
Implicational Rewriting Tactics in HOL

Vincent Aravantinos1 and Sofiène Tahar2

1 Software & Systems Engineering, Fortiss GmbH,
Guerickestraße 25, 80805, Munich, Germany
vincent.aravantinos@fortiss.org

http://www.fortiss.org/en
2 Electrical and Computer Engineering Dept., Concordia University,

1455 De Maisonneuve Blvd. W., Montreal, Canada
tahar@ece.concordia.ca

http://hvg.ece.concordia.ca

Abstract. Reducing the distance between informal and formal proofs in interac-
tive theorem proving is a long-standing matter. An approach to this general topic
is to increase automation in theorem provers: indeed, automation turns many
small formal steps into one big step. In spite of the usual automation methods,
there are still many situations where the user has to provide some information
manually, whereas this information could be derived from the context. In this pa-
per, we characterize some very common use cases where such situations happen,
and identify some general patterns behind them. We then provide solutions to
deal with these situations automatically, which we implemented as HOL Light
and HOL4 tactics. We find these tactics to be extremely useful in practice, both
for their automation and for the feedback they provide to the user.

1 Introduction

Interactive theorem proving has well-known benefits: it allows to build a formal proof with
the help of a computer ensuring the proof is correct. It does not have the restrictions of au-
tomated theorem proving since it can appeal to the user’s creativity through interaction. But
this interaction is also the shortcoming of interactive theorem proving: the user is forced
to make explicit some formal steps that are obvious to a human. Thus, automation of these
steps, when possible, relieves the user from many tedious manipulations. These complex
manipulations are one of the essential reasons why interactive theorem proving is not so
popular in practical applications. Thus automation is a key ingredient to bring formal rea-
soning to a wider audience by making it closer to intuitive reasoning.

In interactive theorem proving, the main tool for automation of reasoning is decision or
semi-decision procedures [18,25]: e.g., for propositional reasoning [10], linear arithmetic
reasoning [8], reasoning modulo various theories [5], or even first-order [12] or higher-
order reasoning [16]. These have been an independent subject of research for many years
with several of the corresponding progresses being transfered to interactive theorem proving,
either by direct implementation or by call to external tools [24]. But decision procedures are
useful only to conclude goals: the user must resort to interaction with the theorem prover
if the goal is too complex to be proven by a decision procedure (which is the case of most
goals). (S)he still has access however to another kind of automation: rewriting.
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Rewriting enables automation of equality reasoning: given a theorem stating an equality
t = u and a term v which contains a subterm matching t, rewriting replaces this subterm
by the corresponding instantiation of u (we refer to [3,21] for details). An extremely useful
generalization is conditional rewriting [9] (often called “simplification” in the HOL Light
[14] and HOL4 [29] communities): given a theorem whose statement has the form p ⇒
l = r, conditional rewriting replaces, in a term t, any subterm matching l, if the condition
p can be proven automatically for the corresponding instantiation. (Conditional) rewriting
may not prove goals as complex as the ones proven by some decision procedure, but it can
be used at any step of a proof, even if it does not terminate this proof: it simply allows to
make progress in the proof, which is an extremely useful feature in an interactive context.
However, (conditional) rewriting still requires regularly some user explicit input could be
automated as we show now.

Example 1. Consider the following goal (for clarity, we use mathematical notations instead
of HOL Light ASCII text to represent mathematical expressions): ∀x, y, z. prime y ∧ xy >

z ∧ x− y = 5 ∧ x2 − y2 = z2 ∧ 0 < z ∧ 0 < y ⇒ x
xy = y where prime y indicates that y is

a prime number.
Assume that the immediate objective of the user is to rewrite x

x into 1. To do so, (s)he
calls the rewriting tactic with the theorem � ∀x. x �= 0 ⇒ x

x = 1. This of course does not
work since this theorem is not purely equational: one must here use conditional rewriting in
order to get rid of the condition x �= 0. However which theorems should be provided here in
order to prove x �= 0 automatically? In this goal, this follows from the fact that x.y > z and
0 < z: therefore x.y > 0; thus x.y �= 0, and hence x �= 0. This proof is not mathematically
difficult, however it requires a lot of thought from the user before being able to come up
with the tactic call which will accomplish the intended action, since (s)he basically needs
to mentally build a formal proof. Once this is done, one can apply conditional rewriting
with the following theorems: � ∀x. x �= 0 ⇒ x

x = 1, � ∀x, y. x > y ⇔ y < x,
� ∀x, y. x < y ∧ y < z ⇒ x < z, � ∀x. 0 < x ⇒ 0 �= x, � ∀x, y. x.y < 0 ∧ 0 < y ⇒
0 < x.

The whole process is extremely tedious. Even more embarrassing: this process is about
building mentally a formal proof whereas helping such a task is precisely what an interac-
tive theorem prover is made for! Therefore, there can of course be mistakes in this proof,
or omission of some intermediate theorems when calling the tactic. In addition, this is a
situation where the user is forced to interrupt the flow of his/her proof in order to adapt this
proof to the tool at use: that is precisely the sort of situation leading a user to conclude that
interactive theorem proving is counter-intuitive, tedious to use, and therefore to maybe give
up on using it. Finally, notice that the simplifier might also simply not be able to deal with
the sort of reasoning involved in the proof. In all these cases, nothing happens: the tactic
does not apply any change to the goal and the user is left with no clue which of the above
flaws is the reason for the lack of progress.

