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Abstract. System analysis based on difference or recurrence equations
is the most fundamental technique to analyze biological, electronic, con-
trol and signal processing systems. Z-transform is one of the most popu-
lar tool to solve such difference equations. In this paper, we present the
formalization of Z-transform to extend the formal linear system anal-
ysis capabilities using theorem proving. In particular, we use differen-
tial, transcendental and topological theories of multivariate calculus to
formally define Z-transform in higher-order logic and reason about the
correctness of its properties, such as linearity, time shifting and scaling
in z-domain. To illustrate the practical effectiveness of the proposed for-
malization, we present the formal analysis of an infinite impulse response
(IIR) digital signal processing filter.

1 Introduction

In general, dynamics of engineering and physical systems are characterized by
differential equations [18] and difference equations [3] in case of continuous-time
and discrete-time, respectively. The complexity of these equations varies depend-
ing upon the corresponding system architecture (distributed, cascaded, hybrid
etc.), nature of input signals and physical constraints. Transformation analysis is
one of the most efficient technique to mathematically analyze such complex sys-
tems. The main objective of transform method is to reduce complicated system
models (i.e., differential or difference equations) into those of algebraic equa-
tions. Z-transform [12] provides a mechanism to map discrete-time signals over
the complex plane also called z-domain. This transform is a powerful tool to
solve linear difference equations (LDE) by transforming them into algebraic op-
erations in z-domain. Moreover, z-domain representation of LDEs is also used
for the transfer function analysis of corresponding systems. Due to these distinc-
tive features, Z-transform is one of the main core techniques available in physical
and engineering system analysis softwares (e.g., [11,10]) and is widely used in
the design and analysis of signal processing filters [12], electronic circuits [3],
control systems [4], photonic devices [9] and queueing networks [1].

The main idea of Z-transform can be traced back to Laplace, but it was
formally introduced by W. Hurewicz (1947) to solve linear constant coefficient
difference equations [7]. Mathematically, Z-transform can be defined as a function
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series which transforms a discrete time signal f [n] into a function of a complex
variable z, as follows:

X(z) =

∞∑

n=0

f [n]z−n (1)

where f [n] is a complex-valued function (f : N → R) and the series is defined
for those z ∈ C for which the series is convergent.

The first step in analyzing a difference equation (e.g., xn+1 = kxn(1 − xn))
using Z-transform is to apply Z-transform on both sides of a given equation. Next,
the corresponding z-domain equation is simplified using various properties of z-
transform, such as linearity, scaling and differentiation. The main task is to either
solve the difference equation or to find a transfer function which relates the input
and output of the corresponding system. Once the transfer function is obtained,
it can be used to analyze some important aspects such as stability, frequency
response and design optimization to reduce the number of corresponding circuit
elements such as multipliers and shift registers.

Traditionally, the analysis of linear systems based on Z-transform has been
done using numerical computations and symbolic techniques [11,10]. Both of
these approaches, including paper-and-pencil proofs [12] have some known lim-
itations like incompleteness, numerical errors and human-error proneness. In
recent years, theorem proving has been actively used for both the formalization
of mathematics and the analysis of physical systems. For the latter case, the
main task is to identify and formalize the underlying mathematical theories.
In practice, four fundamental transformation techniques (i.e., Laplace transform
(LT), Z-transform (ZT), Fourier transform (FT), and Discrete Fourier transform
(DFT)) are used in the designing and analysis of linear systems. Interestingly,
Fourier transform and Discrete Fourier transform can be derived from Laplace
transform and Z-transform, respectively. Recently, the formalization of Laplace
transform has been reported in [17] using the multivariate analysis libraries of
HOL Light [6], with an ultimate goal of reasoning about differential equations
and transfer functions of continuous systems. Nowadays, discrete-time linear
systems are widely used in the safety and mission critical domains (e.g., digital
control of avionics systems and biomedical devices). We believe that there is a
dire need of an infrastructure which provides the basis for the formal analysis of
discrete-time systems within the sound core of a theorem prover. To the best of
our knowledge, so far Z-transform has not been formalized which is an important
step towards formal analysis of discrete-time physical and engineering systems.

