the order in which
the transition conditions will be evaluated. An
unconditional transition line must have the least
priority.

• FSM inside a transactor must be terminated when the
operation on the RTL side is completed. So, to
indicate the state at which the FSM will be
terminated, we set that state as trap state.

The graphical FSM is compiled to a lexical format Active
HDL State Machine Format (ASF) from Active HDL [1]. The
FSM to AsmL Translator reads the FSM objects from the ASF
file to the data structures as shown in Figure 2 and then

SystemC Transactor Generator TLM
Interface

RTL
Interface

FSM to AsmL
Translator

Graphical
FSM

AsmL
Specification

AsmL to SystemC
Translator

Integrator

Reverse Ports

SystemC
Transactor

Simulation - Theorem Proving
- Model Checking

Validation Verification

Specification Writer

 3

automatically generates AsmL code according to the
algorithm shown in Figure 3.

Figure 2: FSM Objects and their properties

A graphical FSM is a discrete structure consisting of vertices
and edges like directional graph. The algorithm shown in
Figure 3 is developed with the flavor of directional graph
traversing.

- FSM_Drawing: It is an FSM drawing for the transactor protocol.
- Write (s: string): Write string s to the code generation file

Write(“step while (CurrentState <> " & State(TrapStateIndex).Label & ")")
Write (“match CurrentState”)

for each State in FSM_Drawing
 Write (State.Label & “:”)
 for each Action in FSM_Drawing
 if Action.StateID = State.ID then
 Write (Action.Statement)

 for each TransLine in FSM_Drawing
 if TransLine.SrcStateID = State.ID
 new MultyTransLine
 MultyTransLine.Priority := TransLine.Priority
 Multy TransLine.DstStateLabel:=
 GetLabel(TransLine.DstStateID)
 for each Condition in FSM_Drawing
 if Condition.TransLineID = TransLine.ID then
 MultyTransLine.Expression := Condition.Expression
 MultyTransLine.isConditional := true

 if Condition not found
 MultyTransLine.isConditional := false

 Sort MultyTransLine objects on Priority in Ascending order

 for each MultyTransLine
 if MultyTransLine.isConditional= true then

 Write ("if " & MultyTransLine.Expression &“ then”)
 Write (“ CurrentState := "& MultyTransLine.DstStateLabel)
 else Write ("CurrentState := "& MultyTransLine.DstStateLabel)

 if there exist DefState in State and (For all (MultyTransLine.isConditional)
= true) then
 Write ("else CurrentState := " & DefaultState.Label)

if there exist TrapState in FSM_Drawing
 Write ("otherwise:")
 Write (" CurrentState := " & TrapState.Label)

Figure 3: AsmL Code Generation Algorithm from FSM

An enumerated type state variable CurrentState is used to
hold the present state. A step while block [7] is generated
with the condition that the loop will terminate if the
CurrentState is evaluated as the trap state. The core FSM
code is generated in a match block [7] which is used to switch

to different states depending on the CurrentState. For a
State, the code generator writes its Label followed by a colon
‘:’. Then the Action Statements associated with the state are
written. Thereafter, the code generator gathers all the
transition line and condition information of that state. If there
are more than one TransLine coming out from the state, then
TransLine is sorted based on the assigned priority in
ascending order. Then the conditions for determining the next
state are written using if or else if statements. If any state
is set as default state and there exists no unconditional
transition line then assigning default state as the next state is
done using an else statement. To handle any illegal
assignments of states, the trap state is assigned as next state in
the otherwise section of the match block.

After the AsmL code is generated from the graphical FSM,
and it is executed and verified, it is then translated to
SystemC. Like AsmL, SystemC also has the notion of update
in its simulation semantics. We map the AsmL syntax and
semantics to SystemC so that the behavior of the AsmL code
is preserved in the translated SystemC code. The detailed
mapping rules from AsmL to SystemC are described in [6].

IV. CASE STUDY: UTOPIA TRANSACTOR
 UTOPIA [2] is a standard protocol used to connect devices
that implement ATM (Asynchronous Transfer Mode) and
PHY (PHYsical) layers. We have modeled the ATM layer at
TLM and the PHY layer at RTL in SystemC. These two
models are connected through a TLM-RTL transactor as
shown in Figure 4.

Figure 4: UTOPIA Transactor

From the ATM module, when a TLM function, e.g., SendCell
() is called, the transmit protocol must be followed by the
transactor to complete the task. We draw the FSM of the
protocol for sending cells which consists of four states namely
S_CheckCellAvailable, S_SendCell, S_CloseTxWindow, and
S_End as shown in Figure 5. At first, the state machine enters
the initial state S_CheckCellAvailable. If TxClav is asserted
then it sets the next state as S_SendCell. At the state
S_SendCell, the transactor opens the transmit window [2] by
asserting TxEnb. TxSoC is asserted when transmitting the first
byte of the cell. It also drives TxData with the corresponding
byte from the source cell array. Here, two user defined
variables Bn and Cn are used to keep track of byte and cell
numbers respectively. When the last byte of the cell is sent, it
checks the TxClav whether any more cells (if required) can be
transmitted. If PHY is unable to accept more cells, then it sets

ATM

Tr
an

sa
ct

or

RTL

PHY

TxEnb

TLM

TxSoC

RxClav

RxEnb
RxData

RxSoC
RxClk

TxClav
TxClk

TxData

 ID: Integer
 Label: String
 isDefState: Boolean
 isTrapState: Boolean

 ID: Integer
 StateID: Integer
 Statement: String

State Action

 ID: Integer
 TransLineID: Integer
 Expression: String

Condition
 ID: Integer
 SrcStateID: Integer
 DstStateID: Integer
 Priority: Integer

TransLine

 4

the next state as S_CloseTxWindow. At the state
S_CloseTxWindow, TxEnb is de-asserted and thus the transmit
window is closed. If all cells are transferred, then the state
machine enters state S_End and the SendCell function ends.
Otherwise it sets the next state as S_CheckCellAvailable.