To avoid this, a simpler and more frequently used approach is to simply assert x �= 0, and
prove it as an independent subgoal. This allows to get rid of all the above flaws: proving this
condition is done under the control of the theorem prover, which helps the user with the goal
and tactic mechanism, thus providing some useful feedback while avoiding any mistake in
the formal proof. In addition, one can use complex reasoning that is out of reach for the
conditional rewriter of HOL Light or HOL4. However, this approach forces the user to write
manually the subgoal x �= 0. Manually writing explicit information in a script is extremely
fragile with respect to proof change: if ever x is renamed in the original goal, then the proof
script has to be updated; similarly if an earlier modification changes the situation into the
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exact same one, but with a non-trivial expression instead of x; in other cases, some change
of prior definitions, or the removal of some assumptions might all as well lead to necessary
updates of the subgoal. Finally, all these updates are even more tedious when the subgoal
is big (also entailing more potential typing errors), which happens frequently in real-life
situations.1

In this paper we target precisely this sort of problem. We characterize frequent situa-
tions presenting similar problems and provide solutions to them. This includes the problem
mentioned in the above example and others, more or less frequent where the user also has
to explicitly write some information which could be derived automatically by the theorem
prover. Note that the forms of reasoning which we address in this paper are actually simple:
they are much simpler than any decision procedures. But it is precisely because they are
simple, that it is necessary and useful to automatize them.

The rest of the paper is organized as follows: Section 2 presents our solution to the prob-
lem of Example 1. Section 3 describes the underlying algorithm. Section 4 proposes several
refinements to our solution. Section 5 presents solutions to other situations presenting the
same sort of proof-engineering defects. Finally Section 6 discusses the related work and
Section 7 concludes the paper.

This work is entirely implemented in HOL Light and HOL4. The HOL Light version has
been integrated in the official distribution of HOL Light and the sources for HOL4 can be
publicly found at [1]. Both implementations come with a manual providing technical details
to use the tactics.

2 Implicational Rewriting

This section deals precisely with the situation presented in Example 1. Terms and substitu-
tions are defined as usual, with tσ denoting the application of the substitution σ to the term
t. For terms t, u, v, the notation t[u/v] denotes the term obtained from t by replacing all oc-
currences of v by u. A formula is any term of type boolean. For a formula of the form φ∧ψ

(resp. ¬φ, ∀x.φ) we say that φ and ψ (resp. φ, resp. φ) are direct subformulas of the formula,
and similarly for the other connectives and quantifier. The subformulas of a formula are de-
fined by transitive closure of the relation “is a direct subformula“. An atomic subformula is
a subformula whose head symbol is not a logical connective or quantifier. Given a formula
φ, a subformula ψ occurs positively (resp. negatively) in φ if it occurs in the scope of an even
(resp. odd) number of negations or implication premisses2. The fact of occurring positively
or negatively is called the polarity of the subformula.

Consider again the Example 1. In this example, implicational rewriting consists in replac-
ing in the conclusion the atom x �= 0 ∧ x

xy = y (and only this atom, not the top formula) by
1.y = y, i.e., x

x is replaced by 1, and the conjunction with x �= 0 is added to the atom. In case
this atom was occurring negatively in the goal (e.g., the same goal but with x

xy �= y) then
x
xy �= y would have been replaced by ¬(x �= 0 ⇒ x

xy = y). Formally, this is generalized as
follows:

1 We do not claim that every explicitly-written subgoal is a bad practice w.r.t. proof engineering:
many subgoals provide important high-level information which is out of reach for automation.
However, the problem here is that this subgoal could be automatically generated. So the user
should not be left with the burden of writing it.

2 For simplicity, we do not consider formulas with equivalences, even though it is easily handled
in practice, e.g., by rewriting φ ⇔ ψ into (φ ⇒ ψ) ∧ (ψ ⇒ φ).
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Definition 1 (Implicational Rewriting). Consider a goal with conclusion c. Then, we call
implicational rewriting by th any tactic replacing one or more atomic subformula A of c by:

pσ1 ∧ · · · ∧ pσk � A[rσ1/lσ1] . . . [rσk/lσk ] (1)

where σ1, . . . , σk are the matching substitutions of some subterms of A matching l and
where � = ∧ (resp. ⇒) if A occurs positively (resp. negatively) in c.

Note that the definition leaves a lot of freedom about the strategy to use for the rewrite: not
all subterms need to be rewritten, and we do not specify which subterms should be rewritten
in priority. In the following, IRth(c) denotes some function implementing the specification
of Definition 1.

The first property of IR is that it replaces indeed some term matching l by the corre-
sponding instantiation of r. But the tactic would be useless if it was not sound:

Theorem 1 (Soundness). For every goal of conclusion c and every theorem th, it holds that
IRth(c) ⇒ c.

Contrarily to (conditional) rewriting, the resulting goal only entails the initial goal, but is
not equivalent to it: this can be seen both as a weakness (one needs to backtrack if the
result becomes not provable anymore) or as a strength (many more possible inferences are
accessible for reasoning). Note that the case distinction about the polarity in Definition 1 is
capital for this theorem to hold.

An essential property of implicational rewriting, as opposed to conditional rewriting, is
that it provides feedback to the user about the condition that is required to be proven: where
the user is left with a simply unchanged goal when conditional rewriting cannot prove the
side condition, implicational rewriting provides instead the precise condition instantiation
which has to be proven. In addition, since this condition now appears in the goal, the the
theorem prover can be used to prove it, exactly as if the condition had been stated explicitly
as a subgoal by the user.

