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Abstract—Chaotic circuits have gained increasing attention
in many engineering applications. Qualitative measures such as
Lyapunov Exponent (LE) are the most common methods for
identifying chaotic behavior. However, the use of these measures
is limited due to the short output signal length and its contami-
nation by noise. In this paper, we propose a novel methodology
for modeling and detecting chaotic vs stochastic behavior in AMS
designs. First, the design is modeled using a system of recurrence
equations for analog and digital parts. Second, a surrogate
generation method is performed. The obtained surrogates are
a typical realization of the circuit output under the hypothesis
that the circuits exhibits noise. Next, hypothesis testing with
Gaussian Kernel measure as test statistic is conducted over these
surrogates and the original circuit output to statistically assess the
circuit behavior. The effectiveness of the proposed methodology
is illustrated on several AMS circuits such as PLL or Colpitts
oscillator. The obtained results show sufficient improvements
over the existing methods. For instance, comparing with the
LE method, our approach is an order of magnitude faster and
provides a more accurate detection of the chaotic circuit behavior.

I. INTRODUCTION

Chaotic circuits have potential applications in various fields
such as communication [1], signal processing [2], and neural
networks [3]. This is mainly because they present an unpre-
dictable behavior that resembles noise with a broadband spec-
trum, so they can be deployed in encryption and random noise
generation. Chaos can also be used to enhance Analog and
Mixed Signal (AMS) circuits performance such as reduction
of idle channel tones and pattern noise in Σ-Δ modulators [4]
and stabilization of PLL by broadening its capture range [5].
Nevertheless, due to the nanometer-scale technologies, AMS
designs manifest large scale process variations that cannot
be reduced by foundries. This deviation in the geometrical
and electrical device parameters can compromise the circuit’s
usefulness. Thereby, it might behave chaotically instead of
periodically on a parameter change. This will affect the
circuit performance (e.g., PLL locking, circuit stability, etc.)
and consequently cause design failure. Experiments showed
that in specific operation conditions (i.e., circuit parameter,
initial conditions, and input signals) even remarkably simple
nonlinear circuits can exhibit chaotic behavior [6].

When irregularity is observed in an AMS design output,
designers assumes that the circuit exhibits stochastic noise
which is stubbornly present in such designs. However, this
could emerge from purely deterministic chaotic nonlinear

circuit model. Because noise detection is a contentious issue
for designers and there is a lack of efficient noise verification
tools in AMS designs, a chaotic circuit could be analyzed to
be noisy erroneously. It is fundamental therefore to thoroughly
investigate and append the real source of an aberrant circuit
behavior. To this end, there is a pressing need for handy chaos
detection tools in AMS designs. Such tools can be used to
probe the circuit dynamics at early stage and so assess the
observed behavior (chaotic or stochastic) of the design.

In this paper, we propose a novel statistical verification
methodology of AMS designs behavior, mainly chaotic and
noisy dynamics. To speed up the verification runtime, the
analog and digital components of the AMS circuit are modeled
in a unified environment. The behavior of the circuit is
described as function of the preceding state variables terms
using Extended-System of Recurrence Equations (E-SRE) [7].
We then elucidate the intended property to be verified within
the ambit of a null hypothesis 𝐻0. Thereafter, we generate
several artificial output of the circuit called surrogates. The
generated surrogates should comply with the property being
verified 𝐻0 while preserving some features of the real circuit
output. A discriminating statistic, namely the Gaussian Kernel
measure, is then conducted for the original circuit output and
all the generated surrogates. If the computed original output
and surrogates statistics are significantly different, hypothesis
testing technique reports a rejection of the null hypothesis 𝐻0.
As a consequence, we conclude that the circuit dynamic does
not comply with its property.

The remainder of this paper is organized as follows: Related
work is discussed in Section II. Section III provides an
overview of the proposed methodology. Experimental results
for the analysis of chaotic features on a Colpitts oscillator
circuit, a third order Σ-Δ modulators and, a Phase Locked
Loop are reported in Section IV. Section V summarizes the
contributions of this paper and provides future work hints.

