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Abstract. Multiway Decision Graphs (MDGs) are a canonical repre-
sentation of a subset of many-sorted first-order logic. It generalizes clas-
sical BDDs with abstract data and uninterpreted functions. In this pa-
per, we describe a new MDG construction based on the Generalized-
If-Then-Else (GITE) operator. Consequently, we review the main algo-
rithms used for verification techniques i.e. relational product and prun-
ing by subsumption. Unlike an earlier version of the MDG package, basic
MDG algorithms are defined uniformly through this single GITE oper-
ator which will lead to a more efficient implementation. The new tool,
called NuMDG, accepts an extended SMV language, supporting abstract
data sorts.

1 Introduction

Reduced and Ordered Binary Decision Diagrams (ROBDDs) [1] have been widely
studied due to their successful use in automated hardware verification. The key
of the success is a canonical representation and easy manipulation of Boolean
functions. Most BDD packages provide an efficient implementation based on
recursive operations using a three operand function commonly known as ITE.
Moreover, they provide many operations that are extensively used in automated
verification methods. However, these methods suffer from the drawback that
they require a binary representation of the circuit. Every individual bit of every
data signal must be encoded by a separate Boolean variable, while the size of
ROBDD grows, sometimes exponentially, with the number of variables. This
leads to a state explosion problem when ROBDD-based methods are applied to
circuits with complex datapath.

Multiway Decision Graphs (MDGs) [2] have been proposed to overcome this
limitation. MDGs are a canonical representation of a certain class of many-sorted
first-order logic formulae, where data values and operations are represented by
abstract variables and uninterpreted functions, respectively. Therefore, especially
for circuits having a complex datapath, MDGs are much more compact than
ROBDDs and enhance the capability to verify a broader range of circuits [3].
In MDG-based verification, abstract description of states machines (ASM) are



used for modeling systems. In contrast to ordinary Finite State Machines (FSM),
the ASM supports non-finite state machines as models in addition to their in-
tended interpretations. The intent is to rise the abstraction level of automated
verification methods to approach those of interactive theorem proving methods
without sacrificing automation. MDGs have been investigated from different an-
gles and it culminated in a MDG tool providing Prolog-style MDG-HDL for
modeling and different verification techniques including sequential and combi-
national equivalence checking, invariant checking and a subset of first-order LTL
model checking [4, 5].

The work presented here mainly reviews the previous work [2] in one respect.
The set of basic operations on MDGs was implemented separately, while ROBDD
operations are implemented using a single generic algorithm ITE. This is because
the two edges that issue from an ROBDD node labeled x span the ranges of values
{F, T} that x can take, and this makes it possible to reason by case analysis.
Consequently, MDGs do not enjoy this property due to abstract variables. The
GITE operation can be considered to be a functionally complete three-input
logic gate that implements the expression GITE = (P ∧ Q) ∨ (¬P ∧ H). If P
is an abstract variable, then there is no MDG representing the formula ¬P . In
this paper, we claim that it is possible to use the GITE operation to produce an
MDG R that is logically equivalent to (P ∧Q)∨ (¬P ∧H) except for some cases
that will be discussed later. This leads to improve the efficiency of the existing
basic MDG algorithms.

Finally, we provide an architecture for our new tool. The goal here is to build
a robust model checking tool that accepts an extended SMV input language and
supports an abstraction mechanism through abstract sorts and uninterpreted
functions. Indeed, more work should be spent in implementing and developing
the tool in order to enhance the performance.

The paper is organized as follows: Section 2 reviews the closest related work.
Section 3 introduces a subset of many-sorted first-order logic that gives MDGs
their meaning. Section 4 describes basic MDG algorithms, their optimization
and their correctness proof. Section 5 introduces the architecture of NuMDG.
Finally, Section 6 concludes our paper and presents the future work.

2 Related Work

Approaches that capture non-finite aspects of the system, by using uninterpreted
functions or similar notion like first-order formulae with quantification, are more
closely related work.