Note that there exists an easier solution to the problem presented in Example 1: given
a goal having a subterm matching l, replace lσ by rσ and introduce automatically a new
subgoal stating pσ. This is the approach of [30] in HOL Light, or of the force function of
ACL2. It is also very similar to [15] in HOL4: the only difference with the latter is that pσ
is added as a conjunction on top of the overall formula (and not at the level of the atom as
implicational rewriting does) instead of being stated as a separate subgoal. Similar tactics
are also available in Coq and Isabelle. This approach will be called dependent rewriting in
the following, according to [15]. Table 1 sums up the different approaches (with only one
rewriting for presentational reasons), where g � g′ denotes a tactic turning a goal g into g′,
an expression φ[t] in g means that t occurs in φ, then the expression φ[t′] in g′ denotes φ in
which this occurrence is replaced by t′.

So the major difference between implicational and dependent rewriting is the fact that
the latter applies deeply. We argue now that this is not a cosmetic feature but actually has a
high impact on the compositionality of the tactic.

Example 2. Consider a goal g : ∀x, y. P x y ⇒ x
x ∗ y = y, where P x y is a big expression

entailing in particular that x �= 0. With implicational rewriting, using the theorem � ∀x. x �=
0 ⇒ x

x = 1, we obtain immediately the goal: ∀x, y. P x y ⇒ x �= 0∧1∗y = y. Instead, with
dependent rewriting, the tactic will try to replace the goal by g′ : x �= 0 ∧ ∀x, y. P x y ⇒
1∗y = y. But this does not work since x �= 0 is not in the scope of ∀x. Therefore g′ �⇒ g and
the tactic application is not valid. Consequently, with dependent rewriting, one must first
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Table 1. Definitions of the different sorts of rewriting
Definition Condition

Rewriting c[lσ] � c[rσ] if � l = r

Conditional rewriting c[lσ] � c[rσ] if � p ⇒ l = r and � p

Dependent rewriting c[lσ] � pσ ∧ c[rσ] if � p ⇒ l = r

Implicational rewriting c[A[lσ]] � c[pσ ∧ / ⇒ A[rσ]] if A occurs pos./neg. in c

remove the quantifiers using the adequate tactics (GEN_TAC in HOL4 and HOL Light), and
then only can apply dependent rewriting. We then obtain the goal x �= 0∧ (P x y ⇒ 1 ∗ y =

y). However, this is still not satisfying because the new goal is not provable: indeed x �= 0

derives from P x y, but since x �= 0 is not “in the scope” of P x y, it cannot be proven.
Therefore, even though the tactic is valid, it is of no help for the proof. Consequently, one
must first discharge the hypothesis P x y in the assumptions before applying the dependent
rewrite, yielding finally the goal x �= 0 ∧ 1.y = y.

As the example demonstrates, a lot of book-keeping manipulations are necessary with
dependent rewriting but not with implicational rewriting. But it gets even worse when one
starts to try proving x �= 0: if P is complex, it will also itself probably require some rewrites,
however this is not possible in a simple way since P x y is now in the assumptions. So
a first option is to put the assumption back in the goal (tedious when goals have many
assumptions), which actually amounts to manually doing what implicational rewriting does
automatically.

A second option is to rethink the flow of the proof and give up on using dependent rewrit-
ing. This is what happens most commonly in practice: one will try, from the initial goal, to
find a proof of x �= 0 from P x y, apply the corresponding tactics, and finally use condi-
tional rewriting. Note in addition that the proof of x �= 0 must be done in forward reasoning
since x �= 0 does not appear in the goal: this makes the process even harder since interactive
provers do not emphasize this type of reasoning. This is unless the user decides to set man-
ually the subgoal x �= 0 with the flaws already mentioned in Example 1. As we can see, all
the intended benefits of using dependent rewriting are lost whatever is the chosen option and
we get back precisely to the situation that was described in Example 1: the user is forced to
rethink his/her proof against his/her original intuition; (s)he cannot use automation and has
to input data manually, with all the proof-engineering problems already mentioned.

Even though this is a toy example, it is representative of an extremely frequent situa-
tion when using dependent rewrite. Actually this tactic seems to be seldom used in HOL4,
maybe showing that these flaws prevent it from being useful in practice. Table 3 sums up the
advantages of the different approaches.

3 Implementation

Let th be a theorem of the form � ∀x1, . . . , xk. p ⇒ l = r. In this section, we provide an
implementation of implicational rewriting by th, called IR. This implementation requires
the following steps:

1. go through the atoms of the goal, keeping track of their polarity;
2. for each atom, go through its subterms;
3. for each subterm ti matching l with substitution σi, replace it by rσi while keeping

track of the matching substitution σi;
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Table 2. Pros & cons of the different sorts of rewriting

replaces lσ by rσ conditional
equations

no need to prove
the condition

compositionality

Rewriting �
Cond. rewr. � �
Dep. rewr. � � �
Imp. rewr. � � � �

4. reconstitute the atom with the replaced subterms;
5. add the conjunction pσ1 ∧ pσ2 ∧ . . . ;
6. reconstitute the complete goal.

In addition, to obtain a valid tactic, the process should not just generate a formula φ, but also
a proof that this formula entails the conclusion of the initial goal c. To do so, we actually
generate a theorem � φ ⇒ c (which holds if the implementation satisfies the specification
of Definition 1, by Theorem 1).