II. RELATED WORK

The study of chaotic features in electronic circuits is the
subject of an extensive research. Chaos detection is com-
plicated by the lack of an accepted formal definition of
chaos. For instance, despite the fact that chaotic features
have been observed in Σ-Δ modulators, no literature provides
satisfyingly rigorous proof of the presence of chaos in such
circuits for orders higher than two [8].
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To demonstrate the chaotic behavior of electronic circuits,
qualitative metrics such as bifurcation diagrams have been
proposed. This measure permits to visualize the different
behaviors of the system as parameters change. Visualizing
such diagram for high dimensional systems is very difficult
and resources hungry. The use of qualitative methods, namely
Lyapunov Exponent measure [9], is another paradigm that
has been adopted to quantify chaos. It indicates the average
rates of convergence or divergence of nearby trajectories.
A positive exponent implies divergence and is indicative of
chaotic dynamics while a negative one implies convergence
and is said to be periodic.

Lyapunov Exponent is defined as a limit when time 𝑡 ap-
proaches infinity (Equation (1)), one encounters fundamental
difficulties using it for a circuit simulated for a limited time.

𝜆𝑖 = lim
𝑡→∞

1

𝑡
𝑙𝑛∣𝜎𝑖(𝑡)∣, ∀𝑖 ∈ [1, .., 𝑛] (1)

Where {𝜎𝑖}𝑛𝑖=1 are the eigenvalues of the Jacobian matrix of
the circuit. This technique is hampered by technical issues
related to the signal length and its contamination by noise
(known as Perron effects); Hence, direct application of this
measure on the circuit output might be inappropriate. To
circumvent these shortcomings, we present, to the best of our
knowledge, the first methodology to statistically investigate
determinism in apparently stochastic AMS design behavior.
Unlike the Lyapunov Exponent measure [9], the proposed
methodology can also be adopted for circuit level AMS circuits
outputs.

III. PROPOSED METHODOLOGY

An overview of our proposed methodology to statistically
probe the dynamics (deterministic vs stochastic) of AMS de-
signs is shown in Fig. 1. The AMS circuit behavior is modeled
as a System of Recurrence Equations (SREs) that describes
its behavior with/without noise. Recurrence equations are the
discrete version of an analog differential equations. For the
discrete components, the SREs are extended to E-SRE [7] by
expressing them with if-else logical formulas as follows:

𝑋𝑖(𝑛) = 𝑓𝑖(𝑋𝑗(𝑛− 𝛾)),∀𝑖, 𝑗, 𝑛 ∈ ℤ (2)

where 𝑓𝑖 is a generalized If-formula. In this work, we are
considering only thermal noise excitation that adheres to a
Gaussian distribution with mean 𝑚, and standard deviation
𝜎. The obtained model is evaluated for specific environment
constraints, namely the initial values of the voltage and current
state variables and simulation parameters (such as the total
simulation time, and the simulation step size). Thereafter, we
elucidate the property of interest (𝒫) that the circuit should
comply with. The property to be verified in this paper can be
phrased as follows: “Is the observed random like behavior of
the AMS design due to noisy or chaotic behavior?”. Hence, we
define a null hypothesis, denoted by 𝐻0, which assumes that
the circuit exhibits stochastic noise and an alternative hypoth-
esis 𝐻1 that assumes the circuits to be purely deterministic. To
verify the above mentioned hypotheses, the idea is to generate
artificial circuit outputs called surrogates that are realizations
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Fig. 1. Proposed statistical behavioral verification methodology

of what would the circuit output be if it was consistent with
the property 𝒫 . Hence, these surrogates serve as a useful
model against which to verify the real circuit output. They
are carefully constructed from the circuit output so as to be
free from any chaotic process while preserving some features
of the original output.