Our main objective is two-fold: firstly, we aim at extending theorem proving
support for linear system analysis. Secondly, we plan to enrich the current foun-
dations of optics formalization [13,15] to reason about futuristic photonic signal
processing systems [2,9]. In this paper, we propose Z-transform based system
analysis using a higher-order-logic theorem prover. The main idea is to leverage
upon the high expressiveness of higher order logic to formalize Equation (1) and
use it to verify the classical properties of Z-transform within a theorem prover.
These foundations can be built upon to reason about the analytical solutions of
difference equations or transfer functions. As a first step towards our ultimate
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goal, we present in this paper the higher-order logic formalization of Z-transform
and its associated region of convergence (ROC). Next, we present the formal ver-
ification of its most commonly used properties such as linearity, time delay, time
advance and scaling in z-domain. Consequently, we present the formalization
of linear constant coefficient difference equation along with the formal verifi-
cation of its Z-transform by utilizing the above mentioned properties. In order
to demonstrate the practical effectiveness of the reported work, we present the
formal analysis of an infinite impulse response (IIR) digital signal processing
filter.

Formalization reported in this paper has been developed in the HOL Light
theorem prover due to its rich multivariate analysis libraries [6]. Another moti-
vation of choosing HOL Light is the existing formalization of Laplace transform
and photonic systems which are complementary to achieve our final objective of
analyzing linear systems and integrated optics. The source code of our formaliza-
tion is available for download [14] and can be utilized by other researchers and
engineers for further developments and the analysis of more practical systems.

The rest of the paper is organized as follows: Section 2 describes some fun-
damentals of multivariate analysis libraries of the HOL Light theorem prover.
Sections 3 and 4 present our HOL Light formalization of Z-transform and the
verification of its properties, respectively. In Section 5, we present the analysis
of an IIR filter as illustrative practical application. Finally, Section 6 concludes
the paper and highlights some future directions.

2 Preliminaries

In this section, we provide a brief introduction to the HOL Light formalization
of some core concepts such as vector summation, summability, complex differ-
entiation and infinite summation [5,6]. Our main intent is to introduce the basic
definitions and notations that are going to be used in the rest of the paper.

In the vectors theory formalization, an N-dimensional vector is represented
as an R

N column matrix with individual elements as real numbers. All of the
vector operations are then treated as matrix manipulations. Similarly, instead
of defining new type, complex numbers (C) can be represented as R

2. Most of
the theorems available in multivariate libraries of HOL Light are verified for
arbitrary functions with a flexible data-type of (RM → R

N ). Next, we present
the definitions frequently used in our formalization.

First, generalized summation over arbitrary functions is defined as follows:

Definition 1 (Vector Summation)
� ∀ s f. vsum s f = (lambda i. sum s (λ x. f x$i))

where vsum takes two parameters s : A → bool which specifies the set over the
summation occurs and an arbitrary function f : (A → R

N). The function sum is
a finite summation over real numbers and accepts f : (A → R

N). For example,∑K
i=0 f(i) can be represented as vsum (0..K) f.
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Next, we present the formal definition of the traditional mathematical expres-
sion

∑∞
i=k f(i) = L, as follows:

Definition 2 (Sums)
� ∀ s f L. (f sums L) s ⇔

((λ n. vsum (s ∩ (0..n)) f) → L) sequentially

where the types of the parameters are: (s : N → bool), (f : N → R
N) and (L : RN).

Now, we define the summability of a function (f : N → R
N), which indeed

represents that there exist some (L : RN) such that
∑∞

i=k f(i) = L.

Definition 3 (Summability)
� ∀ f s. summable s f ⇔ (∃ L. (f sums L) s)

The limit of an arbitrary function can be defined as follows:

Definition 4 (Limit)
� ∀ f net. lim net f = (@L. (f → L) net)

The function lim is defined using the Hilbert choice operator @ in the functional
form. It accepts a net with elements of arbitrary data-type A and a function
(f : A → R

N), and returns (L : RN): , i.e., the value to which f converges at the
given net. In this paper, we are considering only sequential nets, which describes
the sequential evolution of a function, i.e. f(i), f(i+ 1), f(i+ 2), ....., etc.

Next, we present the definition of an infinite summation which is one the most
fundamental requirement in our development.