Burch and Dill [6] have proposed a verification method that uses unin-
terpreted functions to denote data operations and a decision procedure as a
theorem-proving search method. Compared to MDG, their method does not
support representation of a set of states, fixpoint calculation and the transition
relation can be applied only a given number of times. Since then, uninterpreted
functions have generated a considerable interest in two respects: integration into



a symbolic model checkers [7, 8] or developing BDD-based decision procedures [9,
10].

More recently, Bryant et al. [11] translate a formula with uninterpreted func-
tions to propositional formula within the theory of equality while preserving
validity. Therefore, the resulting formula can be checked efficiently either by a
BDD or SAT solver. This reduction is based on Ackermann’s approach [12] that
consists of replacing each occurrence of a function with a new (domain) variable
and adding functional consistency constraints in the formula. A similar approach
is also proposed by Pnueli et al. [13] where the key differences are emphasized
in [11].

These approaches are applicable when data operations can be viewed as
black-boxes, i.e., the correctness of the system being modeled does not depend
on the meaning of these operations. This is usually the form of RTL designs
generated by high-level synthesis algorithms that schedule and allocate data
operations without being concerned with the specific nature of the operations.
However, ignoring properties of data operations leads sometimes to false nega-
tives. For example, a multiplier can be abstracted away when one of its inputs
is 0 or 1. In MDG, a simple rewriting system is used to deal with such cases. In
[14], Velev combines rewriting rules and Burch and Dill’s method [6] to verify
out-of-order processors that have a Reorder Buffer.

3 Multiway Decision Graphs Overview

3.1 Sorted Signature

A sorted signature Σ(V ,L,S) consists of an infinite set of variables V , partitioned
into a set Vabs of abstract variables and a set Vcon of concrete variables, a set of
symbols L, partitioned into a set LCO of cross-operators and a set LF of function
symbols and a set of sort symbols S, partitioned into a set Scon of concrete sorts
and a set Sabs of abstract sorts. All these sets are disjoint. Furthermore there is:

– An arity function that associates to each symbol in L a natural number.
Constant symbols are 0-ary function symbol.

– A function η : V → S which gives a sort to each variable symbol.
– A set of sort declarations for terms. A sort declaration for a term is a tuple

t : S , where t is a non-variable term and S ∈ Sabs is a sort symbol. We
sometimes abbreviate sort declaration f(x1, . . . , xn) : S as f : S1×. . .×Sn →
S where Si is the sort of the variable xi.

– A set of sort declaration for cross-operators. A sort declaration for a cross-
operator is of the form p : S1 × . . . × Sn → S where the Si are sorts and
S ∈ Scon

3.2 Well Sorted Terms

The set of well sorted terms T (Σ, S) of sort S in signature Σ is the smallest set
such that:



– x ∈ T (Σ, S) if x ∈ V and η(x) ∈ S
– f(t1, . . . , tn) ∈ T (Σ, S) if ti ∈ T (Σ, Si) for i = 1, . . . , n and f : S1 × . . . ×

Sn → S is a term sort declaration in Σ

The set T (Σ) of all well sorted terms is defined as the union
⋃
{T (Σ, S) : S ∈ S}.

If V = ∅, then TG(Σ, S) denotes a set of ground terms i.e. terms that are not
containing variables. A substitution σ is represented as a set {x1 �→ t1, . . . , xn �→
tn} where Dom(σ) = {x1, . . . , xn} and is defined on terms as usual. Its extension
by another substitution σ′, written σ ⊕ σ′, is another substitution such that:

– Dom(σ) ∩ Dom(σ′) = ∅ and
– for every variable x ∈ Dom(σ ⊕ σ′):

(σ ⊕ σ′)(x) =
{

σ(x) if x ∈ Dom(σ)
σ′(x) if x ∈ Dom(σ′)

3.3 Well Formed Directed Formulae (DFs)

The set of well formed formulae F(Σ, S) of sort S in signature Σ is the smallest
set such that:

– x = t if x ∈ T (Σ, S), t ∈ TG(Σ, S) and S ∈ Scon.
– x = t if x, t ∈ T (Σ, S) and S ∈ Sabs.
– p(t1, . . . , tn) = t if p : S1 × . . . × Sn → S is a cross-operator declaration in

Σ, either ti ∈ T (Σ, Si) and Si ∈ Sabs or ti ∈ TG(Σ, Si) and Si ∈ Scon for
i = 1, . . . , n and t ∈ TG(Σ, S).