To do so, we appeal to a different mathematical represen-
tation of the circuit behavior known as phase diagram in the
nonlinear system theory. A phase diagram displays the circuit
variables against each other and leaves time as an implicit
dimension not explicitly graphed. The subset of this phase
space toward which the circuit tends to evolve regardless of
the initial conditions is called an attractor. This attractor will
be used to predict the chaotic dynamics of the AMS circuit
in order to consider them in the surrogates generation later.
We applied the non uniform embedded window [10] and the
false nearest neighbor method [11] for establishing optimal
embedding parameters (𝑑𝑒, 𝜏 ) for the attractor reconstruction
from the circuit output as depicted in Fig. 1. Thereafter, we
determine the noise radius 𝜌 that is the amount of noise that
will obliterate the attractor of the surrogates. The best selection
of this parameter is very important for the accuracy of the
results. 𝜌 is computed according to the suggestions in [12].
These parameters (𝑑𝑒, 𝜏 , 𝜌) together with the hypothesis 𝐻0

will be passed to the Surrogate Generation Method (SGM). A
number of surrogates 𝑁𝑆 will be generated using this method
(more details will be given later in Section III-A). Those
surrogates must preserve the coarse deterministic features
of the real output (such as periodicity) while satisfying the
null hypothesis 𝐻0. Therefore, chaotic structure by fine scale
dynamics will be altered by random noise with level 𝜌. To
verify the AMS circuit behaviors, we perform hypothesis
testing technique for a given confidence level 𝛼 in order to
derive the acceptance region for the noisy behavior expressed
with the null hypothesis 𝐻0. The acceptance region concludes
that if the original circuit output test statistic is located outside
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this region, 𝐻0 is rejected. In other words, hypothesis testing
approach reports a significant difference between the original
output and its surrogates in term of Gaussian Kernel (GK)
measure (see Section III-B for more details). The rejection of
the null hypothesis implies the acceptance of the alternative
hypothesis 𝐻1 that the circuit behavior exhibits chaos.

A. Surrogate Generation Method

We extend the Pseudo Periodic Surrogate (PPS) method,
developed first in [12] to study dynamics of human electro-
cardiogram (ECG), to verify AMS circuits behavior.
Algorithm 1 illustrates the surrogates generation procedures in
order to verify aberrant behaviors of AMS designs described
as Extended-System of Recurrence Equations (E-SREs).

Algorithm 1 Surrogate Generation Algorithm
Require: E-SRE(X), 𝜌, 𝑑𝑒, 𝜏 , 𝑁𝑆

1: 𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ (𝑋);
2: 𝑁 ← 𝑁 − (𝑑𝑒 − 1)𝜏 ;
3: 𝑑𝑤 ← 𝑑𝑒𝜏 − 1;
4: {𝑍𝑡} ˜𝑁

𝑡=1 ← 𝑒𝑚𝑏𝑒𝑑 (E-SRE(X), 𝑑𝑒, 𝜏);
5: 𝒜 = {𝑧𝑡/ 𝑡 = 1, 2, ..., 𝑁};
6: for 𝑘 = 1→ 𝑁𝑆 do
7: for 𝑗 = 1→ 𝑁 − 𝑑𝑤 do
8: 𝑖← 1;
9: 𝑠1 ∈ 𝒜;

10: while 𝑖 < 𝑛 do
11: 𝑑𝑗 = ∥𝑠𝑖 − 𝑧𝑗∥;
12: 𝜔𝑗 = 𝑒−

𝑑𝑗
𝜌 ;

13: 𝑝𝑗 ← 𝜔𝑗/
∑

𝑘 𝜔𝑘;
14: 𝑃 (𝑠𝑖+1 = 𝑧𝑡) ∝ 𝑝𝑗 ;
15: 𝑠𝑖+1 = 𝑧𝑗 ;
16: 𝑖← 𝑖+ 1;
17: end while
18: end for
19: {(𝑠𝑡)𝑘} ≡ {(𝑠1)𝑘, (𝑠2)𝑘, ...., (𝑠𝑁 )𝑘};
20: end for

The Algorithm requires: an E-SRE model of the circuit for
the state variables 𝑋 with/without thermal noise in some or
all circuit components denoted by E-SRE(X), the noise radius
𝜌, the embedding dimension 𝑑𝑒, the embedding lag 𝜏 , and
the number of surrogates to be generated 𝑁𝑆 . The algorithm
begins with state space reconstruction of the circuit dynamics
(line 4). It consists of representing the dynamical features
of the circuit output E-SRE(X) in an alternative domain
namely an Euclidian space ℝ