Figure 5: Graphical FSM for the Function SendCell()

The FSM description is saved in ASF format [1] and then
AsmL code is generated from the FSM. A snapshot of the
generated AsmL code is shown in Figure 6.

enum typeState
 S_CheckCellAvailable
 S_SendCell
 S_CloseTxWindow
 S_End

public SendCell (StartCellNo as Integer, EndCellNo
as Integer, SrcCell as Seq of Integer)
 var CurrentState as typeState=S_CheckCellAvailable

 step while (CurrentState <> S_End)
 match (CurrentState)
 S_CheckCellAvailable :
 skip // Actions
 // Next State
 if (TxClav = LOGIC_1) then
 CurrentState := S_SendCell
 S_CloseTxWindow :
 TxEn_ := LOGIC_1 // Actions
 TxData := "XXXXXXXX"
 // Next State
 if (Cn = EndCellNo + 1) then
 CurrentState := S_End
 else
 CurrentState := S_CheckCellAvailable
 …

// Trap State
 otherwise
 // Next State
 CurrentState := S_End

Figure 6: Generated AsmL Code from Graphical FSM

The AsmL code is then translated to SystemC and other
necessary codes are added to generate the complete SystemC
transactor. We draw the FSM specification of the transactor
functions SendCell and GetCell for both blocking and non-
blocking [10] cases and generated the SystemC transactor
based on the proposed methodology. It was then simulated
with the ATM and PHY model in SystemC. The transactor
gave expected simulation result. The timing diagram of the
simulation matched with the UTOPIA specification which

verified the correct behavior of the generated transactor. The
number of AsmL lines is linearly proportional to the number
of states in the FSM drawing, number of action and condition
statements in a state. Table 1 shows that the number of
SystemC lines of code grows linearly with the AsmL code.

TABLE I
EXPERIMENTAL RESULTS

Transactor
Function

No. of
States

No. of Lines Time/Cell
in SystemC

AsmL SystemC Sim
(μs)

CPU
(ms)

SendCell 4 41 82 2.2 148
nb_SendCell 4 42 83 156.5
GetCell 4 32 66 2.2 70
nb_GetCell 4 38 78 78

This linear relationship promises expected CPU or machine
execution time. Table 1 also shows the required simulation
time for sending and receiving a cell in SystemC, which
depends on the UTOPIA model clock signals such as TxClk
and RxClk. The experiments were conducted on a Pentium
Mobile processor (1.8 GHz) with 512 MB of memory.

V. CONCLUSION
 We proposed an approach for the automatic generation of
SystemC transactors from graphical FSM description. Visual
representation of transactor protocol is easy and intuitive to
understand. We developed an algorithm to translate the FSM
to AsmL. AsmL specifications are executable and verifiable as
they adhere to formal syntax and semantics. We have
conducted a case study with the UTOPIA Interface. Our
future work includes providing a library for standard protocols
so they can be used in generating transactors that implement
standard protocol interfaces.

REFERENCES
[1] Aldec Inc. Acctive-HDL Tool, 2007. http://www.aldec.com/.
[2] ATM Forum Technical Committee. Utopia Level 2, Ver. 1.0, June 1995.
[3] F. Balarin and R. Passerone. Functional Verification Methodology based

on Formal Interface Specification and Transactor Generation; In Proc.
Design, Automation and Test in Europe, pages 1013–1018, Munich,
Germany, 2006.

[4] E. Boerger and R. Stark. Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer Verlag, 2003.

[5] N. Bombieri, F. Fummi and G. Pravadelli. On the Evaluation of
Transactor-based Verification for Reusing TLM Assertions and
Testbenches at RTL; In Proc. Design, Automation and Test in Europe,
pages 1007–1012, Munich, Germany, 2006.

[6] T.H. Khan, A. Habibi, S. Tahar and O. Ait Mohamed. Automatic
Generation of SystemC Transactors from AsmL Specifications; In Proc.
Forum on Specification & Design Languages, pages 104-109,
Barcelona, Spain, September 2007.

[7] Microsoft Corporation. AsmL: Abstract state machines Language, 2007.
http://research.microsoft.com/fse/asml/.

[8] Open SystemC Initiative. The SystemC Library, 2007.
http://www.systemc.org/.

[9] A. Pnueli. The Temporal Logic of Programs; In Proc. Symposium on the
Foundations of Computer Science, pages 46–57, Providence, Rhode
Island, USA, 1977.

[10] A. Rose, S. Swan, J. Pierce, J.M. Fernandez. Transaction Level
Modeling in SystemC; Open SystemC Initiative, 2006.

[11] SpiraTech Ltd. Cohesive, 2007. http://www.spiratech.com/.
[12] Structured Design Verification Inc. TransactorWizard, 2006.

http://www.sdvinc.com.