– ¬P is a formula if Vars(P ) ∩ Vabs = ∅.
– P ∧ Q is a formula if Vars(P ) ∩ Vars(Q) = ∅.
– P ∨Q is a formula if Vars(P )∩Vabs = Vars(Q)∩Vabs and for each variable

x ∈ Vars(P ) either it occurs as a primary or secondary occurrence but not
both.

– (∃x : S)P is a formula where x can be both primary and secondary occur-
rence in P .

where further connectives like T F ⇒, ⇔ and ∀ are defined as the standard
abbreviations. Vars(P ) denotes the variables occurring in P . The occurrence of
the variable x in a LHS of the formula x = t is called a primary occurrence,
otherwise it is a secondary occurrence. Note that by our syntax definition, only
abstract variables have secondary occurrences. We say a DF formula P is of type
U → V iff (i) the set of abstract primary variables of P is equal to Vabs, (ii)
the set of secondary abstract variables is a subset of Uabs and (iii) the concrete
variables have occurrences in a set Ucon ∪ Vcon. Intuitively, the set U represents
the independent variables while V represents the dependent variables1. In the
absence of abstract variables, the sets of variables U and V play symmetrical
roles.
1 The definition of dependent/independent notion is related to the case statement not

with respect to classical function dependency



3.4 Semantics

A Σ-structure M consists of:

– D is a carrier set defined as the union of the denotations for each Sort S i.e.
D =

⋃
{DS : S ∈ S} such that if S ∈ Sabs then DS is non-empty set and if

S ∈ Scon then DS = {a1, . . . , an} where ai �= aj for 1 ≤ i < j ≤ n.
– a n-ary function M(f) : Dn → D for every n-ary function symbol f .
– a n-ary cross-operatorM(p) : Dn → D for every n-ary cross-operator symbol

p.

We say a partial mapping φ : V → D is a partial Σ-assignment iff φ(x) ∈
Dη(x) for every variable x ∈ Dom(φ). We assume that the structure M is fixed
and the formal definition of the semantics relative to the mapping φ is:

[[x]]φ = φ(x) for x ∈ V
[[f(t1, . . . , tn)]]φ = M(f)([[t1]]φ, . . . , [[tn]]φ)

[[x = t]]φ = tt iff [[x]]φ = [[t]]φ

[[p(t1, . . . , tn)]]φ = tt iff M(p)([[t1]]φ, . . . , [[tn]]φ) = tt
[[¬P ]]φ = tt iff [[P ]]φ = ff

[[P ∧ Q]]φ = tt iff [[P ]]φ = tt and [[Q]]φ = tt
[[(∃x : S)P ]]φ = tt iff [[P ]]φ[c/x] = tt

for some c ∈ DS

such that φ[c/x] is like φ
but maps x to c

The remaining logical connectives are interpreted as usual.

3.5 MDG Structure

An MDG of type U →V is a directed acyclic graph (DAG) G with one root and
ordered edges, such that:

1. Every leaf node is labeled by the formula T, except if G has a single node,
which may be labeled T or F.

2. For every internal node N , either
(a) N is labeled by T (U ∪ Vcon,LCO,S) and the edges that issue from N

are labeled by TG(Scon), or
(b) N is labeled by a variable in Vabs and the edges that issue from N are

labeled by T (Uabs,LF ,S)