Definition 5 (Infinite Summation)
� ∀ f s. infsum s f = (@L. (f sums L) s)

The function infsum is also defined using the Hilbert choice operator @ in the
functional form. It accepts a parameter (s : num → bool) which specifies the
starting point and a function (f : N → R

N), and returns (L : RN): , i.e., the value
at which infinite summation of f converges from the given s.

In some situations, it is very useful to specify infinite summation as a limit of
finite summation (vsum). We proved this equivalence in the following theorem:

Theorem 1 (Infinite Summation in Terms of Sequential Limit)
� ∀ s f. infsum s f = lim sequentially (λ k. vsum (s ∩ (0..k)) f))

Next, we present the definition of complex differentiation as follows:

Definition 6 (Complex Differentiation)
� ∀ f f’ net. (f has complex derivative f’) net ⇔

(f has derivative (λx. f’ * x)) net

The function has complex derivative defines the complex derivative in a re-
lational form. Here, (f : C → C) and f’:(C) represent a given function and the
corresponding complex derivative at a given (net : (C)net), respectively. The
function has derivative is a generalized vector derivative. The above defini-
tion can also be described in a functional form as follows:



On the Formalization of Z-Transform in HOL 487

Definition 7 (Complex Differentiation)
� ∀ f x. complex derivative f x =

(@f’. (f has complex derivative f’)) (at x)

Note that, the injection from natural numbers to complex numbers can be
represented by & : N → R. Similarly, the injection from real to complex numbers
is done by Cx : R → C. The real and imaginary parts of a complex number are
represented by Re and Im both with type C → R.

We build upon the above mentioned fundamentals to formalize Z-transform
in the next section.

3 Z-Transform Formalization

The unilateral Z-transform [8] of a discrete time function f [n] can be defined as
follows:

F (z) =
∞∑

n=0

f [n]z−n (2)

where f is a function from N → C and z is a complex variable. Here, the
definition that we consider has limits of summation from n = 0 to n = ∞. On
the other hand, one can consider these limits from n = −∞ to n = ∞ and
such a version of Z-transform is called two-sided or bilateral transform. This
generalization comes at the cost of some complications such as non-uniqueness,
which limits its practicality in engineering systems analysis. On the other hand,
unilateral transform can only be applied to causal functions, i.e., f [n] = 0 for
∀n.n < 0. In practice, unilateral Z-transform is sufficient to analyze most of the
engineering systems because their designs involve only causal signals [16]. For
similar reasons, in [17], the authors formalized the unilateral Laplace transform
rather than the bilateral version.

An essential issue of Z-transform of f [n] is whether the F (z) even exists, and
under what conditions it exists. It is clear from Equation (2) that Z-transform
of a function is an infinite series for each z in the complex plane or z-domain. It
is important to distinguish the values of z for which infinite series is convergent
and the set of all those values is called the region of convergence (ROC). In
mathematics and digital signal processing literature, different definitions of ROC
are considered. For example, one way is to express z in the polar form (z = rejω)
and then the ROC for F (z) includes only those values of r for which the sequence
f [n]r−n is absolutely summable. Unfortunately, to the best of our knowledge, this
claim (i.e., absolute summability, e.g., [12,16]) is incorrect for certain functions,
for example, f [n] = 1

nu[n− 1] for which certain values of z result in convergent
infinite series, but x[n]r−n is not absolutely summable.

Now, we have two distinct choices for defining ROC: first, z values for which
F (z) is finite (or summable) and second, z values for which x[n]z−n is abso-
lutely summable. Most of the textbooks are not rigorous about the choice of
ROC and both of these definitions are widely used in the analysis of engineering
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systems. In this paper, we use the first definition of ROC, which we can define
mathematically as follows:

ROC = {z ∈ C :
∞∑

n=0

f [n]z−n < ∞} (3)

In the above discussion, we mainly highlighted some arbitrary choices of using
the definition of Z-transform and its associated ROC. Now, we can formalize Z-
transform function (Equation 2) in HOL Light, as follows:

Definition 8 (Z-Transform)
� ∀ f z. z transform f z = infsum (from 0) (λ n. f n * z−n)

where the z transform function accepts two parameters: a function f : N → C

and a complex variable z : C. It returns a complex number which represents the
Z-transform of f according to Equation (2).

