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Abstract

The verification of optical systems is an important issue
due to their safety and financial critical nature (e.g., laser
surgeries and space telescopes). Theorem proving offers an
attractive solution to overcome the accuracy and soundness
problems of traditional approaches like paper-and-pencil
based proofs and computer simulation. However, existing
formalizations of optics theories do not provide the facil-
ity to analyze optical imaging systems which describe the
behavior of light ray within the system. In this paper, we
present the ray optics formalization of cardinal points which
are the most fundamental requirement to model imaging
properties of optical systems. We also present the verifi-
cation of cardinal points for a general system consisting of
any number of optical components. For illustration pur-
poses, we present the formal analysis of a thick lens.

1. Introduction

Generally, optical systems consist of a combination of

reflecting and refracting surfaces (i.e., mirrors or lenses) to

achieve different functionalities such as astronomical imag-

ing, light modulation and short pulse generation. The mod-

eling and analysis of such systems is based on different ab-

stractions of light such as geometrical, wave, electromag-

netic and quantum optics. Geometrical or ray optics [15]

characterizes light as a set of straight lines which linearly

traverse through the optical system. Wave [18] and electro-

magnetic optics [18] describe the scalar and vectorial wave

nature of light, respectively. In Quantum optics [7], light is

considered as a stream of photons and electric and magnetic

fields are modeled as operators. In general, each of these

theories has been used to model different aspects of the

same or different optical components. For example, phase-

conjugate mirror can be modeled using the ray, electromag-

netic and quantum optics. The application of each theory

is dependent on the type of system properties which needs

to be verified. For example, ray optics provide a convenient

way to verify the stability of optical resonators and coupling

efficiency of optical fibers. On the other hand, ensuring that

no energy is lost when light travels through a waveguide and

the analysis of active elements requires electromagnetic and

quantum optics theories, respectively. In practice, many op-

tical systems are composed of rotationally symmetric com-

ponents, i.e., light behavior remains same even the compo-

nent is rotated along the fixed optical axis [15]. One of the

primary design choices is to model a given optical system

using the ray optics theory which provides useful informa-

tion about the overall structure of the system. Moreover, it

provides a convenient way to analyze some important prop-

erties describing the transformation of input ray (object ray)

to the output ray (image ray). For example, some of the

properties are the optical power of each component, image

size and location etc. In the optics literature, these are called

the imaging properties of optical systems. Most of the in-

dustrial optical system analysis softwares (e.g., Zemax [14])

provide the facility to analyze such properties.

One of the most challenging requirement in the valida-

tion of the practical optical system models is the verifica-

tion of desired properties. Therefore, a significant portion

of time is spent finding design bugs in order to build accu-

rate optical systems. Traditionally, the analysis of optical

systems has been done using paper-and-pencil proofs [18].

However, considering the complexity of optical and laser

systems, this analysis is very difficult, risky and error-prone.

Many examples of erroneous paper-and-pencil proofs are

available in the literature of optics (e.g., work reported in

[6] was latter corrected in [13]). Another approach is to per-

form a simulation based analysis of optical systems. This

is mainly based on numerical algorithms and suffers from

numerical precision and soundness problems. The above

mentioned inaccuracy problems of traditional analysis tech-

niques are impeding their usage in designing safety-critical

optical systems, where minor bugs can lead to disastrous

consequences such as the loss of human lives (e.g., surgeries

[12]) or financial loss (e.g., the Hubble Telescope [1], for

which the total budget was $1.6 billion). In order to build

reliable and accurate optical systems, it is indispensable to

develop a framework which is both accurate and scalable

for handling complex optical and laser systems.
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Formal methods [19] allow accurate and precise analy-

sis and thus overcome the above mentioned limitations of

traditional approaches. The main idea behind them is to de-

velop a mathematical model for the given system and ana-

lyze this model using computer-based mathematical reason-

ing, which in turn increases the chances for catching subtle

but critical design errors that are often ignored by traditional

techniques. In order to formally verify electronic systems,

several formal methods based techniques (such as model

checking [5] and theorem proving [9]) have been proposed.