MDG is a canonical representation of DFs and therefore must be reduced and
ordered like ROBDD [1]. Consequently, DFs must obey a set of well-formedness
conditions given in [2]. Some of them are already stated above. Intuitively, these
conditions represent pre-conditions for some basic MDG algorithms which are
mainly disjunction, relational product and pruning by subsumption. We will
investigate these algorithms in next Section. In order to illustrate the above
definitions, we consider the following example DF of type {u1, u2} → {v1, v2},



where u1 and v1 are variables of a concrete sort bool with enumeration {0, 1}
while u2 and v2 are variables of an abstract sort α, g is an abstract function
symbol of type α → α and f is a cross-operator of type α → bool . The MDG of
this formula is as follows:

((f(u2) = 0) ∧ (v2 = u2)) ∨
((f(u2) = 1)∧(u1 = 0)∧(v1 = 0)∧(v2 = g(u2)))
((f(u2) = 1)∧(u1 = 1)∧(v1 = 1)∧(v2 = g(u2)))

f(u2)

v2

0

u1

1

T

u2

v1

0

v1

1

v2

0 1

g(u2)

4 MDG Construction

Let P be an MDG of the form:

MDG(x, {a1, . . . , am}, {l1, . . . , ln}, {m1, . . . , mn})

then top(P ) denotes the root node x, arg(P ) denotes the set {a1, . . . , am} (even-
tually empty) of the cross-operator arguments, edges(P ) denotes a non-empty set
{l1, . . . , ln} of labels (edges), and childs(P ) denotes a non-empty set {m1, . . . , mn}
of sub-MDGs.

In a ROBDD, Boolean variables are used to encode the enumerated types.
This can be done by simply using a recursive function that divides the values
into two subsets of roughly equal size, creates a variable to distinguish between
them, and then recurses on the two subsets. It results in an Algebraic Decision
Diagram (ADD) [16] that extends BDD’s by allowing values from arbitrary finite
domain to be associated with the terminal nodes. Then this ADD is translated
to ROBDD. Due to the presence of abstract sorts, this approach cannot be
used for MDG. Therefore, an equation (atomic formula with equality) is used
to represent directly the MDG without encoding the concrete domains. We will
use the notation Eq(x, {a1, . . . , an}, l) to denote an MDG such that (i) the root
node is labeled with x and the (eventually empty) set {a1, . . . , an} (ii) the edge
is labeled with l and (iii) the terminal node is labeled with T.

4.1 Generalized-If-Then-Else (GITE)

Given a ROBDD b, a boolean function f represented by b is recursively defined
by:

f = (¬x ∧ fx=0) ∨ (x ∧ fx=1)



where x is the variable in b’s root node and the cofactor function fx=0 is de-
fined by the reachable subgraph of b’s 0-branch child. Similarly, fx=1 is re-
cursively defined by the reachable subgraph of b’s 1-branch child. Therefore a
ROBDD node can be naturally represented by an If-Then-Else statement, i.e.
ITE(x, fx=1, fx=0).

Given a variable ordering and three ROBDDs f, g and h, the ROBDD result
of f, g and h is easily constructed by Shannon’s expansion in the depth-first
manner. This expansion process repeats recursively following the given variable
order for the Boolean variables in f , g, and h. The base case (also called the
terminal case) is when f , g or h are representing a terminal node (i.e. Tor F
node). For example, ITE(T, g, h) can be trivially evaluated to g. The recursive
process will terminate because restricting all the variables of functions produces
constant functions T or F. At the end of the expansion phase, the uniqueness
of ROBDD representation is ensured by reducing expressions like ITE(x, f, f)
to f . This bottom-up reduction phase is performed in the reverse order of the
expansion phase. Finally, since all the boolean connectives can be expressed
as If-Then-Else statement, this construction provides a uniform way to build
arbitrary Boolean functions.