Steps 2, 3, and 4 are implemented by a function IRCth (for Implicational Rewriting
Conversion) which takes an atom A as input and returns a theorem pσ1, . . . , pσk � A =

A[rσ1/lσ1] . . . [rσk/lσk]
3: IRCth is a recursive function defined by case analysis on the

structure of A:

IRCth(t)
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� p ⇒ l = r

pσ � lσ = rσ

if t has the form lσ

for some substitution σ

� t = t
if t is a variable or a constant

Γ � u = v

Γ � t = λx.v

if t has the form λx.u

and IRCth(u) = Γ � u = v

Γ1 � t1 = u1 Γ2 � t2 = u2

Γ1 ∪ Γ2 � t1t2 = u1u2

if t has the form t1t2,

IRCth(t1) = Γ1 � t1 = u1

and IRCth(t2) = Γ2 � t2 = u2

We impose that when the first rule and another can be applied, the first rule always has prior-
ity, and, if necessary, that th is renamed in order to avoid captures (i.e., so as not to contain
any variable which is bound in the rewritten term). Since IRCth must return a theorem, we
present not only the resulting theorem but also the proof that allows to obtain it: for instance,
the third rule means that IRCth(λx.u) calls first IRCth(u); this recursive call must have the
form Γ � u = v, from which can thus be deduced Γ � λx.u = λx.v. Note that, in the
end, the function only returns this latter theorem, i.e., the result of the inference and not the
inference itself, contrarily to what the definition of IRCmight suggest: this is done only for
explanation purposes. The provided inferences are intended to give a clue to the reader about
the way to obtain the result, but do not correspond to some precise inference rule: however
all of them can be easily implemented using functions provided by both HOL Light and
HOL4.

IRCth can actually be seen as a usual rewriting by th. In practice, we therefore make use
of conversions [23] to implement these steps (i.e., functions which, given a term t returns a
theorem of the form � t = u).

3 Note that, in HOL, equality among booleans is just the same as equivalence.
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Step 5 is then easily obtained from this result by propositional reasoning. The corre-
sponding function is called AIR (for Atomic Implicational Rewriting) and exists both in a
positive form AIR+ and in a negative form AIR−: it is up to the function which calls AIR

to determine the adequate form according to the context (positive or negative atom). 4

AIR+
th(A)

def
=

Γ � A = A′

� (
∧

φ∈Γ

φ) ∧A′ ⇒ A
AIR−

th(A)
def
=

Γ � A = A′

� A ⇒ (
(
∧

φ∈Γ

φ) ⇒ A′)

where Γ � A = A′ be the result of IRCth(A).
Finally, steps 1 and 6 are achieved by IRπ

th(φ), where φ is the intended conclusion of the
goal to be implicationally rewritten and π ∈ {+,−} is a polarity:

IRπ
th(φ)

def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AIRπ(φ) if φ is atomic

� φ1 ⇒ ψ1

� ¬ψ1 ⇒ ¬φ1

if π = + (resp. −),

φ is a negation ¬φ1 (resp. ¬ψ1),

and IRπ
th(φ1)(resp. ψ1) = � φ1 ⇒ ψ1

� ψ1 ⇒ φ1 � ψ2 ⇒ φ2

� ψ1 ∧ ψ2 ⇒ φ1 ∧ φ2

if π = + (resp. −),

φ is a conjunction φ1 ∧ φ2 (resp. ψ1 ∧ ψ2),

IRπ
th(φ1)(resp. ψ1) = � ψ1 ⇒ φ1,

and IRπ
th(φ2)(resp. ψ2) = � ψ2 ⇒ φ2

� ψ1 ⇒ φ1

� ∀ψ1 ⇒ ∀φ1

if π = + (resp. −),

φ is a quantifed formula ∀φ1 (resp. ∀ψ1),

and IRπ
th(φ1)(resp. ψ1) = � ψ1 ⇒ φ1

� φ1 ⇒ ψ1 � ψ2 ⇒ φ2

� (ψ1 ⇒ ψ2) ⇒ (φ1 ⇒ φ2)

if π = + (resp. −),

φ is an implic. φ1 ⇒ φ2 (resp. ψ1 ⇒ ψ2),

IRπ
th(φ1)(resp. ψ1) = � φ1 ⇒ ψ1,

and IRπ
th(φ2)(resp. ψ2) = � ψ2 ⇒ φ2

Disjunction is handled like conjunction, simply replacing ∨ by ∧,

and exist. quantification like univ. quantification, replacing ∀ by ∃.

where π is defined as +
def
= − and − def

= +. As in the definition of IRC, not only we give the
conclusion of the resulting theorem but also the (big-step) inference rule used to derive this
theorem from the recursive calls. We call IRC “implicational conversions” because the rules
are very similar to conversions, except that implication is used instead of equality.

At the top-level, only the positive polarity is used: in the end, IR+
th returns a theorem of

the form � φ′ ⇒ φ where φ′ is the implicationally rewritten version of φ. So, given a goal
of conclusion c, one can call IR+

c and apply the Modus Ponens tactic – i.e., the tactic which,
given a goal of conclusion c and a theorem c′ ⇒ c, turns c into c′ – to the result. We can
prove that this tactic indeed implements implicational rewriting:

4 In practice, a distinction has to be made between the assumptions introduced by IRC and the
assumptions that come from the original goal. This is easy to achieve but not presented for
readability.
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Theorem 2. For every theorem th and every formula φ, the tactic consisting in applying
Modus Ponens to IR+

th(φ) implements implicational rewriting by th.