Next, we present the formal definition of the ROC as follows:

Definition 9 (Region of Convergence)
� ∀ f. ROC f = {z | summable (from 0) (λ n. f n * z−n)}

Here, ROC accepts a function f : N → C and returns a set of values of variable
z for which the Z-transform of f(n) is summable. In order to compute the Z-
transform, it is mandatory to specify the associated ROC. Now, we present two
basic properties of ROC as follows:

Theorem 2 (ROC Linear Combination)
� ∀ z α β f g. z ∈ ROC f ∧ z ∈ ROC g =⇒

z ∈ ROC (λn. α * f n) ∩ ROC (λn. β * g n)

Theorem 3 (ROC Scaling)
� ∀ z α f. z ∈ ROC f =⇒ z ∈ ROC (λn. f n

α )

where Theorem 2 describes that if z belongs to ROC f and ROC g then it also
belongs to the intersection of both ROCs even though the functions f and g are
scaled by complex parameters α and β, respectively. Similarly, Theorem 3 shows
the scaling with respect to complex division by a complex number α.

4 Z-Transform Properties

In this section, we use Definitions 8 and 9 to formally verify some of the classical
properties of Z-transform in HOL Light. The verification of these properties not
only ensures the correctness of our definitions but also plays an important role in
reducing the time required to analyze practical applications, as described later
in Section 5.
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4.1 Linearity of Z-Transform

The linearity of the Z-transform is a very useful property while handling systems
composed of subsystems with different scaling inputs. Mathematically, it can be
defined as:

If Z(f [n]) z = F (z) with ROC = Rf and Z(g[n]) z = G(z) with ROC = Rg,
then the following holds:

Z(α ∗ f [n]± β ∗ g(n)) z = α ∗ F (z)± β ∗G(z) ROC ⊇ Rf ∩Rg (4)

The Z-transform of a linear combination of sequences is the same linear combi-
nation of the Z-transforms of the individual sequences. We verify this property
as the following theorem:

Theorem 4 (Linearity of Z-Transform)
� ∀ z f g α β. z ∈ ROC f ∩ ROC g =⇒

z transform (λ n. α * f n + α * g n) z =

α * z transform f z + β * z transform g z

where α : C and β : C are arbitrary constants.
The proof of these theorems are based on the linearity of infinite summation

and Theorem 2.

4.2 Shifting Properties

The shifting properties of Z-transform are the most widely used in the analysis
of digital systems and in particular in solving difference equations. In fact, there
are two kinds of possible shifts: left shift (f [n+m]) or time advance and right
shift (f [n−m]) or time delay. The main idea is to express the transform of the
shifted signal ((f [n+m]) or (f [n−m])) in terms of its Z-transform (F (Z)).

Left Shift of a Sequence: If Z(f [n]) z = F (z) and m is a positive integer,
then the left shift of a sequence can be described as follows:

Z(f [n+m]) z = zmF (z)−
m−1∑

n=0

f [n]z−n (5)

We verify this theorem as follows:

Theorem 5 (Left Shift or Time Advance)
� ∀ f z m. z ∈ ROC f ∧ (0 < m) =⇒

z transform (λ n. f (n + m)) z =

zm * (z transform f z) - vsum (0..m - 1) (λ n. f n * z−n)

The verification of this theorem mainly involves properties of complex numbers,
summability of shifted functions and splitting an infinite summation into two
parts as given by the following lemma:
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Lemma 1 (Infsum Splitting)
� ∀ f n m. summable (from m) f ∧ (m < n) =⇒

infsum (from m) f = vsum (m..n - 1) f + infsum (from n) f

Right Shift of a Sequence: If Z(f [n]) z = F (z), and assuming f(−n) =
0, ∀n = 1, 2, ..,m, then the right shift or time delay of a sequence can be
described as follows:

Z(f [n−m]) z = z−mF (z) (6)

We formally verify the above property as the following theorem:

Theorem 6 (Right Shift or Time Delay)
� ∀ f z m. z ∈ ROC f ∧ (∀ m. is causal f m) =⇒

z transform (λ n. f (n - m)) z = z−m * (z transform f z)