Similarly, our goal is to provide the same construction for MDGs. The defini-
tion of the cofactor function is made upon the following observation. Assuming
that x ranges over {0, 1, 3} and that there could be, say, only three edges issuing
from the root, as in the following graph:

x

G1

0

G2

1

G3

3

and G1, G2 and G3 represent the formulae P1, P2 and P3 respectively, then this
MDG could represent the formula

(x = 0 ∧ P1) ∨ (x = 1 ∧ P2) ∨ (x = 3 ∧ P3)

When x denotes 2, this formula is simply a false sentence. Therefore, the cofactor
Px=l,arg(x) with respect to a (concrete or abstract) variable x restricted to label
l and a set of the cross-operator arguments arg(x) (possibly empty) is defined as
follows:

Px=l,arg(x) =

⎧⎨
⎩

P if x < top(P )
mi if ∃i(l = li) ∧ (arg(P ) = arg(x))
F otherwise

While concrete sorts have enumerations, abstract sorts do not. To overcome this
problem, we can collect all the labels of the abstract variable x from the MDGs



involved in the construction. This task is achieved by the function enum which
is defined as:

enum(x, P ) =
{

Scon if x ∈ Scon and top(P ) = x
edges(P ) if x ∈ Sabs and top(P ) = x

This function exploits the variable ordering, hence there is no need to traverse
all the children of P to collect the edges. The generalization of this function to
a set of MDGs is defined as usual. Moreover, we assume that the set of edges
are ordered.

Our GITE algorithm takes as input three MDGs P, Q and H of type Ui → Vi

for i = 1..3 respectively and produces an MDG R = GITE(P, Q, H) of type⋃
1≤i≤3 Ui →

⋃
1≤i≤3 Vi such that |= R ⇔ (P ∧ Q) ∨ (¬P ∧ H). Such MDG R

does not always exist due to abstract variables. For example, let x be an abstract
variable and a be an abstract generic constant. Let P be x = a (i.e., an MDG
with a root node labeled x and a single edge labeled a leading to T ), then there
is no MDG representing the formula ¬(x = a). Thus there can be no algorithm
for general negation. On the other hand, it is easy to compute a formula logically
equivalent to ¬P that has no nodes labeled by abstract variables. Similarly, there
does not always exist an MDG R such that |= R ⇔ (P ∨ Q). For example, let
x and y be distinct abstract variables, and a and b distinct abstract generic
constants, then there exists no well-formed MDG representing the formula x =
a∨y = b. Finally, it may be impossible to compute the conjunction of two MDGs
whose root nodes have the same label, if that label is an abstract variable (i.e.,
x = a ∧ x = b). Note all these formulae are not DFs since they do not respect
the syntax constraints defined in Section 3. Moreover, we claim that the logical
equivalence between R and (P ∧Q)∨ (¬P ∧H) can be shown independent of the
negation of P , particularly when the top symbol of P is an abstract variable.
For example, it is easy to show that |= (x = a ∨ x = b) ⇔ (x = a ∧ T) ∨ (¬(x =
a) ∧ x = b) in classical logic. The detailed algorithm is given below:

GITE(P, Q, H)
1. if (terminal case) then
2. return (R = trivial result);
3. else
4. if (computed table has entry {(P, Q, H), R}) then
5. return R from computed table ;
6. else
7. x = top variables of P , Q and H ;
8. S = enum(x, P, Q, H);
9. a = arg(x);
10. l, m = ∅;
11. for (each s s.t. s ∈ S) do
12. R = GITE(Px=s,a, Qx=s,a, Hx=s,a);
13. if (R �= F) then
14. append(l,s); append(m,R);
15. endif



16. endfor
17. if(l = ∅) then (R = F);
18. else R = find or add unique(x, a, l, m);
19. endif
20. insert (P, Q, H, R) in the computed table
21. return R;
22. endif
23. endif

The result MDG is constructed by recursively performing Shannon’s expan-
sion. This recursive expansion ends when a terminal node is reached (lines 1
and 2) or when it is found in the computed table (line 4 and 5). A computed
table stores previously computed results to avoid repeating work that was done
previously. Line 7 determines the top variable of P, Q and H . Line 8 extracts
a set of labels (edges) S according to the top variable sort. When this sort is
concrete, then S is equal to the enumeration of this sort. Otherwise, we collect
the labels from the MDGs involved in the construction. Line 9 and 10 extract
eventually the arguments if the top variable is a cross-operator and initialize
the new set of labels and MDGs to be constructed. Lines 11 to 16 recursively
perform Shannon’s expansion on the cofactor in respect to S and computes the
new edges and MDGs by discarding the elements of S that result in a terminal
MDG F. At the end of the expansion (line 17), either the resulting MDG is F
or the reduction step and uniqueness of the resulting MDG are performed (line
18). The reduction step is applied only on the concrete sorts. Therefore a node
is redundant if all the edges are in the enumeration of the concrete sort and the
corresponding MDGs are the same.