4 Refinements

In this section, we investigate a few refinements of implicational rewriting.

4.1 Theorems Introducing Variables

A usual problem with rewriting is how to handle theorems that introduce new variables
when applying the rewrite, i.e., theorems of the form � l = r, where r contains variables
not occurring in l. Consider for instance the rewriting of the term y + 0 by the theorem
� 0 = x−x: since x does not appear in y+0, what sense would it have to replace 0 by x−x?
And what if the original term indeed contains x, e.g., if we rewrite x + 0 instead of y + 0?
Shall the rewrite replace 0 by x−x or rename x to avoid a possibly unintended capture? This
problem is usually considered to be rare enough that it is not worth considering: since x does
not occur in the original term, the user simply should avoid rewriting with these theorems.
However, it can make sense to apply such a rewrite, e.g., it can be useful to replace 0 by
x− x if, in the context of the proof, one wants to apply a theorem about substractions.

With implicational rewriting, this situation is even more frequent since new variables can
also come from the condition of the theorem:

Example 3. Consider for example that one wants to prove ∀s, ·, x, y, z, t. P ⇒ ((x · y) ·
z) · t = x · (y · (z · t)), where P is an irrelevant premise. We assume that P entails in
particular the predicate group (s, ·), which states the usual group axioms for the operation
· over s. A first step is to (implicationally) rewrite the goal with the associativity theorem
� ∀g, op, x, y, z. group (g, op)∧x ∈ g∧y ∈ g∧z ∈ g ⇒ op (op x y) z = op (x(op y z)). This
yields: ∀s, ·, x, y, z, t. P ⇒ group (g, ·) ∧x ∈ g∧y ∈ g∧z ∈ g∧(x ·(y ·z))·t = x ·(y ·(z ·t)).
Here, the new variable g has been introduced in the goal whereas it does not have any
meaning there. As a consequence, the goal is not provable anymore.

What happens is that matching op (op x y) z (the l.h.s. of the associativiy theorem) indeed
provides instantiations for op, x, y and z, but it does not provide any instantiation for g. But in
practice, the user usually knows the instantiation of g, or will find it out later on in the course
of the proof. Therefore, a satisfying solution would apply the rewrite but would still leave to
the user the possibility to instantiate g manually. We achieve this by detecting automatically
variables that are introduced by the rewrite, then applying the rewrite, and finally quantifying
existentially over the introduced variables. In the above example, one would obtain the goal:
∀s, ·, x, y, z, t. P ⇒ ∃g. group (g, ·) ∧x ∈ g∧y ∈ g∧ z ∈ g∧ (x · (y ·z)) · t = x · (y · (z · t)).
In our first example, y + 0 would be replaced by ∃x. y + (x − x). This solution allows
to maintain the provability of the goal, while preserving the advantages of (implicational)
rewriting.

Formally, this consists simply in replacing the expression (1) of Definition 1 by ∃x1, . . . ,
xk. pτσ1∧· · ·∧pτσk�A[rτσ1/lσ1] . . . [rτσk/lσk], where x1, . . . , xk denote all the variables
introduced by the theorem � pτ ⇒ lτ = rτ (i.e., formally, variables occurring in rτ and
pτ but not in lτ ) and where τ is a renaming substitution used to avoid potential captures
between the variables of the goal and the variables that occur in r and p but not in l. The
proof of Theorem 1 still applies: only the base case of the induction slightly changes.
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This refinement is implemented by modifying IRC so that the introduced variables are
renamed to avoid possible captures; then by modifying AIR so that the function adds the re-
quired existential quantifications over these newly introduced variables. Note that the quan-
tification’s scope is only the premise (resp. conclusion) of the resulting theorem in the posi-
tive (resp. negative) case.

4.2 Preprocessing and Postprocessing

Preprocessing the input theorems to allow more theorems than just those of the form ∀x1, . . . ,
xk. p ⇒ l = r is a simple way to allow many improvements. For instance, purely equational
theorems ∀x1, . . . , xk. l = r can be turned into ∀x1, . . . , xk.  ⇒ l = r, which entails that
implicational rewrite can also be used as a substitute to standard rewriting.

In addition, some further preprocessing allows to accept theorems of the form p ⇒ c

(resp. p ⇒ ¬c) by turning them into p ⇒ c =  (resp. p ⇒ c = ⊥). Note that this is
commonly used in HOL4 and HOL Light for usual rewriting. For implicational rewriting, it
also means that it can be used as a substitute for the (matching) Modus Ponens tactic, i.e.,
the tactic which, given a theorem of the form ∀x1, . . . , xk. p ⇒ c and a goal of the form
cσ for some substitution σ, generates the goal pσ. Indeed, in such a situation, implicational
rewriting turns the goal cσ into  (thanks to the described preprocessing) and adds the
conjunct pσ. We thus obtain the goal pσ ∧  which is equivalent to what is obtained by the
matching Modus Ponens. However, implicational rewriting is then even more powerful than
this tactic since it is able to apply this sort of reasoning deeply (the lack of this feature is a
common criticism).