Due to the involvement of multivariate calculus (complex

linear algebra, complex geometry theory) in the design of

optical systems, model checking is not suitable to handle

such systems. Recently, some preliminary works for ana-

lyzing optical systems using theorem proving [9] have been

reported in the literature. For instance, in [11], the formal

analysis of optical waveguides using real analysis of HOL4

theorem prover is reported. In [4], complex formalization

of electromagnetic optics is reported along with the formal-

ization of quantum mechanics with applications in quantum

optics. The preliminary formalization of ray optics is re-

ported in [16, 17] with main applications in the analysis of

optical and laser resonators. Despite of the vast applica-

tions of optical imaging systems, none of the above men-

tioned work provide the formalization of basic building-

blocks such as the notion of cardinal points [18] (i.e., the

pair of points on the optical axis) which are sufficient to

completely specify the imaging properties of any geometri-

cal optical system.

The main focus of this paper is to bridge the above men-

tioned gap and strengthen the formal reasoning support in

the area of optical imaging systems. In particular, we build

on top of our previous work [17] to formalize composed op-

tical systems which are then utilized to formalize the cardi-

nal points of an arbitrary optical system. Note that this work

is a part of an ongoing project1 to develop a formal reason-

ing support for different fields of optics (e.g., ray, electro-

magnetic and quantum optics). In this paper, we use the

HOL Light theorem prover [3] to formalize the underlying

theories of imaging optical systems. The main reasons of

using HOL Light are the existence of rich multivariate anal-

ysis libraries [10] as well as active projects like Flyspeck

[8].

The rest of the paper is organized as follows: Section

2 provides a brief introduction of the ray optics. In Sec-

tions 3 and 4, we highlight the formalization of ray optics

and composed optical systems. In Section 5, we present the

formalization of cardinal points of optical imaging systems.

We illustrate the effectiveness of our work by describing the

formal modeling and analysis of a thick lens in Section 6.

Finally, Section 7 concludes the paper and highlights some

future research directions.

1http://hvg.ece.concordia.ca/projects/optics/

2. Ray Optics

2.1. Overview

Ray optics describes the propagation of light as rays

through different interfaces and mediums. The main gov-

erning principle of ray optics is based on some postulates

which can be summed up as follows: Light travels in the

form of rays emitted by a source; an optical medium is

characterized by its refractive index; light rays follow the

Fermat’s principle of least time [15]. Generally, the main

components of optical systems are lenses, mirrors and prop-

agating mediums which is either a free space or some ma-

terial such as glass. These components are usually centered

about an optical axis, around which rays travel at small

inclinations (angle with the optical axis). Such rays are

called paraxial rays and this assumption provides the basis

of paraxial optics which is the simplest framework of geo-

metrical optics. When a ray passes through optical compo-

nents, it undergoes translation or refraction. In translation,

the ray simply travels in a straight line from one compo-

nent to the next and we only need to know the thickness of

the translation. On the other hand, refraction takes place

at the boundary of two regions with different refractive in-

dices and the ray obeys the law of refraction, called Parax-
ial Snell’s law [15]. For example, ray propagation through

a free space of width d with refractive index n, and a plane

interface (with refractive indices n1 and n2, before and after

the interface, respectively) is shown in Figure 1
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θ 
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(a) Free Space  (b) Plane Interface 

Figure 1. Behavior of a Ray at Plane Interface
and Free Space

2.2. Modeling Approach

The change in the position and inclination of a paraxial

ray as it travels through an optical system can be efficiently

described by the use of a matrix algebra. This matrix for-

malism (called ray-transfer matrices) of geometrical optics

provides accurate, scalable and systematic analysis of real-

world complex optical and laser systems. This is because

of the fact that each optical component can be described as

(2 × 2) matrix and many linear algebraic properties can be

used in the analysis of optical systems. For example, the

general optical system with an input and output ray vector
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can be described as follows:[
yn

θn

]
=

[
A B

C D

][
y0

θ0

]

Finally, if we have an optical system consisting of N
optical components (Ci), then we can trace the input ray

Ri through all optical components using the composition of

matrices of each optical component as follows:

Ro = (Ck.Ck−1....C1).Ri (1)

We can write Ro = MsRi, where Ms =
∏1

i=k Ci. Here,

Ro is the output ray and Ri is the input ray. Similarly, a

composed optical system consists of N optical systems in-

herits the same properties as of a single optical component.

This is a very useful modeling notion for the systems which

consists of small subsystems due to the already available

infrastructure which can be utilized directly with minimal

efforts.