Theorem 1. The GITE algorithm is correct and terminates2.

4.2 Relational Product (RelP)

The relational product combines conjunction and existential quantification in
one step. We provide an algorithm that extends the ROBDD relational product.
It takes the conjunction of two MDGs having disjoint sets of abstract primary
variables and existentially quantifies with respect to some abstract or concrete
variables that have primary occurrence in at least one of the MDGs. The primary
occurrence of an abstract variable in one MDG can be a secondary occurrence
in the other MDG. For this reason, we have introduced a substitution that
includes those variables during the construction (i.e., the secondary variables
are implicitly quantified). The substitution is applied in the reverse order of
the expansion phase on the edges labeled with secondary occurrence variables
and cross-operators arguments. However, while the ordering variable cannot be
preserved in case of cross-operators, there may exist redundant or contradictory

2 The correctness proof of all the algorithms is included in a technical report[19]



MDG result during intermediate steps. For example, let x < m < M be an
ordering variables and let P be leq(x, m) = 1 ∧ leq(x, M) = 0 where x, m and
M are secondary abstract variables that having primary occurrences in another
MDG, say, Q, and σ = {x �→ x#3, m �→ x#2, M �→ x#1}, then the resulting
MDG leq(x#3, x#2) = 1 ∧ leq(x#3, x#1)) = 0 does not preserve the order3.
Therefore, we will distinguish the case of the cross-operator and provide a special
construction for it.

Let E be the set of quantified variables, our algorithm takes two MDGs
P , Q of type Ui → Vi for i = 1..2 and a substitution σ with Dom(σ) = E
and returns an MDG R = RelP(P, Q, E, σ) of type (

⋃
1≤i≤2 Ui \

⋃
1≤i≤2 Vi) →

(
⋃

1≤i≤2 Vi \
⋃

1≤i≤2 Ui) such that |= R ⇔ ∃E(P ∧ Q).

RelP(P, Q, E, σ)
1. if (terminal case) then
2. return (R = trivial result);
3. else
4. if (computed table has entry {(P, Q, E, σ), R}) then
5. return R from computed table ;
6. else
7. x = top variables of P , Q
8. S = enum(x, P, Q);
9. a = arg(x);
10. l, m = ∅;
11. for (each s s.t. s ∈ S) do
12. R = RelP(Px=s,a, Qx=s,a, E, Extend(σ, x, s, E));
13. if (R �= F) then
14. append(l,s); append(m,R);
15. endif
16. endfor
17. if(l = ∅) then (R = F);
18. else
19. if(x ∈ E) then
20. R = Or(m)
21. else
22. if(a = ∅) then
23. R = find or add unique(x, a, σ(l), m);
24. else
25. R = F
26. for (each li ∈ l and mi ∈ m )
27. R = Or(R, And(Eq(x, σ(a), li), mi))
28. endfor
29. endif
30. endif

3 the variable x#i serves as a symbolic value of x at the ith step and i < j ⇒ x#i <
x#j



31. endif
32. insert (P, Q, E, σ, R) in the computed table
33. return R
34. endif
35. endif

Like ROBDD relational product algorithm, RelP uses a result cache. If the en-
try (P, Q, E, σ) is in the cache, then it means that a previous call to RelP(P, Q, E, σ)
returned R as result. Lines 7 and 16 apply recursively the relational product with
respect to a top symbol x where Extend(σ, x, s, E) returns σ ⊕ {s/x} if x ∈ E
otherwise it returns σ. Lines 19 to 31 apply either quantification or conjunction
depending whether the variable x occurs in E or not. As explained above, we
distinguish the cross-operators case (lines 25 to 28), where we construct a new
MDG that respects the ordering variable, thus avoiding any contradictions.