However, this latter solution is a little bit unsatisfying since it yields pσ ∧  instead of
the expected pσ. Of course it is trivial to get rid of  here, but it would obviously be better
to achieve this automatically. This is easily done by maintaining a set of basic rewriting
theorems containing commonly used propositional facts like ∀p. p∧ ⇔ p, or ∧ ⇔ .
Again, similar solutions are used for rewriting in HOL4 and HOL Light. In order to do
this rewriting on the fly, implicational rewriting must be adapted to be able to rewrite with
several theorems. Since the current definitions already handle multiple rewrites with the
same theorem, it is trivial to extend them to deal with several theorems simply by considering
a set of theorems instead of just one.

Finally, theorems of the form ∀x1, . . . , xk. p ⇒ ∀y1, . . . , yn. l = r (i.e., additional quan-
tifiers appear before the equation) can also be handled at no cost (all definitions adapt triv-
ially).

4.3 Taking the Context into Account

Example 4. Consider the goal ∀x, y. x �= 0 ⇒ x
x ∗ y = y. Applying implicational rewriting

with � ∀x. x �= 0 ⇒ x
x = 1 yields the goal ∀x, y. x �= 0 ⇒ x �= 0 ∧ 1 ∗ y = y. The context

obviously entails the inner x �= 0, but one still needs additional manual reasoning to obtain
∀x, y. x �= 0 ⇒ 1 ∗ y = y.

Therefore a further refinement is to modify implicational rewriting so that the context is
taken into account. This can be handled by adding the contextual hypotheses to the set of
usable theorems, while going down the theorem. This means that, e.g., in the positive case
of the implicational rule of IR’s definition (fourth case), the formula φ1 is added to the set of
theorems that can be used by the recursive call to compute ψ2 from φ2. Similar treatments
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can be applied in the negative case and for conjunction. This is overall similar to what is done
in usual rewriting to handle the context, see, e.g., [23] for a sketch of these ideas. However
these additions require a particular care in order, in particular, to avoid recomputing the
same contexts several times, see. Many solutions exist, see, e.g., the source codes of HOL4,
HOL Light or Isabelle. Note that this allows to get rid of many of the introduced conditions
automatically, exactly like conditional rewrite does. Therefore implicational rewriting can
also often be used as a replacement for conditional rewriting.

In the end, all these refinements (including efficient use of the context) are implemented
in one single tactic called IMP_REWRITE_TAC: this tactic takes a list of theorems and applies
implicational rewriting with all of them repeatedly until no more application is possible.
Note that all these refinements are not just small user-friendly improvements: they also im-
prove again the compositionality of the tactic by allowing to chain seamlessly implicational
rewrites of many theorems. Since, as shown in the above refinements, this tactic subsumes
rewriting, conditional rewriting, and Modus Ponens tactics, it integrates very well in the
usual tactic-style proving workflow: one can use just one tactic to cover all the other cases,
plus the ones that were not covered before. In practice, this combination happens to be
extremely powerful: many proof steps can be turned into only one call to this tactic with
several theorems. For instance, the tactic has been extensively used for months to develop in
particular the work presented in [19,20,27]. In particular, the library presented in [20] was
completely rewritten using implicational rewriting, which showed a dramatic reduction of
its code size. In addition the time taken to prove new theorems was also much reduced due
to the relevant feedback provided by the tactic.

The main improvements we foresee for the above refinement process are regarding per-
formance. This could probably benefit from all the optimizations that already exist for usual
rewriting, e.g., [22]. Another easy possible refinement would be to allow implicational
rewriting in the assumptions instead of the conclusion of the goal. This should be easily
achieved simply by considering the reverse implication.

5 Other Interaction-Intensive Situations

In this section, we tackle the automation of situations that present the same loopholes as the
ones that motivated our development of implicational rewriting, i.e., situations where the
user has to input manually some information that could be computed automatically by the
theorem prover, leading to fragility of proof scripts and tediousness of the interaction.

5.1 Contextual Existential Instantiation

Consider a slight variation of Example 3:

Example 5. Let be the goal ∀s, ·, x, y, z, t. group (s, ·) ⇒ ((x·y)·z)·t = x·(y·(z ·t)). Apply-
ing implicational rewriting now yields: ∀s, ·, x, y, z, t. group (s, ·) ⇒ ∃sg. group (sg, ·) ∧
(x · (y · z)) · t = x · (y · (z · t)). The usual solution is then to strip the quantifiers and
discharge group (s, ·) to obtain ∃sg. group (sg, ·) ∧ (x · (y · z)) · t = x · (y · (z · t))
as a conclusion. Then one can provide explicitly the witness s for sg in order to obtain:
group (s, ·) ∧ (x · (y · z)) · t = x · (y · (z · t)).
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Here, the user must provide explicitly a witness. In this example, the witness is just the
one character s, but in other situations it can be big complex terms. Therefore, the same
reproaches can be applied to this situation as those that gave raise to implicational rewriting
(fragility of the script, tediousness for the user, etc.). However, once again, it is a situation
where the context could be used by the theorem prover to find the witness by itself: it is easy
to go through all the assumptions and find an atom which matches an atom of the conclusion
(e.g., in the above example, group (s, ·) matches group (sg, ·)).

One can even instantiate existential quantifications that appear deep in the goal instead
of just as the top connective. Then, not only the assumptions, but also the context of the
formula can be used. This was implemented in a tactic called HINT_EXISTS_TAC, of which a
preliminary version has already been integrated into HOL4. As shown in the above example,
this sort of situation can also happen when using implicational rewriting, therefore this tactic
is also integrated transparently in IMP_REWRITE_TAC.