𝑑𝑒 where 𝑑𝑒 is the embedding
dimension. By doing so, the points in ℝ

𝑑𝑒 form an attractor
𝒜 (line 5) that gives intuition about the circuit dynamics.
Thereafter, embedding points of neighboring trajectories in the
obtained attractor are used to create a new attractor with noisy
trajectories (lines 10-17); The algorithm chooses an initial
condition 𝑠1 randomly from the reconstructed attractor 𝒜 (line
9). For the following noisy attractor point, a near neighbor
𝑧𝑗 ∈ 𝒜 is then chosen with a probability commensurate to the
noise radius 𝜌 (line 14). The introduction of this dynamical

noise by the surrogate generation algorithm will obliterate
any deterministic dynamics of the circuit while preserving
periodicity. Hence, chaotic circuit dynamics lead to distinct
trends of their surrogates produced by this method.

B. Gaussian Kernel Test Statistic

The Gaussian Kernel (GK) test is a measure of correlation
dimension 𝑑𝑐 which is the dimensionality of the circuit attrac-
tor 𝒜 [13]. It is mathematically defined by Equation (3). It
uses the Gaussian kernel function (Equation (4)) that is more
convenient for calculating the effect of Gaussian noise.

𝑑𝑐 = lim
ℎ→0

lim
𝑁→0+∞

𝑙𝑜𝑔 𝑇𝑚(ℎ)

𝑙𝑜𝑔 ℎ
(3)

where 𝑇𝑚 =
1

𝑁

∑
𝑖

∑
𝑗 ∕=𝑖

(
1

𝑁 − 1
𝑒
∥𝑥𝑖−𝑥𝑗∥2

4ℎ2 ) (4)

where h denotes the bandwidth, and N denotes the number of
estimation points. Our choice for this test is explained by the
fact that it has been proven to provide a rigorous estimation of
correlation dimension even for a noise level 50% higher than
the ideal signal.

IV. APPLICATIONS

In this section, we report the results of the application of
our methodology on three AMS circuits. All computation and
circuit models were performed in a MATLAB environment
and were run on a 64-bit Windows 7 machine with 2.8 GHz
processor and 24 GB memory. The type of hypothesis testing
used is the one tailed test with the level of significance 𝛼=5%.

A. Colpitts Oscillator
A Colpitts oscillator is a combination of a transistor ampli-

fier and an LC circuit as shown in Fig. 2.The Colpitts circuit
behavior has been reported to exhibit chaotic behavior [14].
We model its behavior by the following E-SREs:

RL

L

VEE
C2

REE

VCC

C1

Fig. 2. Colpitts oscillator

𝑖𝐵(𝑛) = 𝑖𝑓(𝑉𝐵𝐸 > 𝑉𝑇ℎ,
𝑉𝐵𝐸(𝑛)− 𝑉𝑇ℎ

𝑅𝑂𝑁
, 0)

𝑖𝑐(𝑛) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝛽𝑖𝐵(𝑛), 0)

𝑉𝐶𝐸(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝑉𝐶𝐸(𝑛) + 𝛿𝑡
𝑖𝐿(𝑛)− 𝑖𝑐

𝐶1
, 0)

𝑉𝐵𝐸(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝑉𝐵𝐸(𝑛)− 𝛿𝑡
𝐶2

(5)

(
𝑉𝐸𝐸 + 𝑉𝐵𝐸(𝑛)

𝑅𝐸𝐸
+ 𝑖𝐿 + 𝑖𝐵)), 1)

𝑖𝐿(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝑖𝐿(𝑛) + 𝛿𝑡(𝑉𝐶𝐶 − 𝑉𝐶𝐸(𝑛) +

𝑉𝐵𝐸(𝑛)− 𝑖𝐿(𝑛)𝑅𝐿), 0)
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Table I summarizes the simulation and surrogate generation
parameters for the Colpitts circuit. Fig. 3 illustrates both the
original and reconstructed attractor of the Colpitts oscillator
behavior using the embedding dimension (𝑑𝑒, 𝜏 ) given in Table
I. The similarity of both attractors demonstrates the appropriate
choice of embedding parameters.