2.3. Optical Imaging:

Optical systems capable of being utilized for imaging

(can record or transform objects to an image) are called op-

tical imaging systems. Mainly these systems are divided

into two main categories, i.e., mirror-systems (also called

catoptrics, which deal with reflected light rays) and lens-

systems (also called dioptrics, which deal with refracted

light rays). Examples of such systems are optical fibers and

telescopes, for the first and second case, respectively. An

optical imaging system has many cardinal points which are

required to analyze paraxial properties of the optical sys-

tems. These points are the principal points, the nodal points
and the focal points, which are situated on the optical axis.

Figure 2 describes a general optical imaging system with

an object point P0 with a distance x0 from the optical axis

(called the object height). The image is formed by the op-

tical system at point P1 with a distance x1 from the optical

axis (called the image height). The refractive indices of ob-

ject space and image space are n and n′, respectively. The

points F and F ′ are the foci in the object space and the im-

age space, respectively. The points N and N ′ are the nodal

points in the object and image space. Finally, the points

U and U ′ are the unit or principal points in the object and

image space [18].

2.4. Ray Tracing

The propagation of paraxial rays through an optical sys-

tem is a very useful technique to analyse optical systems.

The activity of ray propagation through an optical system is

called ray tracing [18] and it provides a convenient way for
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P1 

Figure 2. Cardinal Points of an Optical System
[18]

the design optimization along with the assessment of imag-

ing quality and properties such as misalignment tolerance

and fabrication error analysis of optical components. Ray

tracing can be automated and hence it is a part of almost all

optical system design tools such as Zemax [14]. There are

two types of ray tracing i.e., sequential and non-sequential

[18]. In this paper, we only consider sequential ray tracing

which is based on three main modeling criterion: First, the

nature and parameters of interfaces (plane or spherical) are

known (e.g., the radius of curvature in the case of a spher-

ical surface). Second, the position and orientation of each

interface is known, i.e., order is fixed. Third, the refractive

indices of all components and mediums are known.

On the other hand, in case of non-sequential ray tracing

the nature of each interface is not predefined, i.e., at each in-

terface ray can either be transmitted or reflected. However,

it is sufficient to consider sequential ray tracing to evaluate

the performance of imaging optical systems and hence the

main reason of our choice.

3. Formalization of Ray Optics Theory

In this section, we present an overview of our higher-

order logic formalization of ray optics. The formalization

consists of three parts: A) the formalization of optical sys-

tem structure; B) the modeling of ray behavior; C) the

verification of ray-transfer matrices of optical components.

Here, we only provide some highlights of our formalization

and more details can be found in [17].

3.1. Modeling of Optical System structure

Ray optics explains the behavior of light when it passes

through a free space and interacts with different interfaces

like spherical and plane. We can model free space by a pair

of real numbers (n, d), which are essentially the refractive

index and the total width, as shown in Figure 1 (a). For the

sake of simplicity, we consider only two fundamental inter-

faces, i.e., plane and spherical which are further categorized
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as either transmitted or reflected. Furthermore, a spherical

interface can be described by its radius of curvature (R). We

formalize the above description in HOL Light as follows:

Definition 1 (Optical Interface and Free Space)
new type abbrev ("free space",‘:R × R‘)
define type "optical interface =

plane | spherical R"
define type "interface type =

transmitted | reflected"

An optical component is made of a free

space (free space) and an optical interface

(optical interface) as defined above. Finally,

an optical system is a list of optical components followed

by a free space. When passing through an interface, the ray

is either transmitted or reflected (it is because of the fact

that we are only considering sequential ray tracing). In our

formalization, this information is also provided in the type

definition of optical components, as shown by the use of

the type interface type as follows:

Definition 2 (Optical Component and System)
new type abbrev ("optical component",
‘:free space × optical interface ×
interface type‘)
new type abbrev ("optical system",
‘:optical component list
× free space‘)

Note that this datatype can easily be extended to many other

optical components if needed.