Here, is causal defines the causality of the function f in a relational form
to ensure that f(n− m) = 0, ∀m.n < m. The proof of this theorem also involves
properties of complex numbers along with the following two lemmas:

Lemma 2 (Series Negative Offset)
� ∀ f k l. (f sums l) (from 0) =⇒

((λ n. f (n - k)) sums l) (from k)

Lemma 3 (Infinite Summation Negative Offset)
� ∀ f k. summable (from 0) f =⇒

infsum (from 0) (λ n.if k ≤ n then f (n - k) else Cx(&0))

= infsum (from 0) f

As a direct application of above results, we verify another important property
called first-difference, as follows:

Theorem 7 (First Difference)
� ∀ f. z ∈ ROC f ∧ (∀ m. is causal f m) =⇒

z transform (λ n. f (n) - f(n-1)) z = (1− z−1) * (z transform f z)

4.3 Scaling in Z-Domain

The scaling property of Z-transform plays an important role in the designing of
communication systems, such as the response analysis of modulated signals in
z-domain. If Z(f [n]) z = F (z), then two basic types of scaling can be defined as
below:

Z(Zn
0 f [n]) z = F (

z

Z0
) (7)

Z(ω−nf [n]) z = F (ωz) (8)

If Z0 is a positive real number, then it can be interpreted as shrinking or expand-
ing of the z-domain. If Z0 is a complex with unity magnitude, i.e., z = ejω0 , then
the scaling corresponds to a rotation in the z-plane by an angle of ω0. Indeed,
in communication and signal processing literature, it is interpreted as frequency
shift or translation associated with the modulation in the time-domain.
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We verify the above theorems in HOL Light as follows:

Theorem 8 (Scaling in z-Domain)
� ∀ f Z0 z. z transform (λ n. Zn0 * f n) z = z transform f ( z

Z0
)

Theorem 9 (Scaling in z-Domain (Negative))
� ∀ f ω z. z transform (λ n. ω−n * f n) z = z transform f (ω ∗ z)
The verification of above theorems mainly involves the properties of complex
power.

4.4 Complex Differentiation

The differentiation property of Z-transform is frequently used together with shift-
ing properties to find the inverse transform. Mathematically, it can be expressed
as:

Z(n ∗ f [n]) z = −z ∗ (
∞∑

n=0

d

dz
(f [n]z−n)) (9)

We prove this property in the following theorem:

Theorem 10 (Complex Differentiation)
� ∀ f z. �= Cx(&0) ∧ &0 < Re z ∧ z ∈ (λ n. Cx (&n) * f n)

=⇒ z transform (λ n. Cx (&n) * f n) z =

-z * infsum (from 0) (λ n. complex derivative (λ z. f n * z−n) z)

The proof of the above theorem requires the properties of complex differentiation,
summability and complex arithmetic reasoning.

4.5 Difference Equation

A difference equation characterizes the behavior of a particular phenomena over
a period of time. Such equations are widely used to mathematically model com-
plex dynamics of discrete-time systems. Indeed, a difference equation provides a
formula to compute the output at a given time, using present and future inputs
and past output as given in the following example:

y[n]− y[n− 1] =

M∑

i=0

αif [n− i] (10)

Here, M is called the order of difference equation and αi represents the list
of input coefficients. For a given M th order difference equation in terms of a
function f [n], its Z-transform is given as follows:

Z(

M∑

i=0

αif [n− i]) z = F (z)

M∑

i=0

αiz
−n (11)
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We formalize the difference equation as follows:

Definition 10 (Difference Equation)
� ∀ N α lst f x. difference eq M α lst f x =

vsum (0..M) (λ t. EL t α lst * f (x - t)* z−n

The function difference eq accepts the order (M) of the difference equation, a
list of coefficients α lst, a causal function f and the variable x. It utilizes the
functions vsum s f and EL i L, which return the vector summation and the ith

element of a list L, respectively, to generate the difference equation corresponding
to the given parameters.

Next, we verify the Z-transform of the difference equation which is one of the
most powerful results of our formalization as will be demonstrated in Section 5.

