
Performance Analysis of ARQ Protocols using a Theorem Prover

Osman Hasan
Dept. of Electrical and Computer Engineering

Concordia University
Montreal, Quebec, Canada
o hasan@ece.concordia.ca

Sofiène Tahar
Dept. of Electrical and Computer Engineering

Concordia University
Montreal, Quebec, Canada

tahar@ece.concordia.ca

Abstract

Automatic-repeat-request (ARQ) protocols are widely
used in modern data communications to guarantee reli-
able transmission over imperfect physical links. The be-
havior of an ARQ protocol largely depends on a number
of network parameters and traditionally simulation is used
for their performance analysis. However, simulation pro-
vides less accurate results and usually requires enormous
amount of CPU time in order to attain reasonable esti-
mates. To overcome these limitations, we propose to con-
duct the performance analysis of ARQ protocols in the envi-
ronment of a higher-order-logic theorem prover (HOL). We
present an approach to formally model the delay character-
istics of ARQ protocols as a function of Geometric random
variable in higher-order-logic. In particular, we develop
higher-order-logic models that describe the delay behavior
of three basic types of ARQ protocols, i.e., Stop-and-Wait,
Go-Back-N and Selective-Repeat. The paper also includes
the verification of the average message delay relations for
these three protocols in HOL.

1 Introduction

Automatic-repeat-request (ARQ) [20], which utilizes the
principles of error detection and retransmission, is one of
the most widely used techniques for reliable communica-
tion between computers. Indeed, it is one of the most im-
portant part of the Transmission Control Protocol (TCP) and
the High-level Data Link Control (HDLC) standard. In an
ARQ system, both sending and receiving stations have er-
ror detection capabilities. Thus, the receiver discards the
block of data (or frame) received in error, and requests a re-
transmission of the same frame via a feedback channel. The
sender, on the other hand, keeps on retransmitting a frame
until and unless it receives an error-free acknowledgement
(ACK) of the reception of this frame from the receiver.

The ARQ principle has been implemented using a num-

ber of different approaches, usually termed as ARQ pro-
tocols. Due to the large variation in implementation com-
plexity and performance, depending on the link quality, per-
formance analysis is very important for the right choice of
ARQ protocol for a particular implementation. The perfor-
mance analysis of ARQ protocols is usually based on prob-
abilistic techniques. The main idea is to model the error in
frame transmission by an appropriate random variable and
then predict the average delay to transmit a single frame
successfully. Obviously, the ARQ protocol that minimizes
this delay is termed as the most efficient one.

Since the development of the probability theory in the
last century, engineers have been using paper-and-pencil
proof techniques to perform statistical analysis for telecom-
munication systems. These traditional techniques may lead
to erroneous results with ARQ protocols as they usually in-
volve a subtle interaction of a number of distributed com-
ponents and have a high degree of parallelism [4]. The
advent of fast and inexpensive computational power in the
last two decades opened up avenues for using computers
in this domain. Nowadays, computer based simulation ap-
proaches [2] are quite frequently used to validate the per-
formance evaluation results of ARQ protocols obtained via
paper-and-pencil proof methods. Most simulation software
provide a programming environment for defining functions
that approximate random variables for probability distribu-
tions. The frame transmission error can be modeled by
one of these functions and the delay of an ARQ protocol
for transmitting a frame successfully can then be predicted
using computer simulation techniques, such as the Monte
Carlo Method [22], where the main idea is to approximately
answer a query on a probability distribution by analyzing
a large number of samples. Due to the inherent nature of
simulation based analysis, the use of pseudorandom num-
bers [18] and the approximation introduced by precision ef-
fects in computer arithmetic, the simulation results can be
quite unreliable at times. It is a common occurrence that
different simulation packages come up with different solu-
tions to the same problem. In [23], McCullough proposed



a collection of intermediate-level tests for assessing the nu-
merical reliability of simulation based statistical packages
and uncovered flaws in most of the mainframe softwares
[24]. These unreliable results pose a more serious problem
when it comes to the analysis of ARQ protocols since they
are often used in safety critical applications, such as space
travel, medicine and transportation, where a mismatch be-
tween the predicted and the actual system performance may
even result in a loss of human life. Another major limita-
tion of simulation based performance analysis is the enor-
mous amount of CPU time requirement for attaining mean-
ingful estimates. This approach generally requires hundreds
of thousands of simulations to calculate the statistical quan-
tities and becomes impractical when each simulation step
involves extensive computations.

As an alternative to simulation techniques, we propose
to use higher-order logic interactive theorem proving [9] for
performance analysis of ARQ protocols. Higher-order logic
is a system of deduction with a precise semantics and due
to its high expressibility it can be used to model any sys-
tem that can be expressed in a closed mathematical form.
Higher-order-logic has also been successfully used to de-
velop some of the classical mathematical theories. Interac-
tive theorem proving is the field of computer science and
mathematical logic concerned with computer based formal
proof tools that require some sort of human assistance. The
core of theorem provers usually consists of a handful of ax-
ioms and primitive inference rules. Soundness is assured as
every new theorem must be created from these basic axioms
and primitive inference rules or any other already proved
theorems or inference rules. Powerful mathematical tech-
niques such as induction and abstraction are the strengths
of theorem proving and make it a very flexible verification
technique. In this paper, we illustrate the process of express-
ing the delay characteristics of ARQ protocols in higher-
order-logic and verifying their average delay relations as
mathematical theorems within the sound core of a theorem
prover. The performance analysis carried out in this way
will overcome the shortcomings of simulation as it will be
free from approximation and precision issues, and the accu-
racy of the results will be independent of the CPU time.