The next step in our formalization is to define some pred-

icates to ensure the validity of free space, optical compo-

nents and systems. A value of type free space does rep-

resent a real space only if the refractive index is greater than

zero. In addition, in order to have a fixed order in the repre-

sentation of an optical system, we impose that the distance

of an optical interface relative to the previous interface is

greater or equal to zero. We also need to assert the validity

of a value of type optical interface by ensuring that

the radius of curvature of spherical interfaces is never equal

to zero. This yields the following predicates:

Definition 3 (Valid Free Space and Optical Interface)
� is valid free space ((n,d):free space)

⇔ 0 < n ∧ 0 ≤ d
� (is valid interface plane ⇔ T) ∧
(is valid interface (spherical R)
⇔ 0 <> R)

Definition 4 (Valid Optical Component)
� ∀fs i ik. is valid optical component
((fs,i,ik):optical component) ⇔
is valid free space fs ∧
is valid interface i

We can check the validity of an optical system by ensuring

that this predicate holds for every component of an optical

system.

3.2. Modeling of Ray Behavior

We can now formalize the physical behavior of a ray

when it passes through an optical system. We only model

the points where it hits an optical interface (instead of mod-

eling all the points constituting the ray). So it is suffi-

cient to just provide the distance of all of these hitting

points to the axis and the angle taken by the ray at these

points. Consequently, we should have a list of such pairs

(distance, angle) for every component of a system. In

addition, the same information should be provided for the

source of the ray. For the sake of simplicity, we define a

type for a pair (distance, angle) as ray at point. This

yields the following definition:

Definition 5 (Ray)
new type abbrev ("ray at point",‘:R×R‘)
new type abbrev ("ray",
‘:ray at point × ray at point ×
(ray at point × ray at point) list‘)

The first ray at point is the pair (distance, angle) for

the source of the ray, the second one is the one after the first

free space, and the list of ray at point pairs represents

the same information for the interfaces and free spaces at

every hitting point of an optical system.

Once again, we specify what is a valid ray by using some

predicates. First of all, we define what is the behavior of a

ray when it is traveling through a free space. In paraxial

limit, ray travels in a straight line in free space and thus

its distance from the optical axis and angle can be related

as y1 = y0 + d ∗ θ0 and θ1 = θ0 (as shown in Figure

1), respectively [15]. In order to model this behavior, we

require the position and orientation of the ray at the previous

and current point of observation, and the free space itself.

We encode above information in HOL Light as follows:

Definition 6 (Behavior of a Ray in Free Space)
� is valid ray in free space
(y0,θ0) (y1,θ1) ((n,d):free space) ⇔
y1 = y0 + d * θ0 ∧ θ0 = θ1

where (y0,θ0), (y1,θ1) and ((n,d):free space) rep-

resent the ray orientation at previous and current point, and

free space, respectively.

Next, we define what is the valid behavior of a ray when

hitting a particular interface. This requires the position and

orientation of the ray at the previous and current interface,

and the refractive indices before and after the component.

Then the predicate is defined by case analysis on the inter-

face and its type as follows:
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Definition 7 (Behavior of a Ray at Given Interface)
� (is valid ray at interface (y0,θ0)

(y1,θ1) n0 n1 plane transmitted ⇔
y1 = y0 ∧ n0 * θ0 = n1 * θ1) ∧

(is valid ray at interface
(y0,θ0) (y1,θ1) n0 n1 (spherical R)
transmitted ⇔ let φi= θ0 + y1

R
and

φt = θ1 + y1
R

in
y1 = y0 ∧ n0 * φi = n1 * φt) ∧

(is valid ray at interface
(y0,θ0) (y1,θ1) n0 n1 plane reflected
⇔ y1 = y0 ∧ n0 * θ0 = n0 * θ1) ∧
(is valid ray at interface
(y0,θ0) (y1,θ1) n0 n1 (spherical R)
reflected ⇔ let φi = y1

R
- θ0 in y1 =

y0 ∧ θ1 = -(θ0 + 2 * φi))

The above definition states some basic geometrical facts

about the distance to the axis, and applies paraxial Snell’s

law [15] to the orientation of the ray. Similarly, we can de-

fine the behavior of ray in the entire system by a predicate

is valid ray in system (the definition of this predi-

cate is straightforward, details can be found in [17]).