Note that the underlying algorithm shares some common structure with the one of impli-
cational rewriting. More precisely, IR can actually be reused only changing the base call to
AIR. For space reasons, we refer to the source code in [1] for the details of the implementa-
tion.

5.2 Cases Rewrite

Implicational rewriting can be seen as a situation where the user has a at his/her disposal
a theorem � ∀x1, . . . , xk. p ⇒ c and is ready to accept whatever it takes to make use of
the information provided by c. Since this cannot be done at no cost, implicational rewriting
accepts to do it, at the condition to add the necessary instantiation of p. When one uses
implicational rewriting, one makes the underlying assumption that (s)he will have the ability
to prove p later on.

But, sometimes, we do not want to make such a strong assumption; instead, we want to
split the proof by considering both what happens if p holds and what happens if p does not
hold. In such cases, the usual solution is to explictly use a case-split tactic to consider two
branches of the proof: one where p holds, and one where ¬p holds. But, once again, the user
has to explicitly state some information which is possibly verbose, fragile and tedious, when
the prover could do the same automatically by retrieving the relevant information from the
theorem � ∀x1, . . . , xk. p ⇒ c.

This yields cases rewriting which requires also a theorem of the form � ∀x1, . . . , xk. p ⇒
l = r (or � ∀x1, . . . , xk. p ⇒ c with preprocessing) and looks for an atom A with a subterm
matching l (say with substitution σ). However, unlike implicational rewriting, it does not
replace A by pσ∧A[rσ/lσ] or pσ ⇒ A[rσ/lσ], but rather by (pσ ⇒ A[rσ/lσ])∧(¬pσ ⇒ A).
This was implemented in the tactic CASES_REWRITE_TAC. We refer to the manual of [1] for
more details.

5.3 Target Rewrite

Example 6 ([2]). Consider the goal ∀n,m. SUC n ≤ SUC m ⇒ n ≤ m. Assume we
already proved that the predecessor function is monotonic: � ∀n,m. n ≤ m ⇒ PRE n ≤
PRE m and that the predecessor is the left inverse of the successor: � ∀n. PRE (SUC n) =

n. A natural proof would start by replacing n ≤ m byPRE (SUC n) ≤ PRE (SUC m). But
rewriting with � ∀n. n = PRE (SUC n) will obviously not terminate. So we should rewrite
the goal only once (as allowed by the HOL4 and HOL Light tactic ONCE_REWRITE_TAC). But
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this rewrites everywhere, yielding: ∀n,m.PRE (SUC (SUC n)) ≤ PRE (SUC (SUC m))

⇒ PRE (SUC n) ≤ PRE (SUC m). Instead, we have to use a special tactic allowing to
state precisely that we want to rewrite only in the conclusion of the implication, and only
once (e.g., GEN_REWRITE_TAC in HOL Light and HOL4), or more elaborate solutions like
[13] in Coq). This requires to provide explicitly to the prover which part of the goal has to
be rewritten: so, exactly as in the previous situations, the user has to provide explicitly some
information which is very unintuitive and very dependent on the current shape of the goal.
Thus, once again, this solution is both fragile and tedious to the user.

In this example, the important information is actually not the location of the rewrite, but the
objective that the user has in mind. And this objective is to rewrite the goal in order to use
the theorem � ∀n,m. n ≤ m ⇒ PRE n ≤ PRE m. Generally, when one wants to apply
a precisely located rewrite with a theorem, the underlying objective is to get a goal which
allows the use of another theorem. So we define target rewriting which takes two theorems
as input: the one used for the rewrite (called supporting theorem) and the one that we intend
to use after the rewrite (called target theorem). Very naively, the tactic simply explores all
the possible rewrites of the goal using the supporting theorem until one of these rewrites
yields a term which can be rewritten by the target theorem.

Example 7. In Example 6, the supporting theorem is � ∀n. n = PRE (SUC n) and the
target theorem is � ∀n,m. n ≤ m ⇒ PRE n ≤ PRE m. The list of all possible 1-step
rewrites explored by the tactic is the following:

1 ∀n,m. PRE (SUC (SUC n)) ≤ SUC m ⇒ n ≤ m

2 ∀n,m. SUC n ≤ PRE (SUC (SUC m)) ⇒ n ≤ m

3 ∀n,m. SUC n ≤ SUC m ⇒ PRE (SUC n) ≤ m

4 ∀n,m. SUC n ≤ SUC m ⇒ n ≤ PRE (SUC m)

Then the list of possible 2-step rewrites is enumerated as follows:

1 ∀n,m. PRE (SUC (SUC n)) ≤ PRE (SUC (SUC m)) ⇒ n ≤ m

2 ∀n,m. PRE (SUC (SUC n)) ≤ SUC m ⇒ PRE (SUC n) ≤ m

3 ∀n,m. PRE (SUC (SUC n)) ≤ SUC m ⇒ n ≤ PRE (SUC m)

4 ∀n,m. SUC n ≤ PRE (SUC (SUC m)) ⇒ PRE (SUC n) ≤ m

5 ∀n,m. SUC n ≤ PRE (SUC (SUC m)) ⇒ n ≤ PRE (SUC m)

6 ∀n,m. SUC n ≤ SUC m ⇒ PRE (SUC n) ≤ PRE (SUC m)

Here the tactic stops because the last rewrite allows to apply the target theorem.