The foremost requirement for conducting average delay
analysis of ARQ protocols in a higher-order-logic theorem
prover is to have access to the mathematical theories of
natural and real numbers, sets and probability. The HOL
system [11], which is a higher-order-logic theorem prover,
comes with a very rich built-in library of mathematical the-
ories including the ones mentioned above. Therefore, we
propose to use HOL and its built-in libraries to formally ex-
press the delay characteristic of ARQ protocols as a func-
tion of the Geometric random variable. These formal ex-
pressions can in turn be used, along with the higher-order-
logic formalization of the expectation (or average) function

given in [13], to verify the average delay relations for the
corresponding protocols in HOL. In order to illustrate the
practical effectiveness of our approach, we present the ver-
ification of average delay relations for three of the most
commonly used ARQ protocols, i.e., Stop-and-Wait, Go-
Back-N and Selective-Repeat in HOL. To the best of our
knowledge, this is the first time such analysis is done using
a higher-order-logic theorem prover.

The rest of the paper is organized as follows: After re-
viewing the related work in Section 2, we proceed by pre-
senting an informal description of the three ARQ proto-
cols under consideration in Section 3. Next, Section 4 pro-
vides an overview of modeling random variables and veri-
fying their probabilistic and expectation properties in HOL.
In Section 5, we present a formal probabilistic model of
the number of frame retransmissions required to transmit
a frame successfully using ARQ in terms of the probabil-
ity that the transmission of a single bit is in error. We uti-
lize formally specified Bernoulli(p) and Geometric(p) ran-
dom variables for this purpose. In Section 6, we present
the HOL verification of an expectation property that allows
us to evaluate the expectation value of a random variable
X multiplied and added by two constants in terms of the
expectation of the random variable X . This property, some-
times referred to as the linearity of expectation, plays a vital
role in the verification of average message delay relations
of ARQ protocols. Then, in Section 7, we utilize the for-
malization and verification done so far to formally model
the delay characteristics of Stop-and-Wait, Go-Back-N and
Selective-Repeat protocols and verify the corresponding av-
erage values in HOL. Finally, some concluding remarks are
given in Section 8. The HOL symbols, used in this pa-
per, and their corresponding mathematical interpretations
are given in the Appendix at the end.

2 Related Work

Work on the performance analysis of ARQ protocols has
always existed since the early days of their introduction,
however, using theoretical paper-and-pencil proofs and sim-
ulation techniques. Several ARQ protocols have been ana-
lyzed and compared mostly through their average delay for
a successful transmission [21]. More specifically, Fayolle
et al. [8] analyzed the Stop-and-Wait, Towsley and Wolf
[30] analyzed the standard Go-Back-N and Easton [7] ana-
lyzed a Selective-Repeat protocol. One of the most widely
used simulation based software for network protocol per-
formance analysis is OPNET [26], which has been used to
validate the paper-and-pencil performance analysis proofs
for different ARQ schemes, e.g., [15, 31]. In this paper, we
show how the performance analysis of ARQ protocols can
be mechanically performed using the HOL theorem prover,
providing a superior approach to validation by simulation.



Theorem provers have also been used for the verifica-
tion of ARQ protocols. For example, Cardell-Oliver [3] and
Chkliaev et al. [4] presented the verification of the sliding
window protocol, which is a general idea and covers the
principles of most of the commonly used ARQ protocols,
using HOL and PVS [27], respectively. But, to the best of
our knowledge, all the research available in this domain is
related to functional verification and no work related to the
performance evaluation of an ARQ protocol using a theo-
rem prover can be found in the open literature.

The foremost criteria for conducting formalized perfor-
mance analysis using a theorem prover is to be able to for-
malize random variables and reason about their expectation
properties in higher-order logic. Hurd’s PhD thesis [16]
can be considered a pioneering work in this regard as it
presents a formalization of probability theory in HOL. Us-
ing his mathematical theories, Hurd was able to formalize
and verify a few discrete random variables. Building upon
Hurd’s formalization framework, the work in [13] presented
the formalization of some expectation theory, which allows
the verification of the expected (or average) values associ-
ated with discrete random variables that attain values in pos-
itive integers only. We mainly build upon the above men-
tioned libraries in HOL and extend them by verifying an
expectation property that allows us to express the expecta-
tion of a random variable of the form a+bX , where a and b
are any positive integers, in terms of the expectation of the
random variable X . This property plays an important role
in the verification of the average delay relations for ARQ
protocols as will be illustrated in Section 7 of this paper.

Another alternative for formal performance analysis of
network protocols is to use probabilistic model checking
techniques, e.g., [1, 28]. It is an automated verification
technique that involves the construction of a precise math-
ematical model of the probabilistic system which is then
subjected to exhaustive analysis to verify if it satisfies a set
of formal properties. Expectation is one of the most useful
tools in performance analysis and therefore its evaluation
within a model checker is being explored in the probabilis-
tic model checking community. Some probabilistic model
checkers, such as PRISM [19] and VESTA [29], offer the
capability of verifying expected values in a semi-formal
manner. For example, in the PRISM model checker, the
basic idea is to augment probabilistic models with cost or
rewards: real values associated with certain states or transi-
tions of the model. This way, the expected value properties,
related to these rewards, can be analyzed by PRISM. Du-
flot et al. [6] used this aspect of PRISM to conduct the
performance analysis of a CSMA/CD protocol. It is impor-
tant to note that the meaning ascribed to these properties
is, of course, dependent on the definitions of the rewards
themselves and thus the solutions obtained using this kind
of approaches are approximate as has been clearly stated in

[6]. On the other hand, there is no such risk involved in
verifying the expectation properties using the proposed the-
orem proving based approach due to its inherent soundness.
Other major limitations of probabilistic model checking in-
clude the inability to handle systems that do not exhibit the
memory-less property and the well-known state space ex-
plosion problem [5]. In contrast, higher-order-logic theo-
rem proving is capable of handling all kinds of systems as
long as they can be expressed in a closed mathematical form
due to the high expressibility of higher-order logic.