3.3. Verification of Ray-Transfer Matrices

The main strength of the ray optics is its matrix formu-

lation [18], which provides a convenient way to model all

the optical components in the form of a matrix. Indeed, ma-

trix describes a linear relation among input and the output

ray. For example, in the case of a free space, the input and

output ray parameters are related by two linear equations,

i.e., y1 = y0 + d ∗ θ0 and θ1 = θ0, which further can be

described in a matrix form as follows:

Theorem 1 (Ray-Transfer-Matrix for Free Space)
� ∀n d y0 θ0 y1 θ1.
is valid free space (n,d) ∧
is valid ray in free space (y0,θ0)
(y1,θ1) (n,d)) =⇒[
y1
θ1

]
=

[
1 d

0 1

]
**

[
y0
θ0

]

The first assumption ensures the validity of free space and

the second assumption ensures the valid behavior of ray in

free space. We use the traditional mathematical notation

of matrices for the sake of clarity, whereas we define these

matrices using the HOL Light Vectors library. We prove the

above theorem using the above mentioned definitions and

properties of vectors. Similarly, we prove the ray-transfer

matrices of plane and spherical interfaces for the case of

transmission and reflection (more details can be found in

[17].

4. Formalization of Composed Optical Systems

We can trace the input ray Ri through an optical sys-

tem consisting of N optical components by the composi-

tion of ray-transfer matrices of each optical component as

described in Equation 1. It is important to note that in

this equation, individual matrices of optical components are

composed in reverse order. We formalize this fact with the

following recursive definition:

Definition 8 (Optical System Model)
� optical system model ([],n,d) ⇔
free space matrix d ∧
optical system model
(CONS ((nt,dt),i,ik) cs,n,d) ⇔
(optical system model (cs,n,d) **
interface matrix nt
(head index (cs,n,d)) i ik) **
free space matrix dt

The general ray-transfer-matrix relation is then given by

the following theorem:

Theorem 2 (Ray-Transfer-Matrix for Optical System)
� ∀sys ray.is valid optical system sys ∧
is valid ray in system ray sys =⇒
let (y0,θ0),(y1,θ1),rs = ray in
let yn,θn = last ray at point ray in[
yn
θn

]
= system composition sys **

[
y0
θ0

]

Here, the parameters sys and ray represent the optical

system and the ray, respectively. last ray at point
returns the last ray at point of the ray in the system.

Both assumptions in the above theorem ensure the validity

of the optical system and the good behavior of the ray in

the system. The theorem is easily proved by induction on

the length of the system and by using previous results and

definitions. Next, we model the notion of composed optical

systems as follows:

Definition 9 (Composed Optical System Model)
� comp optical system
([]: optical system list) ⇔ I ∧
comp optical system
((CONS sys) cs) ⇔
optical system model cs **
optical system model sys

where I represents the identity matrix.

In order to reason about composed optical systems, we

have to define some new definitions similar to the ones pre-

sented in the previous section. For example, the validity of

a composed optical system means that each of the optical
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system involved should be valid. Based on this infrastruc-

ture, we also verify the ray transfer matrix relation for a

composed optical systems similar to the one presented in

Theorem 2.

5. Formalization of Cardinal Points

We consider a general optical imaging system as shown

in Figure 3. In this context, first and last points of the ray

represent the location of object and image. As shown in

Figure 3, object (P0) is located at a distance of d0 from

the optical system and image (P1) is formed at the distance

of dn. The object and image heights are y0 and yn, re-

spectively. The ratio of image height to the object height is

called lateral magnification which is usually denoted by β.

A ray in the object space which intersects the optical axis

in the nodal point N at an angle θ intersects the optical axis

in the image space in the nodal point N ′ at the same angle

θ′. The ratio of θ and θ′ is called angular magnification. In

our formalization this corresponds to the angle of the first

single and and last single ray, respectively. For the sake of

geniality, we formalize the general notion of optical system

as shown in 3, as follows:

Definition 10 (General Optical System Model)
� ∀ sys d0 dn ni nt
gen optical system sys d0 dn ni nt ⇔
[([ ], (ni, d0)); sys; ([ ], (nt, dn))]

Here, the overall system consists of 3 sub-systems, i.e., free

space with (ni, d0), and general system sys and another

free space (nt, dn).