Theorem 11 (Z-Transform of Difference Equation)
� ∀ M α lst f x. z ∈ ROC f ∧ z �= Cx(&0) ∧

(∀ m. is causal f m) =⇒
z transform (λx. difference eq M α lst f x) z =

(z transform f z) * (vsum (0..M) (λ n. EL n α lst * z−n))

We prove the above theorem by induction and using Theorems 2 and 4 along with
the following important lemma about the summability of difference equation:

Lemma 4 (Summability of Difference Equation)
� ∀ M α lst f x. z ∈ ROC f ∧ (∀ m. is causal f m)

=⇒ z ∈ ROC (λx. difference eq M α lst f x)

This completes our formalization of the Z-transform and verification of its main
properties, which to the best of our knowledge is the first one in higher-order logic.
We believe that our formalization can be directly utilized in many applications
such as economics, biology, signal processing and control engineering.

5 Application: Formal Analysis of Infinite Impulse
Response Filter

In order to illustrate the utilization and effectiveness of the reported formal-
ization, we apply it to analyze a real-world engineering system, i.e., an infinite
impulse response filter [12].

Digital filters are fundamental components of almost all signal processing and
communication systems. The main functionality of such components are: 1) to
limit a signal within a given frequency band; 2) decompose a signal into multiple
bands; and 3) model the input-output relation of complicated systems such as
mobile communication channels and radar signal processing. The design and
analysis of digital filters mainly involves three steps, i.e., the specification of the
desired properties of the system, modeling using a causal discrete-time system
and realization of overall structure (parallel, cascaded, etc.). Given the filter
specifications in terms of frequency response, the first step is to model the filter
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using constant coefficient difference equations. The next step is to express it in
the form of transfer function using the Z-transform properties. Consequently,
frequency response analysis and architectural optimization can be performed
based on the given specifications.

An impulse response of a system describes its behaviour under an external
change (mathematically, this describes the system response when the dirac-delta
function is applied as an input [12]). Infinite impulse response (IIR) filters have
an impulse response function which is non-zero over an infinite length of time.
In practice, IIR filters are implemented using the feedback mechanism, i.e., the
present output depends on the present input and all previous input and output
samples. Such an architecture requires delay elements due to the discrete nature
of input and output signals. The highest delay used in the input and the output
function is called the order of the filter.

The time-domain difference equation describing a generalM th order IIR filter,
with N feed forward stages and M feedback stages, is shown in Figure 1.

β0 

β1 

β2 

βN 

α 0 

α 1 

α M 

x[n] y[n] 

x[n-1] 

x[n-2] 

x[n-N] 

y[n-1] 

y[n-2] 

y[n-M] 

Z -1 

Z -1 

Z -1 

Z -1 

Z -1 

Z -1 

Multiplier  Adder  

Fig. 1. Generalized Structure of an M th Order IIR Filter
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Mathematically, it can be described as:

y[n] =

M∑

i=1

αiy[n− i] +

N∑

i=0

βix[n− i] (12)

where αi and βi are input and output coefficients. The output y[n] is a linear
combination of the previous N output samples, the present input x[n] and M
previous input samples. In case of a time-invariant filter, αi and βi are considered
constants (either complex (C) or real (R)) to obtain the filter response according
to the given specifications.

Our main objective is to formally verify the transfer function and frequency
response of an IIR filter which are given as:

H(z) =
Y (z)

X(z)
=

N∑

i=0

βiz
−i

1−
M∑

i=1

αiz
−i

(13)

H(ω) =

√√√√(
N∑

i=0

βicos(iω))
2 + (

N∑

i=0

βisin(iω))
2

√√√√(1 −
M∑

i=1

αicos(iω))
2 + (

M∑

i=1

αisin(iω))
2

∗ exp(j ∗Arg(H(ω))) (14)

where H(z) and H(ω) represent the filter’s transfer function and complex fre-
quency response, respectively. The function Arg(z) represents the argument of
a complex number [12]. Equation 14 can be derived from the transfer function
H(z) by mapping z on the unit circle, i.e., z = exp(j ∗ ω). The parameter ω
represents the angular frequency.