3 ARQ Protocols

There are three basic types of ARQ protocols: Stop-and-
Wait, Go-Back-N and Selective-Repeat. In this section, we
provide a brief overview of these three protocols in terms of
their delay characteristics. Details about other issues such
as sequence numbering, etc. can be found in [20]. The oper-
ation is described under the assumptions that both sending
and receiving stations have error detection capabilities and
all information and ACK frames have the same length.

3.1 Stop-and-Wait ARQ

Stop-and-Wait is the most simplest ARQ protocol that
allows the transmission of only one frame at a time.

Figure 1. Stop-and-Wait ARQ Operation



The transmitter sends a single information frame of nf

bits to the receiver and spends tf time units in doing so. It
then stops and waits to receive an ACK from the receiver.
If no ACK is received within a given time out, tout, period,
the frame is resent by the transmitter and once again it stops
and waits for the ACK (Figure 1.a). If an ACK is received
within the given tout period then the transmitter checks the
received frame for errors during the next tproc time units. If
errors are detected then the ACK is ignored and the frame
is resent by the transmitter after tout expires and once again
the transmitter stops and waits for the ACK (Figure 1.b). If
no errors are detected in the ACK frame then the transmitter
transmits the next frame in its queue (Figure 1.c).

The receiver is always waiting to receive information
frames. When a new frame arrives, the receiver checks it for
errors during the next tproc time units. If errors are detected
then the information frame is ignored and the receiver con-
tinues to be in the wait state (Figure 1.a), otherwise it ini-
tiates the transmission of an ACK frame of na bits, which
takes ta time units (Figure 1.b,c).

Under the above mentioned conditions, the ACK mes-
sage cannot be received before tprop + tproc + ta + tprop +
tproc units of time pass after sending out an information
frame, where tprop represents the one-way propagation time
between transmitter and receiver. It is, therefore, necessary
to set the time out period tout to be greater than or equal to
2(tprop + tproc) + ta for reliable communication.

The performance of the Stop-and-Wait protocol is ex-
pected to be quite low as both the transmitter and receiver
are left idle for some time, even for the cases when there
are no errors. But on the other hand, the simplicity of the
approach translates into a cheap hardware implementation.

3.2 Go-Back-N ARQ

The Go-Back-N protocol tends to increase the efficiency
of Stop-and-Wait by introducing parallelism in the frame
transmission. The operation is illustrated in Figure 2.

Figure 2. Go-Back-N ARQ Operation

The transmitter continuously transmits information
frames without waiting for ACKs. The window size, which
represents the limit on the number of frames at the trans-

mitter that can be outstanding without receiving an ACK, is
usually chosen larger than tout

tf
to ensure that the channel is

always kept full. For transmitting a single frame of nf bits,
it takes tf time units. If no ACK is received within the tout

period for a given frame, the protocol starts retransmitting
all the frames starting from this frame, as indicated in Fig-
ure 2 for the case of data frame C. On the other hand, if an
ACK is received within the given tout period, then the trans-
mitter checks the received frame for errors during the next
tproc time units. If errors are detected or there is a problem
with the sequence numbers [20], then the ACK is ignored.
When, the tout of the corresponding frame expires, the pro-
tocol begins retransmitting all the frames starting from this
frame just like it does when no ACK is received.

The receiver is always waiting to receive information
frames. When a new frame arrives, the receiver checks it
for errors during the next tproc time units. If errors are de-
tected or there is a problem with sequencing numbers, then
the information frame is ignored and the receiver continues
to be in the wait state, otherwise it initiates the transmission
of an ACK frame, which takes ta time units.

It is important to note that due to the pipeline effect in
the Go-Back-N protocol, new information frames are being
transmitted and received during the processing and propa-
gation periods and the time spent on transmitting the ACK.
Thus tprop, tproc and ta do not contribute to the net delay.
Though, the condition tout ≥ 2(tprop+tproc)+ta still needs
to hold for Go-Back-N like the Stop-and-Wait protocol.

3.3 Selective-Repeat ARQ

Selective-Repeat is among the most powerful ARQ
based protocols. Both the transmitter and the receiver have
a packet buffer of at least the current window size and thus
can retain out-of-sequence packets, rather than discarding
them as in the Go-Back-N protocol. Though, this added
benefit comes at the cost of computational power that is re-
quired at the receiver to reorder the incoming packets in se-
quence and the buffering, which can become quite expen-
sive for channels having long propagation delays.

The actions of the transmitter in Selective-Repeat proto-
col are similar to the ones in Go-Back-N except the fact that
the transmitter retransmits only the frame that is required to
be transmitted again rather than all the frames starting from
this frame. A frame is required to be transmitted again if its
corresponding ACK has not been received within the tout

period or was found to be in error. The operation of the re-
ceiver in Selective-Repeat is also similar to the case of Go-
Back-N except for the fact that it keeps track of all the data
frames that are received without error irrespective of their
sequence numbers. It is important to note here that in this
particular version of Selective-Repeat protocol the transmit-
ter needs to receive an ACK for every information frame it



sends, i.e., it cannot deduce the successful transmission of a
frame by receiving an ACK message for a later frame.