Optical System 

P0 

P1 

d0 

dn A B 

C D 

yo 

yn 

Figure 3. General Optical System [18]

Our next step is to verify the ray-transfer matrix relation of

general optical systems by using Theorem 2, as follows:

Theorem 3 (Matrix for General Optical System) �
∀sys gray d0 dn.
is valid optical system sys ∧
is valid ray in comp system gray sys ∧
system composition sys =

[
A B

C D

]
=⇒

let (y0,θ0),(y1,θ1),rs =
fst single ray gray in
let yn,θn = last sng ray gray in

[
yn
θn

]
=[

A+ Cdn (Ad0 + B+ Cd0dn + Ddn)
C Cd0 + D

]
**

[
y0
θ0

]
Next, we formalize the notion of lateral and angular mag-

nification, as follows:

Definition 11 (Lateral Magnification)
� ∀ ray. lateral magnification ray =

object height ray

image height ray

Definition 12 (Angular Magnification)
� ∀ ray. lateral magnification ray =

object angle ray

image angle ray

where object height and image height accept a

ray and return the lateral distance of image and object from

the optical axis, respectively. Similarly, image angle
and object angle return the image and object angle, re-

spectively.

The location of all the cardinal points can be found on

the optical axis as shown in Figure 2. In case of general

optical systems (Figure 3), these can be defined using the

distances di and dn, by developing some constraints.

Principal Points: In order to find principal points, the im-

age has to be formed at the same height as of the object

in the object space, i.e., the lateral magnification should

be one. This means that all the rays, starting from certain

height, will have same height regardless of the incident an-

gle (Mathematically this leads to the fact that second ele-

ment of 2 × 2 matrix, representing optical system has to be

0. We package these constraints into the following predi-

cate:

Definition 13 (Principle Points)
� ∀ d0 dn ni nt sys.
are principle points (d0, dn) ni nt sys ⇔
∀ ray. let M = gen optical system

sys d0 dn ni nt and
y0 = object height ray and

yn = image height ray in

yn = M(1,1) ∗ y0 ∧ lateral magnification ray = 1

where M(i,j) represents the elements of a square matrix M.

Nodal Points: The second cardinal points of an optical sys-

tem are the nodal points N (in the object space) and N ′ (in

the image space) as shown in Figure 2. A ray in the object

space which intersects the optical axis in the nodal point N
at an angle θ intersects the optical axis in the image space

at the nodal point N ′ at the same angle θ′, which implies

that angular magnification should be 1. We formalize this

as follows:
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Definition 14 (Nodal Points)
� ∀ d0 dn ni nt sys.
are nodal points (d0, dn) ni nt sys ⇔
∀ ray. let M = gen optical system

sys d0 dn ni nt and
y0 = object height ray and

yn = image height ray in

y0 = 0 ∧ yn = 0 ∧ angular magnification ray = 1

Focal Points: The focal points F (in the object space) and

F ′ (in the image space), have two properties: A ray starting

from the focus F in the object space is transformed into a

ray which is parallel to the optical axis in the image space.

Similarly, a ray which is parallel to the optical axis in the

object space intersects the focus F ′ in the image space. We

define the following predicate using the above description:

Definition 15 (Focal Points)
� ∀ d0 dn ni nt sys.
are nodal points (d0, dn) ni nt sys ⇔
∀ ray. let M = gen optical system

sys d0 dnni nt and
y0 = object height ray and

yn = image height ray and

θ0 = object angle ray and

θn = image angle ray in

y0 = 0 ∧ θn = 0 ⇒ M(1,2) ∗ θ0 = 0

yn = 0 ∧ θ0 = 0 ⇒ M(1,1) ∗ y0 = 0

Next, we verify a generic relation describing the cardinal

points of the general optical system as follows:

Theorem 4 (Cardinal Points of General System)
� d0 dn ni nt sys.
let M = gen optical system

sys d0 dn ni nt in
(are principle points
((

M(2,2)
M(2,1)

∗ (M(1,1) − 1)− B), (
1−M(1,1)
M(2,1)

)) ni nt sys) ∧
(are nodal points
((

1−M(2,2)
M(2,1)

), (
M(1,1)
M(2,1)

∗ (M(2,2) − 1)− B)) ni nt sys) ∧
(are focal points
((

−M(2,2)
M(2,1)

), (
−M(1,1)
M(2,1)

)) ni nt sys)

This completes the formalization of cardinal points of

the optical systems. Theorem 4 is a powerful result as it

simplifies the calculation of cardinal points to just finding

an equivalent matrix of the given optical system.