Theorem 2. The RelP algorithm is correct and terminates

4.3 Pruning by Subsumption (PbyS)

The pruning by subsumption algorithm approximates the difference of sets rep-
resented by MDGs (i.e. DFs). We propose a new algorithm which uses restricted
operators and builds an MDG in a similar manner as GITE does. The proposed
algorithm improves the original one in many ways. First, the expansion is done
only on the first argument i.e., P rather than on P and Q. Indeed, we can view
each disjunct of DF as a state description. Without loss of generality, we can
assume that P and Q contain only one disjunct. Then, we can say that P is
subsumed by Q if and only if there exists a substitution σ such that the state
description of Qσ is a subset of the state description of P . Therefore the size of
P should be at least equal to the size of Q. Next, when the top variable of Q is
less than the top variable of P , it is obvious that the state description of Q is
not a subset of P . Hence, the cofactor of Q should be F, which improves drasti-
cally the original algorithm. Finally, when P and Q have the same top symbol
cross-operator but there is a mismatch either on the edges or on the arguments,
the cofactor of Q is Q itself and we discard the substitution if any resulting from
the unification of their arguments. These observations lead to a new restricted
operator defined as follows.

Given an MDG Q, the restriction of Q with respect to a variable x, an
edge l, a set of cross-operator arguments arg(x) and a substitution σ, written
Q|x=l,arg(x),σ, returns a pair of MDG-substitution 〈m, σ′〉 as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Q, σ〉 if x < top(Q)
〈F , σ〉 if top(Q) < x
〈mi, σ

′〉 if (∃i)(l = liσ
′) ∧ arg(Q) = arg(x) = ∅

〈Q, σ〉 if (� ∃i)(l = liσ
′) ∧ arg(Q) = arg(x) = ∅

〈mi, σ
′′〉 if ∃i(l = liσ

′′) ∧ (arg(Q)σ′′ = arg(x))
〈Q, σ〉 if � ∃i(l = liσ

′′) ∨ (arg(Q)σ′′ �= arg(x))
〈F , σ〉 otherwise



where σ′ = σ ⊕ {li �→ l} and σ′′ = σ ⊕ {arg(Q) �→ arg(x)}.
Our PbyS algorithm takes two MDGs P and Q of type U → V1 and U → V2

and a substitution σ initially equal to the identity and produces an MDG P ′ of
type U → V1 such that P ′ is derivable from P by pruning some paths such that
|= P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q. The paths that are removed from P are subsumed
by Q, hence the name of the algorithm. If P ′ = F then, we can view P ′ as a
logical difference of P and (∃U)Q i.e. |= P ⇒ (∃U)Q. The detailed algorithm is
given below:

PbyS(P, Q, σ)
1. if (terminal case) then return (P ′ = trivial result);
2. else if (pbys table has entry {(P, Q, σ), P ′}) then
3. return P ′ from pbys table ;
4. else
5. x = top(P ); l, m = ∅; a = arg(P );
6. for (each s ∈ edges(P )) do
7. P ′ = Px=s,a;
8. stack = Q|x=s,a,σ;
9. while stack is not empty;
10. 〈m′, σ′〉= pop stack;
11. P ′ = PbyS(P ′, m′, σ′);
12. if (P ′ = F) break;
13. endwhile;
14. if(P ′ �= F) then
15. append(l,s); append(m,P’);
16. endif
17. endfor;
18. if(l = ∅) then (P ′ = F);
19. else P ′ = find or add unique(x, a, l, m);
20. update pbys table ({(P, Q, σ), P ′}) ;
21. return P ′;
22. endif

The result MDG is constructed by recursively performing the restricted op-
erators introduced on P and Q until a terminal node is reached (line 1) or when
it is found in the pbys table (line 2). Line 5 determines the top variable of P
and the cross-operator arguments (if possible) and initializes the new edges and
children to be constructed. Then from each edge issuing from the node x (line
6), we extract the cofactors of P and Q where the cofactors of Q are pairs of
MDG-substitution stored in a stack. Lines 9 to 13 check whether the cofactors
of P , written P ′, is subsumed by one of the Q paths. If so (line 12) then there
is no need to try the other cofactors of Q and therefore we continue with the
remaining cofactors of P and we discard P ′. Otherwise, the edge and this cofac-
tor are added to the corresponding table (lines 14-16). When we have processed
all the cofactors of P (line 18) either all the paths of P are subsumed by P and



thus the result MDG is F, or the reduction step and uniqueness of the resulting
MDG are performed (line 20) with all or some paths of P that not subsumed.