4 Random Variables and their Expectation

Random variables can be formalized in higher-order
logic as deterministic functions with access to an infinite
Boolean sequence B

∞; a source of infinite random bits
[16]. These deterministic functions make random choices
based on the result of popping the top most bit in the infi-
nite Boolean sequence and may pop as many random bits as
they need for their computation. When the functions termi-
nate, they return the result along with the remaining portion
of the infinite Boolean sequence to be used by other pro-
grams. Thus, a random variable which takes a parameter of
type α and ranges over values of type β can be represented
in HOL by the function.

F : α → B∞ → β × B∞

As an example, consider the Bernoulli(1
2 ) random vari-

able that returns 1 or 0 with equal probability 1
2 . It can be

formalized in HOL as follows

� bit = λs.if shd s then 1 else 0,stl s

where s is the infinite Boolean sequence and shd and stl
are the sequence equivalents of the list operation ’head’ and
’tail’. [16] also presents some formalization of the mathe-
matical measure theory in HOL, which can be used to de-
fine a probability function P from sets of infinite Boolean
sequences to real numbers between 0 and 1. The domain
of P is the set E of events of the probability. Both P and
E are defined using the Carathéodory’s Extension theorem,
which ensures that E is a σ-algebra: closed under comple-
ments and countable unions. The formalized P and E can
be used to formally verify probabilistic properties, e.g.,

� P {s | fst(bit s) = 1} = 1
2

where the HOL function fst selects the first component of
a pair and {x|C(x)} represents a set of all x that satisfy the
condition C.

The above approach has been successfully used to for-
malize and verify both discrete [16, 13] and continuous
random variables [12] in HOL. In this paper, we utilize
the models for Bernoulli and Geometric random variables
formalized as higher-order-logic functions ber rv and
geo rv and verified using the following probability mass
function (PMF) relations in [16] and [13], respectively.

Theorem 1: PMF of Bernoulli(p) Random Variable
� ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒

P{s | fst(ber rv p s)} = p

Theorem 2: PMF of Geometric(p) Random Variable
� ∀ n p. 0 < p ∧ p ≤ 1 ⇒

P{s | fst(geo rv p s)=(n+1)} = p(1-p)n

The Geometric random variable returns the number of
Bernoulli trials needed to get one success and thus cannot
return 0. This is why we have (n+1) in Theorem 2, where n
is a positive integer {0, 1, 2, 3 · · · }. Similarly, the probabil-
ity p in Theorem 2 represents the probability of success and
thus needs to be greater than 0 for this theorem to be true as
has been specified in the precondition.

Expectation theory plays a vital role in the domain of
probabilistic performance analysis as it is a lot easier to
judge performance issues based on the average value of a
random variable, which is a single number, rather than its
distribution function. [13] presents a higher-order-logic def-
inition of the expectation function for discrete random vari-
ables that attain values in positive integers only

Definition 1: Expectation of Discrete Random Variables
� ∀ R. expec R =
suminf (λn.nP{s | fst(R s)=n})

where, suminf represents the HOL formalization of the
infinite summation of a real sequence [10] as outlined in
Appendix A. The function expec accepts the random vari-
able R with data type B∞ → (positive integer × B∞),
and returns a real number. The above definition can be used
to verify the average values of most of the commonly used
discrete random variables, e.g., [13] presents the verifica-
tion of average value of the Geometric random variable.

Theorem 3: Average of Geometric(p) Random Variable
� ∀ n p. 0 < p ∧ p ≤ 1 ⇒
(expec (λs.geo rv p s) = 1

p
)

In order to target the verification of expected values of
probabilistic systems involving multiple random variables,
[13] presents the formal proof of the generic linearity of ex-
pectation property [17] for addition in HOL. By this prop-
erty, the expectation of a sum of random variables equals
the sum of their individual expectations

Ex[
n∑

i=1

Ri] =
n∑

i=1

Ex[Ri] (1)

where Ex denotes expectation.

5 Number of Frame Retransmissions in ARQ

In this section, we formalize the number of retransmis-
sions required to transmit a frame successfully using the
ARQ protocols, described in Section 3, in terms of the bit-
error probability of the channel. This representation will be



used to formally express the delay characteristic of ARQ
protocols later.

The number of retransmissions of a frame in these ARQ
protocols is a random quantity that is dependant on the event
when both the data frame and the corresponding ACK frame
propagate through the channel without incurring any errors.
We keep on retransmitting the given frame until the above
event occurs. Under the assumption that each event of a
frame being corrupted while propagating through the chan-
nel is independent of any other such event, we can formally
model the number of retransmissions using the Geometric
random variable [20]. We already have a higher-order-logic
function geo rv for the Geometric random variable and
thus the next step towards the formal representation of the
number of retransmissions is to find the corresponding suc-
cess probability.

Assuming that the bit-error probability for the given
channel is known and is equal to p, we can model the
error behavior of a single bit during transmission as a
Bernoulli(p) random variable. Now, a frame incurs errors
if one or more of its bits incur errors. Thus, the error behav-
ior of the whole frame during transmission can be modeled
as the following higher-order-logic function.