Because of the exhaustive enumeration, this tactic can of course be extremely costly. Still,
in the numerous practical cases where its execution time is reasonable, it is tremendously
helpful since the user does not have to provide explicit information anymore: the only ad-
ditional effort is to step back and look a step ahead in the intended proof to know which
theorem shall be used afterwards. Many concrete situations happen to match this use case
pattern. For instance, associativity-commutativity (AC) rewriting [28] is a particular case of
it:

Example 8. Consider the goal a+(b ∗ c+−a)+ a = b ∗ c+ a [13]. A standard proof of this
goal is to first rearrange the innermost addition into a+(−a+b∗c)+a = b∗c+a by carefully
using the commutativity of addition and then using the theorem � ∀x y. x+(−x+y) = y to
conclude. Instead, one can just use target rewriting with the AC of addition as the supporting
theorem and � ∀x y. x+ (−x+ y) = y as the target theorem.
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We called this tactic TARGET_REWRITE_TAC. It is actually able to take several supporting
theorems as input (though, of course, more supporting theorems means more possibilities
to explore, and thus a bigger execution time). In addition, it actually does not work with
rewriting but with implicational rewriting, which allows to use implicational theorems as
supporting theorems.

6 Related Work

In proof theory, applying reasoning deep in a goal is the precise focus of deep inference [7].
At first sight, it can hardly be said that implicational rewriting shares more than a conceptual
relation to deep inference though, but some of the benefits can be seen as similar since in
both cases the fact of reasoning deep allows to get rid of some “bureaucratic” manipulations.
If considering sets of clauses instead of arbitrary formulas, implicational rewriting turns out
to be very close to superposition [4]. Since formulas are normalized, superposition does not
need to consider the polarity of the formula where it applies, therefore it actually corresponds
only to the negative case of implicational rewriting. Studying this connection in detail to
improve our implementation is part of future work.

As already mentioned, the implementation of IR can be seen as a particular form of
rewriting where implication is used instead of equality. This is very similar to the “conse-
quence conversions” in HOL4 [33], and more generally can be seen as a particular case of
rewriting with preorders [17,32], where the used preorders are both ⇒ and ⇐ used in an
interleaved way. Taking the context into account builds on top of several implementations
serving similar ideas. Conceptually, one can find many connections with “window infer-
ence” [26].

Target rewriting is very close to the “smart matching” tactic of Matita [2]: this tactic
uses as supporting theorems the whole database of already proven equational theorems and
the target theorem is provided explicitly like in our approach. It uses a sophisticated imple-
mentation of superposition instead of our naive approach which just enumerates all possible
rewrites, thus making it much more efficient. However it uses only equational theorems as
supporting theorems, whereas target rewriting also accepts implicational theorems: this was
particularly useful in, e.g., [20], where most theorems are prefixed by assumptions. In ad-
dition, smart matching only tries to match the top goal, whereas target rewriting also works
deeply, with the same advantages as for implicational rewriting: no need to use book-keeping
tactics, and therefore more compositionality. This is made possible precisely because we use
implicational rewriting instead of matching Modus Ponens as is done for smart matching.
However, this has of course a much bigger impact on the performance. The perfect solution
would probably lie in between: using superposition to make target rewriting more efficient,
or extending smart matching with ideas of target rewriting.

Conceptually, both smart matching and target rewriting are connected to deduction mod-
ulo [11] since they are essentially about making a distinction between the “important” steps
of a proof and the ones that are just “glue” between the important steps: in our context, this
glue is the use of supporting theorems; in the context of smart application, it is the use of the
available equational knowledge base; and in deduction modulo, it is “calculation” steps as
opposed to deduction steps. However, to the best of our knowledge, there is no tool similar
to target rewriting or smart matching making use of deduction modulo.

Finally, as explained earlier, AC-rewriting can be seen as a special case of target rewriting.
Many works have been devoted to this, e.g., in HOL90 [28], or more recently in Coq [6].
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The advantage of these works is that they are of course more efficient, since they deal with
a very special case. But they are much less general, and therefore not as useful as target
rewriting.

7 Conclusion

We presented in this paper some tactics to reduce human interaction in interactive theorem
provers. Their objective is not to provide the automation of intricate reasoning that the user
could not achieve by him/herself, but rather to assist him/her in some quite simple but fre-
quent reasoning tasks. The most important of our tactics is implicational rewriting, whose
core idea was presented in detail. We argued how a big advantage of it is that it allows for
a better composionality thus making it extremely useful in practice. We presented an im-
plementation of implicational rewriting as well as some refinements improving further its
usefulness. Finally we covered a few other tactics pursuing similar objectives of reducing
the tediousness of human interaction and the fragility of proof scripts. The objective of this
latter aspect is also to improve human interaction, but in a longer term perspective: when
proof scripts are robust to change, they make the development of theories easier, and thus
improve the user experience.

In practice, many proofs are surprisingly sequences of calls to IMP_REWRITE_ TAC inter-
leaved with a few calls to TARGET_REWRITE_TAC, and only rarely other tactics. Of course,
in cases where human creativity is really required, some subgoals or lemmas are set, but
this is to be expected when reasoning in higher-order logic. Apart from these cases, one can
observe that these tactics serve the purpose they were designed for: many reasoning tasks
which are simple for a human become simple with the theorem prover. In the end, the only
reproach which can be made to this approach is that removing most explicitly set subgoals
reduces the readability of the proof scripts. We argue instead that the purpose of a proof
script is not to mimic usual mathematical proofs: the information that can be found auto-
matically should be found out by the machine. Tools like Proviola [31] can still be used in
order to provide some valuable feedback to the user.
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