Theorem 3. The PbyS algorithm is correct and terminates

5 NuMDG Structure

A high level description of NuMDG is given in Figure 1. In the future, we will
provide an open source tool with many functionalities independent of the model
checking engine used. Like NuSMV [17], the tool will be able to process files writ-
ten in an extension of the SMV language with abstract sort and uninterpreted
functions. In this language, finite state machines are described by using instan-
tiation mechanism of modules and processes, corresponding to synchronous and
asynchronous composition respectively. The requirements are written in CTL,
LTL or in a first-order subset of temporal logic.

FLATTENING & DFs

P1,.......,Pn                         M

Pf1,.......,Pfn                         Mf

Mf (Pfi)

MDG PACKAGE

MDG BASED MODEL

CONSTRUCTION

REWRITING ENGINE

MDG VERIFICATION

CTL, LTL, BMC Model Checking

Subset FO-LTL Model Checking

CONE OF INFLUENCE

Fig. 1. Internal structure of NuMDG

An (extended) SMV file is processed in several phases. The first phase an-
alyzes the input file with different layers in order to construct an internal rep-
resentation of the model. The construction starts from modular description of
a model M and of a set of properties P1, . . . Pn. The flattening step consists
of eliminating modules and processes and producing a synchronous flat model,
where each variable is given an absolute name. The second step, called DF,
maps each expression in the flat model to a directed formula, thus obtaining
the corresponding flattened directed model Mf . Compared to SMV-based tools,
there is no boolean encoding. Hence, some interpreted predicates and arithmetic
functions are not supported in a straightforward manner. The same reduction is
applied to the properties Pi, thus obtaining the corresponding flattened directed



formula Pif . By cone of influence, we restrict the analysis of each property to
the relevant parts of the model Mf (Pif ).

After the preprocessing phase, the user can choose the model checking en-
gine to be used for verification. The choice is restricted by the nature of the
model being described i.e. whether it supports abstract sorts and uninterpreted
functions or not. In the absence of the latter, NuMDG is acting like NuSMV
and should provide the same facilities including MDG-based, SAT-based model
checking and different partitioning methods. For the time being, MDG-based
verification includes reachability analysis and fair CTL model checking.

The rewriting engine is used during the MDG-verification if necessary when
the reachability analysis does not terminate due to the presence of abstract
sort and uninterpreted functions. In this case we can interpret partially some
functions or predicates in order to cope with this non termination [18]. The
input language supports a rewriting layer which is extracted and feeded to the
rewriting engine. Currently, we are working to complete the infrastructure shown
in Figure 1.

6 Conclusion and Future work

We have described the basic MDG algorithms that incorporated many optimiza-
tions that will yield further improvements in the performance of MDG package.
The efficiency is achieved through the use of the generalization of the If-Then-
Else (ITE) operator defined in the BDD package. Consequently, we have rede-
fined the main algorithms on which the MDG verification techniques are based,
i.e, relational product and pruning by subsumption. These new algorithms de-
scriptions are based mainly on the ROBDD ones and lifted to the realm of
abstract sorts and uninterpreted functions.

We have also presented the internal architecture of the NuMDG tool and
identified a number of open issues and future work directions. We need to com-
plete the implementation and confirm that NuMDG can be used to check SMV
specifications. However, the effect of cache and the garbage collection should be
characterized according to a rigorous evaluation methodology. Also case studies
and experiments are required to check the new tool and compare the results with
SMV.
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