Definition 2: Frame Error Event
� ∀ n p s. f err 0 p s = (F,s) ∧
f err (n+1) p s = ((fst(ber rv p s) ∨

(fst(f err n p (snd(ber rv p s))))),
(snd(f err n p (snd (ber rv p s)))))

where the symbol F represents logical False. The func-
tion f err recursively models a random variable in higher-
order logic that accepts a positive integer n, a real number p
and the infinite Boolean sequence s and returns a pair with
the first component as a Boolean and the second component
as the remaining portion of the infinite Boolean sequence.
The functions fst and snd return the first and the sec-
ond components of a pair. It is important to note that each
new call of the function ber rv in Definition 2 uses the re-
maining portion of the infinite Boolean sequence from the
previous call. This fact ensures that the events involving the
function ber rv in Definition 2 are independent.

The first component of the random variable f err is
true, if the value of any of the n Bernoulli random variables
represented by the function ber rv is true. Therefore, the
function f err models the error behavior of an n bit frame
transmission over a channel with bit-error rate equal to p
as each Bernoulli random variable models the behavior of a
single bit transmission.

Next, we utilize the random variable f err to formal-
ize the probability of success for the Geometric random
variable that in turn can be used to model the number of
retransmissions for the ARQ protocols of Section 3. The
probability of success in this case is equal to the probability

of the event when both the information frame and its corre-
sponding ACK frame do not incur errors during transmis-
sion. This probability can be formally expressed as follows:

Definition 3: Probability of Successful Transmission
� ∀ nf na p. suc p arq nf na p =
P{s | fst(f err nf p s) ∨
fst(f err na p (snd(f err nf p s))) = F}

The function suc p arq accepts two positive integers
nf and na that correspond to the frame lengths of informa-
tion and ACK frames, respectively, and a real number p that
represents the bit-error rate of the communication channel.
It returns the probability of successful transmission of the
information frame. Again, it is important to note that the
second call of the random variable f err utilizes the re-
maining portion of the infinite Boolean sequence after the
first call, which ensures that the events corresponding to
these two calls are independent. Next, we verify the follow-
ing equivalent form for the suc p arq function in HOL.

Theorem 4: Probability of Successful Transmission
� ∀ nf na p. 0 ≤ p ∧ p ≤ 1 ⇒
suc p arq nf na p = (1-p)(nf+na)

We proceed with the proof of the above theorem by ex-
pressing its left hand side (LHS) in terms of the function
f err

� ∀ nf na p. suc p arq nf na p =
P{s | fst(f err (nf + na) p s) = F}

using the function definitions of suc p arq and f err
along with some simplification based on Boolean logic and
set theory axioms. This expression allows us to generalize
the statement of Theorem 4 as follows

� ∀ n p. 0 ≤ p ∧ p ≤ 1 ⇒
P{s | fst(f err n p s) = F} = (1-p)n

The above proof goal can now be verified in HOL us-
ing induction on its positive integer variable n. The base
case, i.e., n = 0, is true since both the right hand side
(RHS) and the LHS of the above subgoal are equal to 1.
Whereas, in the step case, we get the following subgoal us-
ing the function definition of f err

0 ≤ p ∧ p ≤ 1 ∧
P{s | fst(f err n p s) = F} = (1-p)n ⇒

P{s | (fst (ber rv p s)=F) ∧
(fst(f err n p (ber rv p s))=F)}

= (1-p)n+1

The LHS of the above subgoal can now be simplified
using the independence property of the events involved, the
classical probability law P(AB) = P(A)P(B) and some set
theory principles formalized in HOL as follows



P{s | (fst (ber rv p s) = F) ∧
(fst(f err n p (ber rv p s)) = F)} =

P{s | fst(ber rv p s)=F}
P{s | fst(f err n p s)=F}

which in turn allows us to verify the proof goal of the above
step case, since we know from Theorem 1 that P{s |
(fst(ber rv p s) = F)} = (1-p), and thus con-
cludes the proof of Theorem 4.

The number of retransmissions for the ARQ protocols,
outlined in Section 3, is one less than the value of the Ge-
ometric random variable with the success probability given
in Theorem 4. This is the case because the formalized Ge-
ometric random variable returns the least number of trials
required to obtain the first success. Thus, we need to sub-
tract 1 form this number, in order to ignore the trial for the
final successful transmission. The number of retransmis-
sions can now be used to express the delay characteristic of
an ARQ protocol as a random variable in HOL.

(λs.Tu(fst(geo rv(suc p arq nf na p)s) − 1) + Ts,

snd(geo rv(suc p arq nf na p)s))
(2)

where Ts and Tu are positive integers that represent the time
required for the final successful transmission of one frame
and the total time wasted during a single unsuccessful trans-
mission of a frame, respectively. It is important to note here
that for the analysis, presented in this paper, we have cho-
sen a discrete time domain, i.e., time is represented by pos-
itive integers rather than real numbers. This choice reduces
the complexity of the verification task by a considerable ex-
tent without compromising on the reliability of the analysis.
These positive integers may be thought to be representing
the ticks of a clock counting physical time in any appropri-
ate units, e.g., nanoseconds. Whereas, the granularity of the
clock’s tick is believed to be chosen in such a way that it is
sufficiently fine to detect properties of interest.

6 Verification of Linearity of Expectation
Property in HOL

In this section, we present the HOL verification of the
linearity of expectation property, which allows us to evalu-
ate the expectation value of a random variable R multiplied
and added by two positive integers a and b, respectively, in
terms of the expectation of the random variable R.

Ex[aR + b] = aEx[R] + b (3)

The above equation plays a significant role in the verifica-
tion of the average message delay characteristic of ARQ
protocols, since the random variable that models the ARQ

message delay characteristic, given in Equation 2, is of the
format aR + b.