TABLE I
SIMULATION PARAMETERS OF THE COLPITTS CIRCUIT

Parameter Value Parameter Value

𝑅𝐸𝐸 0.904 𝑅𝐿 35
𝐶1, 𝐶2 54e-9 𝑅𝐸𝐸 400
𝑅𝑂𝑁 100 𝑉𝐶𝐶 5
𝑉𝐸𝐸 -5 𝑉𝑇ℎ 0.75
𝛽 94 𝑑𝑒 5
𝜏 3 𝜌 0.003
𝑁𝑆 100 𝑁 3600

The importance of an adequate selection of the noise radius 𝜌
is shown in Fig. 4. For instance, if 𝜌 is too large (𝜌 = 0.01),
the surrogate generation algorithm will introduce too much
randomization and the surrogates will no longer resemble
the circuit output z (see Fig. 4(c)). Conversely if 𝜌 is too
small (𝜌 = 0.001), the algorithm will introduce insufficient
randomization, and surrogates will be identical to the output
as shown in Fig. 4(b).
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Fig. 3. Original attractor of Colpitts output (a), reconstructed attractor (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

2

4

6

V C
E

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

2

4

6

Su
rr

og
at

e 
( V

C
E )

ρ=
0.

00
1

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

2

4

6

Su
rr

og
at

e 
( V

C
E )

ρ=
0.

01

(c)

Fig. 4. The 𝑉𝐶𝐸 output and its surrogate for different noise radius 𝜌

Figure 5 depicts the GK correlation dimension 𝑑𝑐 of the
𝑉𝐶𝐸 output (dashed line) and its corresponding 100 surrogates
(dotted line). It can be observed that our approach success-
fully probes the chaotic behavior of the Colpitts circuit. For
instance, the 𝑑𝑐(𝑉𝐶𝐸) is significantly different from those of
the surrogates and so it falls in the rejection region (see Fig.
5). This leads to rejection of the noisy dynamics hypothesis
and consequently proves the chaotic circuit dynamics.
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Fig. 5. Analysis results for chaotic Colpitts circuit

B. Third Order Σ-Δ Modulator

We consider the third order Σ-Δ modulator depicted in Fig.
6 and modeled as a system of E-SREs given by Equations (6).

b1 b2 b3

u[n]

a1 a2 a3

+

+
C1

+

+
C2

x1 +

+
C3

x2 y[n]x3 Quantizer v[n]1
z-1

1
z-1

1
z-1

b4

+

Fig. 6. Third Order Σ-Δ Modulator

𝑣(𝑘 + 1) = 𝑖𝑓(𝑃𝑡ℎ(𝑘),−𝑎, 𝑎)
𝑥1(𝑘 + 1) = 𝑖𝑓(𝑃𝑡ℎ(𝑘), 𝑥1(𝑘) + 𝑏1𝑢(𝑘)− 𝑎1𝑎,

𝑥1(𝑘) + 𝑏1𝑢(𝑘) + 𝑎1𝑎) (6)

𝑥2(𝑘 + 1) = 𝑖𝑓(𝑃𝑡ℎ(𝑘), 𝑐1𝑥1(𝑘) + 𝑏2𝑢(𝑘) + 𝑥2(𝑘)−
𝑎2𝑎, 𝑐1𝑥1(𝑘) + 𝑥2(𝑘) + 𝑏2𝑢(𝑘) + 𝑎2𝑎)

𝑥3(𝑘 + 1) = 𝑖𝑓(𝑃𝑡ℎ(𝑘), 𝑐2𝑥2(𝑘) + 𝑥3(𝑘) + 𝑏3𝑢(𝑘)−
𝑎3𝑎, 𝑐2𝑥2(𝑘) + 𝑥3(𝑘) + 𝑏3𝑢(𝑘) + 𝑎3𝑎)

where 𝑃𝑡ℎ(𝑘) = 𝑐3𝑥3(𝑘) + 𝑢(𝑘) ≥ 0

The following parameters of the circuit were computed using
the Delta Sigma MATLAB Toolbox [15]:

𝑎 = 2, 𝐴 = 𝐵 =

⎛
⎝

0.044
0.2881
0.7997

⎞
⎠ , 𝐶 =

⎛
⎝
1
1
1

⎞
⎠

In [8], the author proved that Σ-Δ modulators can reproduce
chaos if it is fed by a chaotic input. This is a very important
feature of Σ-Δ modulators in communication applications
such as encryption and cryptography. Therefore, we will use
our methodology to verify the Σ-Δ modulator given in Fig.
6, with the chaotic input fed from the Colpitts Oscillator
studied in Section IV-A. Fig. 7 shows the time variation of
the quantized output V for sinusoidal input (Fig. 7 (a)) and a
chaotic input signal (Fig. 7(b)).

By using GK correlation dimension, we verify the circuit
using the proposed methodology in the presence of thermal
noise and chaos. Our results shown in Fig. 8(b) are in good
agreement with the results in [8]. Indeed, the correlation
dimension of the output V (dashed line) is very different from
its corresponding surrogates (dotted line). This violates the
hypothesis that the apparently random output is generated from
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a noisy modulator. In contrast, in the presence of thermal noise
Fig. 8(a), there was no apparent distinction between the two.
Hence, 𝐻0 holds and consequently the circuit exhibits noise.
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Fig. 7. Quantized sinusoidale wave (a) and chaotic (b) inputs
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Fig. 8. Chaos verification for noisy modulator (a), and modulator fed with
chaotic input (b)

C. Phase Locked Loop
PLLs are widely used circuits as modulators and demodu-

lators in communication systems. In this section, we verify a
third order PLL that serves as FM demodulator [16]. In this
PLL, a multiplier Phase Detector (PD) and a resonant Low
Pass Filter (LPF) are deployed as shown in Fig. 9.

Low Pass Filter 
(LPF)

VCO

Phase Detector
(PD)

Reference 
Oscillator

(RO)

Thermal Noise

Fig. 9. Conventional PLL block diagram

The PLL dynamics are governed by the following E-SREs:

𝜑(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝜑(𝑛) + 𝛿𝑡 𝑓𝑛, 0) (7)

Ψ(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, Ψ(𝑛) − 𝛿𝑡 𝑚 𝑓𝑛 𝑠𝑖𝑛(𝜑(𝑛)), 𝜋)

𝑥(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝑥(𝑛) + 𝛿𝑡 (Ω𝑛 − 𝑘𝑛 𝑧(𝑛)), 0)

𝑦(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝑦(𝑛) + 𝛿𝑡 (sin(𝑥(𝑛) − Ψ(𝑛)) +

(𝑔 − 2) 𝑦(𝑛) − 𝑔 − 1

𝑔
𝑧(𝑛)), 0)

𝑧(𝑛+ 1) = 𝑖𝑓(𝑡𝑟𝑢𝑒, 𝑧(𝑛) + 𝛿𝑡 (𝑔 𝑦(𝑛) − 𝑧(𝑛)), 1)

where the state variables 𝜑, Ψ, 𝑥, 𝑦, and 𝑧 stand for
modulating signal, frequency of modulation, phase difference
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Fig. 10. Time variation of Y for periodic (a), chaotic (b), and noisy (c)
regimes

between PLL input and VCO output, PD output, and LPF
output, respectively. As the control parameter 𝑚 changes,
the dynamics of the PLL circuit change till culminating to
chaotic regime. For instance, the circuit operates in periodic
regime for 𝑚 = 0 while chaotic dynamics occur for 𝑚 = 10.
Figure 10 depicts the time domain behavior of the PD output y
for periodic (panel(a)), chaotic (panel(b)), and noisy behavior
(panel(c)). It can be remarked that the chaotic output reveals
a similar behavior to the noisy output simulated with thermal
noise in the VCO. This demonstrates the need to assess the real
source of random-like behavior observed in nonlinear AMS
circuits during the design process. A phase diagram of the
PLL attractor is depicted in Fig. 11.