Based on the above description of the IIR filter, our next move is to conduct its
formal analysis, which mainly involves two major steps, i.e., formal description
of the model and underlying constraints followed by the formal verification of
transfer function and frequency response. As a first step, we build the formal
model of the IIR filter using Equation 12.

Definition 11 (IIR Model)
� ∀ x y α lst β lst M N n. IIR MODEL x y α lst β lst M N n ⇔

y n = differen eq α lst y M n +

difference eq β lst x N n ∧ HD α lst = Cx(&0)

The function IIR MODEL defines the dynamics of the IIR structure in a relational
form. It accepts the input and output signals (x, y : N → C), a list of input
and output coefficients (α lst, β lst : (C(list))), the number of feed forward
and feedback stages (N, M) and a variable n, which represents the discrete time.
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In order to model
∑M

i=1 αiy[n − i] using our definition of difference equation,
we added the constraint that the first element (i.e., HD α lst) of the output
coefficients should be 0.

According to the filter specification, we need to ensure that the input and
output signals should be causal as described in Section 3. Another important
requirement is to ensure that there are no values of z for which denominator is
0, such values are called poles of that transfer function. For the correct operation
of the filter, the region of convergence (ROC) should not include any poles. We
package these conditions in the following definitions:

Definition 12 (Causality Condition)
� ∀ x y. is causal iir x y ⇔

(∀ k. is causal x k) ∧ (∀ k. is causal y k)

Definition 13 (IIR FILTER ROC)
� ∀ x y α lst M.

IIR ROC x y α lst M =

z IN (ROC x ∩ ROC y) DIFF

{z | (Cx(&1) - vsum (1..M) (λ n.EL n α lst ∗ z−n) = Cx(&0)}
Here, the function is causal irr takes two parameters, i.e., input and output,
and ensures that both of them are causal. In Definition 13, IIR ROC specifies the
region of convergence of IIR, which is indeed the intersection of ROC x and ROC

y, excluding all poles of the transfer function. The function DIFF represents the
difference of two sets, i.e., A \ B = {z : z ∈ A ∧ x /∈ B}. Next, we present the
formal verification of the transfer function as given in Equation 13.

Theorem 12 (IIR Transfer Function Verification)
� ∀ x y α lst β lst M N.

z ∈ IIR ROC x y α lst M ∧
z �= Cx(&0) ∧ is causal iir x y ∧
(∀ n. IIR MODEL x y α lst β lst M N n) =⇒
z transform y z

z transform x z
=

vsum (0..N) (λn.EL n β lst ∗ z−n)

1 − (vsum (1..M) (λn.EL n α lst ∗ z−n)

The first and second assumptions describe the region of convergence for the IIR
filter. The second assumption ensures the causality of the filter’s input and out-
put, and the last assumption gives the time-domain model of the given IIR filter.
The proof of this theorem is mainly based on the properties of the Z-transform
such as linearity (Theorem 4), time-delay (Theorem 6) and summability of dif-
ference equation (Lemma 4). This is a very useful result as it greatly simplifies
the reasoning for any given design of IIR. Moreover, this theorem can be used
to reason about many important aspects such as stability and architectural op-
timization. For example, the stability of a given IIR design can be checked by
ensuring that all poles of the transfer function lies inside the unit circle (i.e.,
their magnitude is less than 1).

Next, we verify the frequency response of the filter given in Equation 14 as
follows:
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Theorem 13 (IIR Frequency Response)
� ∀ x y α lst β lst M N.

z ∈ IIR ROC x y α lst M ∧
z = cexp(ii*ω) ∧ is causal iir x y ∧
(∀ n. IIR MODEL x y α lst β lst M N n) =⇒
let H =

z transform y z

z transform x z
and

num real = vsum (0..N) (λn.EL n β lst ∗ ccos(n ∗ ω)) and

num imag = -vsum (0..N) (λn.EL n β lst ∗ csin(n ∗ ω)) and

den real = 1 − (vsum (1..M) (λn.EL n α lst ∗ ccos(n ∗ ω))) and

den imag = vsum (1..M) (λn.EL n α lst ∗ csin(n ∗ ω)) in

H = Cx(
sqrt[(num real)2 + (num imag)2]

sqrt[(den real)2 + (den imag)2]
) ∗ cexp(Arg(H))

Where sqrt, cexp and Arg represent the real square root (over reals), complex
exponential and argument of a complex number, respectively. The verification of
the above theorem is mainly based on Theorem 14 and tedious complex analysis
involving complex norms and transcendental functions.