We proceed with the HOL proof of the linearity property,
given in Equation 3, by first verifying

Ex[aR] = aEx[R] (4)

which allows us to evaluate the expectation value of a ran-
dom variable R multiplied by a positive integer a in terms
of the expectation of the random variable R. The property,
given in Equation 4, can be expressed in HOL as follows

� ∀a R. expec(λs.(a fst(R s),snd(R s)))
= a(expec R)

for a random variable R with a well-defined expected value,
i.e., the summation corresponding to the expectation for this
random variable is convergent. The HOL proof proceeds
by first performing case analysis on the variable a, which
is basically a positive integer. For the case when a is 0,
the RHS of the proof goal becomes 0. Whereas, using the
definition of expectation, the LHS reduces to the expression

lim
k→∞(

k∑

n=0

n P{s|0 = n})

which is also equal to 0 as ∀n.n P{s | 0 = n} = 0.
On the other hand, when a is not equal to 0, i.e., (0 < a),
the proof goal may be simplified as

lim
k→∞(

k∑

n=0

n P{s|a fst(R s) = n}) =

a lim
k→∞(

k∑

n=0

n P{s|a fst(R s) = a n})

by using the definition of expectation and some arithmetic
reasoning. Next, we prove in HOL that

∀k.(
k∑

n=0

n P{s| a fst(R s) = n}) =

a(
B(k)∑

n=0

n P{s| a fst(R s) = a n})

where B(k) = if (k MOD a = 0) then (k DIV a) else
((k DIV a) + 1) and MOD and DIV represent the modulo

and division functions for positive integers in HOL. This
allows us to rewrite our proof goal as follows

lim
k→∞ a (

B(k)∑

n=0

n P{s|a fst(R s) = a n}) =

a lim
k→∞(

k∑

n=0

n P{s|a fst(R s) = a n})



which can be proved using the properties of limit of a real
sequence in HOL [10], since both of the real sequences in
the above equation converge to the same value as the value
of k becomes very very large. This concludes the proof of
the expectation property given in Equation 4.

The expectation properties given in Equations 1 and 4
can now be combined to verify the linearity of expectation
property given in Equation 3 and the result can be expressed
in HOL as

Theorem 5: Linearity of Expectation
� ∀ a b R. expec
(λs.(a fst(R s) + snd(R s)))

= a(expec R) + b

for a random variable R with a well-defined expected value.

7 Average Delay Characteristic of ARQ Pro-
tocols

In this section, we utilize the formalization and the verifi-
cation presented above to formally verify the average delay
relations of the three ARQ protocols described in Section
3. The main idea is to plug in the values of Ts and Tu for
each one of these protocols one by one in the delay random
variable, given in Equations 2, and then utilize the linearity
of expectation property, formally verified in Theorem 5, to
verify the corresponding average values in HOL.

7.1 Stop-and-Wait ARQ

In the Stop-and-Wait protocol, the time, Ts, required for
a successful transmission is equal to tf + tprop + tproc +
ta+tprop+tproc time units as can be seen from Section 3.1.
On the other hand, Tu, that is the time required for each un-
successful transmission attempt for Stop-and-Wait protocol
is equal to tf + tout time units. We can now formalize the
message delay random variable of the Stop-and-Wait proto-
col using the above mentioned approach as follows.

Definition 4: Stop-and-Wait Protocol Delay
� ∀ tout tprop tproc p tf ta nf na.
sw del tout tprop tproc p tf ta nf na=
(λs.(tf + tout)
(fst(geo rv(suc p arq nf na p) s) - 1)

+ tf + ta + 2(tproc + tprop),
snd(geo rv (suc p arq nf na p) s))

The function sw del accepts the delay param-
eters for the Stop-and-Wait protocol and specifies
its delay characteristic as a higher-order-logic ran-
dom variable. The average message delay of the
Stop-and-Wait protocol can now be verified in HOL
using the random variable sw del and Theorem 5,

if the expectation relation for the random variable
(λs.(fst(geo rv (suc p arq nf na p) s) − 1, snd(geo
rv (suc p arq nf na p) s))) is known. Using the def-
initions of expectation, given in Definition 1, and the
Geometric random variable geo rv, given in [13], and
the probability theory principles, formalized in [16], we
verified the following theorem in this regard in HOL

Theorem 6: Average of (Geometric(p)-1)
� ∀ p. 0 < p ∧ p ≤ 1 ⇒
expec (λs.(fst(geo rv p s)-1,

snd(geo rv p s))) = 1−p
p

Now, we are in the position of verifying the average mes-
sage delay relation for the Stop-and-Wait protocol

Theorem 7: Average Delay of Stop-and-Wait Protocol
� ∀ tout tprop tproc p tf ta nf na.
0 ≤ p ∧ p < 1 ⇒
expec
(sw del tout tprop tproc p tf ta nf na)

= (tf + tout) (1−(1−p)(nf+na))
(1−p)(n f+n a) +

tf + ta + 2(tproc + tprop)

The HOL proof is based on Theorems 4, 5 and 6 along with
some arithmetic reasoning.

7.2 Go-Back-N ARQ

In the Go-Back-N protocol, Ts is equal to tf as can be
seen from Section 3.2. It is important to note that the time
tprop + tproc + ta + tprop + tproc is not considered a part
of Ts because during this time other frames are being trans-
mitted in parallel, i.e, it is being utilized to do other useful
work. On the other hand, Tu in this case is still equal to
tf + tout, since the transmitter has to wait tout time units,
after transmitting a data frame, before it knows that the data
was not properly delivered. Like in the case of the Stop-
and-Wait protocol, the message delay characteristic of the
Go-Back-N protocol can now be formalized as follows.