TABLE II
SIMULATION PARAMETERS OF THE PLL CIRCUIT

Parameter Value Description

𝑓𝑛 0.904 normalized frequency of the modulating signal
𝑚 10 modulating index
Ω𝑛 1.2 normalized detuning
𝑑𝑒 5 embedding dimension
𝑘𝑛 0.6511 normalized loop gain
𝑔 1.728 filter gain
𝜏 10 embedding lag
𝜌 0.0170 noise radius

𝑁𝑆 100 number of surrogates
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Fig. 11. Attractor of the PLL circuit during chaotic regime

The GK correlation dimension acquired from the the PLL
circuit output 𝑦 (dashed line) and 100 surrogates (dotted line)
is shown in Fig. 12 for chaotic behavior (m=10) and in Fig.
13 for noisy behavior (m=0). A good qualitative agreement
between the results of our methodology and the theory [16] is
demonstrated; Indeed, the correlation dimension of the original
output (dashed line) is very different from its corresponding
surrogates (dotted line) in the chaotic case. This violates the
hypothesis that the apparently random output is generated from
a noisy circuit and hence indicates the deterministic dynamics
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Fig. 13. Verification of PLL in Noisy regime

of the circuit. Consequently, the proposed methodology was
able to successfully distinguish the noise like behavior exhib-
ited by deterministic chaotic circuit from the stochastic noisy
PLL.

D. Comparison with Lyapunov Exponent Method
In order to demonstrate the efficiency of the proposed

methodology, the Lyapunov Exponent (LE) measure was car-
ried out for the previously analyzed circuits under the same
simulation conditions and for the same circuits outputs. The
results of chaos verification and simulation time are recapitu-
lated in Table III. The obtained results using our approach are
in good agreement with those obtained with the LE technique
for the Coplitts circuit and Σ-Δ Modulator. However, a failure
to discriminate the noisy behavior of PLL has been detected
(see Table III); Thermal noise in the VCO creates sensitivity to
initial conditions of the PLL design that triggered the finding
of a positive Lyapunov exponent which is a signature of chaos.
In fact, a maximum exponent 𝜆 = +0.0154 has been obtained
while the circuit exhibits thermal noise in the VCO and not
chaotic behavior. Moreover, a simulation time acceleration is
obtained using our methodology. Indeed, when adopting our
approach, the simulation time was minimized from thousands
of seconds to hundreds of seconds as shown in Table III.

TABLE III
ACCURACY AND SIMULATION TIME COMPARISON

Colpitts
Oscillator

3𝑟𝑑 order Σ-Δ
Modulator

PLL

Our
Method

LE
Our
Method

LE
Our
Method

LE

Simulation
Time [Sec.]

164.7 709.7 196.3 985.4 247.3 1213.4

Chaos∖Noise
Detection

√ √ √ √ √ ×
×: Failure in detecting circuit dynamics.√

: Successfully detecting circuit dynamics.

V. CONCLUSIONS

In this paper, a novel methodology to statistically assess
chaos from noise in AMS circuits is proposed. The circuit

is modeled using Extended System of Recurrence Equations.
The verification approach is based on hypothesis testing and
surrogate generation method to decide whether to reject or
accept the hypothesis that the unpredictable circuit behavior
emerges from noisy design. Our methodology has been suc-
cessfully employed on a Colpitts oscillator, a third order Σ-Δ
modulator and a third order PLL circuit. The main advantages
of the proposed methodology are: (1) It improves robustness to
thermal noise. For instance, our approach successfully discrim-
inates noise in PLL while traditional techniques such as LE
method fails to do so; (2) It sufficiently reduces the simulation
time to around 5 times compared to the LE method; and (3)
It is applicable to simulation traces when no mathematical
model of the design is available. We believe that the proposed
methodology will be a handy tool to give insight to designers
about the onset of chaos in AMS circuits.

As future work, we plan to verify larger AMS circuits with
other types of noise, such as 1/𝑓 noise and jitter. By doing
so, we will be able to assess the limitations of the proposed
methodology. Additionally, we aim to extend the proposed
approach to discriminate simple chaos from hyperchaos.
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