Theorems 12 and 13 provide the generic results due to the universal quantifica-
tion over the system parameters such as input and output coefficients (αi and βk,
where i = 0, 1, 2, . . . ,M and k = 1, 2, . . . , N). Next, we utilise these results to for-
mally verify the transfer function and frequency response of a second order low-pass
IIR filter as shown in Figure 2. The input and output coefficients are [0.0605, 0.121,
0.0605] and [1.94,−0.436], respectively. We model this structure as follows:

0.0605 

x[n] y[n] 

x[n-1] 

x[n-2] 

y[n-1] 

y[n-2] 

Z -1 

Z -1 

Z -1 

Z -1 
0.121 

0.0605 

1.194 

- 0.436 

Fig. 2. Second Order Low-Pass IIR Filter

Definition 14 (Second Order IIR Model)
� α lst = [Cx(&0); Cx(&1194

&1000
);−Cx( &436

&1000
)]

� β lst = [Cx( &605
&10000

); Cx( &121
&1000

); Cx( &605
&10000

)]

� ∀ x y. SECOND ORDER IIR MODEL x y α lst β lst ⇔
∀ n. y n = differen eq α lst y 2 n + difference eq β lst x 2 n



On the Formalization of Z-Transform in HOL 497

Here, SECOND ORDER IIR MODEL accepts the input and output signals, a list of in-
put and output coefficients (defined by α lst, β lst), and returns the difference
equation describing the behaviour of the low-pass IIR filter.

Theorem 14 (Second Order Low-pass IIR Filter Transfer Function)
� ∀ x y z. z ∈ IIR ROC x y α lst 2 ∧

z �= Cx(&0) ∧ is causal iir x y ∧
(SECOND ORDER IIR MODEL x y α lst β lst) =⇒
z transform y z

z transform x z
=

Cx(&605
10000

) + Cx( &121
&1000

) ∗ z−1 + Cx( &605
&10000

) ∗ z−2

Cx(&1)− Cx(&1194
&1000

) ∗ z−1 + Cx( &436
&1000

) ∗ z−2

The verification of the above theorem is based on Theorem 12.
This completes our formal analysis of a generalized IIRfilterwhichdemonstrates

the effectiveness of the proposed theorem proving based approach to reason about
discrete-time linear systems. The availability of the Z-transformproperties greatly
simplified the verification of the transfer function and frequency response. The ver-
ification of the transfer function and frequency response task took around 150 lines
of the HOL Light code and a couple of man-hours each. We believe that reported
formalization demonstrates the maturity of interactive theorem provers.

6 Conclusion and Future Directions

In this paper, we reported the formalization of Z-transform which is one of
the most widely used transform methods in signal processing and communica-
tion theory. We presented the formal definitions of unilateral Z-transform and
its associated region of convergence along with the formal verification of some
important properties such as linearity, time shifting and difference equations.
Finally, in order to demonstrate the effectiveness of the developed formalization,
we presented the formal analysis of a generalized infinite impulse repones fil-
ter. Consequently, we verified the transfer function and frequency response of a
second order low-pass IIR filter.

The utilization of higher-order logic theorem proving in industrial settings
(particularly, physical systems) is always questionable due to the huge amount
of time required to formalize the underlying theories. Another, important factor
is the gap between the theorem proving and engineering communities which
limits its usage in industry. For example, it is hard to find engineers with theorem
proving background and vice-versa. Our reported work can be considered as a one
step towards an ultimate goal of using theorem provers in the design and analysis
of systems from different engineering and physical science disciplines (e.g., signal
processing, control systems, biology, optical and mechanical engineering).

Our immediate future work is the formalization of the uniqueness theorem of
Z-transform [12], which is required to reliably deduce some important properties
of difference equations and discrete-time linear systems. The proof of this the-
orem entails some additional properties of complex differentiation and infinite
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summations. Another future direction is the formalization of most commonly
used inverse transform techniques like power series method, partial fractions
and the Cauchy’s integral method.
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