Definition 5: Go-Back-N Protocol Delay
� ∀ tout p tf nf na.
gbn del tout p tf nf na =
(λs.(tf + tout)
(fst(geo rv(suc p arq nf na p) s) - 1)

+ tf,
snd(geo rv (suc p arq nf na p) s))

Again, using Theorems 4, 5, and 6 along with some arith-
metic reasoning, we were able to prove the following aver-
age delay relation for the Go-Back-N protocol in HOL.

Theorem 8: Average Delay of Go-Back-N Protocol
� ∀ tout p tf nf na. 0 ≤ p ∧ p < 1 ⇒
expec (gbn del tout p tf nf na)

= (tf + tout) (1−(1−p)(nf+na))
(1−p)(n f+n a) + tf



7.3 Selective-Repeat ARQ

In the Selective-Repeat protocol, the time required for
the final successful transmission of a frame, Ts, and the time
required for each unsuccessful transmission attempt, Tu, are
both equal to tf (Section 3.3). This is the case because dur-
ing all other delays such as the propagation or processing of
frames, other frames are being transmitted in parallel and
thus that time is being utilized in a useful manner. The av-
erage delay characteristic of the Selective-Repeat protocol
can now be formalized as follows.

Definition 6: Selective-Repeat Protocol Delay
� ∀ p tf nf na.
sr del p tf nf na =
(λs.tf
(fst(geo rv(suc p arq nf na p) s) - 1)

+ tf,
snd (geo rv(suc p arq nf na p) s))

Again, using Theorems 4, 5 and 6 along with some arith-
metic reasoning, we were able to prove the following aver-
age delay relation for the Selective-Repeat protocol.

Theorem 9: Average Delay of Selective-Repeat Protocol
� ∀ p tf nf na. 0 ≤ p ∧ p < 1 ⇒
expec (sr del p tf nf na) = tf

(1−p)(n f+n a)

The above exercise illustrates the fact that interactive
theorem proving is capable of conducting performance
analysis of ARQ protocols with at least the same degree
of accuracy as the analytical proof techniques usually car-
ried out using paper-and-pencil proof methods; a novelty
that cannot be achieved by any other computer based tech-
niques, such as simulation or model checking. As outlined
before in this paper as well, simulation based techniques are
based on many approximations and thus can never achieve
accurate results. Similarly, due to the inherent limitations
of the state-based formal methods, discussed in Section 2,
they cannot evaluate the expected values as precisely as we
have attained using the proposed approach for the message
delay characteristic of ARQ protocols.

On the other hand, the proposed approach is also supe-
rior than the paper-and-pencil proof methods in a way as
the chances of making human errors and proving wrongful
statements are almost nil since all proof steps are applied by
the computer. For this argument to hold, correctness of the
checking machinery must of course be ensured. In the case
of the HOL system, this property is ensured by construction
following the so-called LCF paradigm. Milner [25] devel-
oped the underlying design philosophy, which employs a
small trusted logical kernel to flexibly implement any logic
that is built on top by reducing any proof to the simple de-
duction steps the LCF kernel allows.

8 Conclusions

In this paper, we utilized the mathematical probability
theory formalized in a higher-order-logic theorem prover to
verify the average delay of three basic types of ARQ pro-
tocols. During this process, we presented a formalization
of the delay characteristic of ARQ protocols as a higher-
order-logic random variable and the verification of linearity
of expectation property for discrete random variables. To
the best of our knowledge, this is the first study on using
these kind of techniques for such an application. Due to
the formal nature of the models and the inherent soundness
of theorem proving systems, the analysis is guaranteed to
provide exact answers. This feature makes the proposed
approach very useful for the performance optimization of
safety critical and highly sensitive telecommunication pro-
tocols.

Our approach for the performance analysis of ARQ pro-
tocols is quite general and can be extended and easily
adapted to conduct precise performance analysis of other
network protocols or computer algorithms as well. The
random or unpredictable elements, such as noise, found in
the analysis of telecommunication protocols can be mod-
eled using an appropriate random variable from the exist-
ing library of formalized discrete [16, 13] and continuous
random variables [12], and the precise average values as-
sociated with the parameters of interest may then be veri-
fied within the sound core of a higher-order-logic theorem
prover. The verification of other statistical properties such
as variance and tail bounds, which provide further insight
into the performance issues, may be included in the analy-
sis, based on the formalization presented in [14].

The main limitation of the proposed approach is the as-
sociated significant user interaction, i.e., the user needs to
guide the proof tools manually since we are dealing with
higher-order logic, which is known to be non-decidable.
Because of this, the proposed approach should not be
viewed as an alternative to methods such as simulation and
model-checking for the performance analysis of real-time
systems but rather as a complementary technique, which
can prove to be very useful when precision of the results
is of prime importance.

References

[1] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen.
Model Checking Algorithms for Continuous time Markov
Chains. IEEE Trans. on Software Engineering, 29(4):524–
541, 2003.

[2] P. Bratley, B. Fox, and L. Schrage. A Guide to Simulation.
Springer-Verlag, 1987.

[3] R. Cardell-Oliver. The Formal Verification of Hard Real-
time Systems. PhD Thesis, University of Cambridge, Cam-
bridge, UK, 1992.