6. Application: Verification of the Cardinal
Points of Optical Components

In this section, we present the formal verification of the

cardinal points of the widely used optical components, i.e.,

thin lens, thick lens and plane parallel plate [15]. As de-

scribed in the previous section, the first step is to verify the

ray-transfer matrix relation of these components. Conse-

quently, cardinal points can be derived using Theorem 4.

Generally, lenses are characterized by their refractive in-

dices and thickness. A thin lens is represented as the com-

position of two transmitting spherical interfaces such that

any variation of ray parameters (position y and orientation

θ) is neglected between both interfaces. At the end, a thin

lens is a composition of two spherical interfaces with a free

space of null width between them. The thick lens is another

useful optical component which is used in many real-world

optical systems [15]. It consists of two spherical interfaces

separated by a distance d. Finally, the plane parallel plate

is another useful optical component which consists of two

plane interfaces separated by some distance d. Figure 4 de-

picts the above description.

R1 

R2 

n0 

d 

R1 

R2 

n0 n1 

d 

n0 n1 n0 
n0 n0 

(a) Thin lens (b) Thick lens (b) Plane parallel plate 

Figure 4. Frequently used optical compo-
nents

For the sake of conciseness, we only present the formal-

ization of the thick lens as follows: (details about thin lens

and plane parallel plate can be found in [17]). We formalize

thick lens as follows:

Definition 16 (Thick Lens)
� ∀R1 R2 n0 n1 d.
thick lens R1 R2 n0 n1 d =
([(n0,0),spherical R1,transmitted;
(n1,d),spherical R2,transmitted],
(n0,0))

Next, we verify that thick lens indeed represents a valid

optical system:

Theorem 5 (Valid Thick Lens)
� ∀R1 R2 n0 n1.
R1 	=0 ∧ R2 	=0 ∧ 0 < n0 ∧ 0 < n1 ∧ 0 ≤ d
=⇒ is valid optical system
(thick lens R1 R2 n0 n1 d)

We verify the matrix relation for thick lens model (Defi-

nition 16) as follows:
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Theorem 6 (Thick Lens Matrix)
� ∀R1 R2 n0 n1 d.
R1 	=0 ∧ R2 	=0 ∧ 0 < n0 ∧ 0 < n1 ∧ 0 < n1

∧ 0 ≤ d =⇒ system composition
(thick lens R1 R2 n0 n1)=[

1+ d∗n0
R1∗n1 − 1

R1
d∗n0
n0

− (n0−n1)∗[d∗(n0−n1)+n1∗(R1−R2)]
n0∗n1∗R1∗R2 1+ d ∗ ( 1

R2
− n1

n1∗R2 )

]

The verification of cardinal points of thick lens [18] can

be done based on Theorem 4 and Theorem 6 using some

rewriting and arithmetic reasoning.

This completes the formal verification of the cardinal

points of the optical imaging systems which to the best of

our knowledge is first one using theorem proving. Due

to the formal nature of the model and the inherent sound-

ness of higher-order logic theorem proving, we have been

able to verify generic results such as Theorem 4. This

improved accuracy comes at the cost of the time and ef-

forts spent, while formalizing the underlying theory of ge-

ometrical optics. Interestingly, the availability of such

a formalized infrastructure significantly reduces the time

required to analyze the cardinal points of the frequently

used optical components. Moreover, we automatized parts

of the verification task by introducing new tactics, e.g.,

VALID OPTICAL SYSTEM TAC and commmon prove,

which automatically verify the validity of a given optical

system and the ray-transfer matrices, respectively. Our

HOL Light developments are available for download at [2]

and thus can be used by other researchers and optical engi-

neers working in industry to conduct the formal analysis of

optical imaging systems.

7. Conclusion

In this paper, we reported a new application of formal

methods in the analysis of optical imaging systems based

on ray optics. We provided a brief introduction of the cur-

rent state-of-the-art and highlighted their limitations. Next,

we presented an overview of geometrical optics followed

by some highlights of our higher-order logic formalization.

Consequently, we present the formalization of composed

optical systems and cardinal points. In order to show the

practical effectiveness of our proposed framework, we pre-

sented the verification of the cardinal points of a thick lens.

Our immediate future work is to formalize and verify the

correctness and soundness of the ray tracing algorithm [18],

which is included in almost all optical systems design tools.

Other future directions include the formalization of some

more optical components such as parabolic interfaces [18]

along with the devolvement of a GUI interface to attract

physicists and optical engineers.
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