[4] D. Chkliaev, J. Hooman, and E. de Vink. Verification and
Improvement of the Sliding Window Protocol. In Tools and
Algorithms for the Construction and Analysis of Systems,
volume 2619 of LNCS, pages 113–127. Springer, 2003.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
The MIT Press, 2000.

[6] M. Duflot, L. Fribourg, T. Hérault, R. Lassaigne, F. Mag-
niette, S. Messika, S. Peyronnet, and C. Picaronny. Prob-
abilistic Model Checking of the CSMA/CD Protocol using
PRISM and APMC. In Proc. 4th Workshop on Automated
Verification of Critical Systems, pages 195–214. Elsevier
Science, 2004.

[7] M. Easton. Batch Throughput Efficiency of AD-
CCP/HDLC/SDLC Selective Reject Protocols. IEEE Trans-
actions on Communications, 28(2):187–195, 1980.

[8] G. Fayolle, E. Gelenbe, and G. Pujolle. An Analytic Eval-
uation of the Performance of the ”Send and Wait” Proto-
col. IEEE Transactions on Communications, 26(3):313–
319, 1978.

[9] M. Gordon. Mechanizing Programming Logics in Higher-
0rder Logic. In Current Trends in Hardware Verification
and Automated Theorem Proving, pages 387–439. Springer,
1989.

[10] J. Harrison. Theorem Proving with the Real Numbers.
Springer, 1998.

[11] J. Harrison, K. Slind, and R. Arthan. HOL. In The Seventeen
Provers of the World, volume 3600 of LNCS, pages 11–19.
Springer, 2006.

[12] O. Hasan and S. Tahar. Formalization of the Continuous
Probability Distributions. In Automated Deduction, volume
4603 of LNAI, pages 3–18. Springer, 2007.

[13] O. Hasan and S. Tahar. Verification of Expectation Proper-
ties for Discrete Random Variables in HOL. In Theorem
Proving in Higher-Order Logics, volume 4732 of LNCS,
pages 119–134. Springer, 2007.

[14] O. Hasan and S. Tahar. Verification of Tail Distribution
Bounds in a Theorem Prover. In Numerical Analysis and
Applied Mathematics, volume 936, pages 259–262. Ameri-
can Institute of Physics, 2007.

[15] F. Hou, P. Ho, and Y. Zhang. Performance Analysis of Dif-
ferentiated ARQ Scheme for Video Transmission over Wire-
less Networks. In Proc. 1st ACM Workshop on Wireless Mul-
timedia Networking and Performance Modeling, pages 1–7.
ACM Press, 2005.

[16] J. Hurd. Formal Verification of Probabilistic Algorithms.
PhD Thesis, University of Cambridge, Cambridge, UK,
2002.

[17] R. Khazanie. Basic Probability Theory and Applications.
Goodyear, 1976.

[18] D. Knuth. The Art of Computer Programming, volume 2.
Addison-Wesley Professional, 1998.

[19] M. Kwiatkowska, G. Norman, and D. Parker. Quan-
titative Analysis with the Probabilistic Model Checker
PRISM. Electronic Notes in Theoretical Computer Science,
153(2):5–31, 2005. Elsevier.

[20] A. Leon Garcia and I. Widjaja. Communication Networks:
Fundamental Concepts and Key Architectures. McGraw-
Hill, 2004.

[21] S. Lin, D. Costello, and M. Miller. Automatic-Repeat-
Request Error-Control Schemes. IEEE Communications
Magazine, 22(12):5–17, 1984.

[22] D. MacKay. Introduction to Monte Carlo Methods. In
Learning in Graphical Models, NATO Science Series, pages
175–204. Kluwer Academic Press, 1998.

[23] B. McCullough. Assessing the Reliability of Statistical Soft-
ware: Part I. The American Statistician, 52(4):358–366,
1998.

[24] B. McCullough. Assessing the Reliability of Statistical Soft-
ware: Part II. The American Statistician, 53(2):149–159,
1999.

[25] R. Milner. A Theory of Type Polymorphism in Program-
ming. Journal of Computer and System Sciences, 17:348–
375, 1977.

[26] OPNET. http://www.opnet.com/, 2008.
[27] PVS. http://pvs.csl.sri.com, 2008.
[28] J. Rutten, M. Kwaiatkowska, G. Normal, and D. Parker.

Mathematical Techniques for Analyzing Concurrent and
Probabilisitc Systems, volume 23 of CRM Monograph Se-
ries. American Mathematical Society, 2004.

[29] K. Sen, M. Viswanathan, and G. Agha. VESTA: A Statisti-
cal Model-Checker and Analyzer for Probabilistic Systems.
In Proc. IEEE International Conference on the Quantitative
Evaluation of Systems, pages 251–252, 2005.

[30] D. Towsley and J. Wolf. On the Statistical Analysis of Queue
Lengths and Waiting Times for Statistical Multiplexers with
ARQ Retransmission Schemes. IEEE Trans. on Communi-
cations, 27(4):693–702, 1979.

[31] J. Wall and J. Khan. An ARQ enhancement with QoS Sup-
port for the 802.11 MAC Protocol. In Proc. IEEE Con-
ference on Wireless Communications and Networking, vol-
ume 1, pages 430–435, 2004.

A HOL Symbols

HOL Symbol Meaning
∧ Logical and
∨ Logical or
λx.t Function that maps x to t(x)
{x|P(x)} Set of all x such that P (x)
(a, b) A pair of two elements
fst First component of a pair
snd Second component of a pair
suminf(f) Infinite summation of a real sequence

lim
k→∞

∑k
n=0 f(n)


