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Abstract. Lebesgue integration is a fundamental concept in many
mathematical theories, such as real analysis, probability and informa-
tion theory. Reported higher-order-logic formalizations of the Lebesgue
integral either do not include, or have a limited support for the Borel
algebra, which is the canonical sigma algebra used on any metric space
over which the Lebesgue integral is defined. In this paper, we overcome
this limitation by presenting a formalization of the Borel sigma algebra
that can be used on any metric space, such as the complex numbers or
the n-dimensional Euclidean space. Building on top of this framework,
we have been able to prove some key Lebesgue integral properties, like
its linearity and monotone convergence. Furthermore, we present the
formalization of the “almost everywhere” relation and prove that the
Lebesgue integral does not distinguish between functions which differ
on a null set as well as other important results based on this concept.
As applications, we present the verification of Markov and Chebyshev
inequalities and the Weak Law of Large Numbers theorem.

1 Introduction

Formal modeling of physical systems or devices is not a very straightforward
task due to the presence of many continuous and unpredictable components.
For example, embedded systems are operating in a concrete physical environ-
ment with continuous dynamics; cryptography heavily relies upon information
theoretic concepts; a broad area of chemistry and biology (and biophysics) wor-
ries about stochastic effects and phenomena, etc. Formal models of computation
have in the past mostly been considered independent of the continuous or unpre-
dictable world. In classical formal verification efforts, hardware and software are
viewed as discrete models of computation. But due to the dire need of accurate
analysis in safety-critical domains, there is a growing trend towards incorpo-
rating continuous and unpredictable physical realities in the formal models of
physical systems.

Lebesgue integration [1] is a fundamental concept in many mathematical the-
ories, such as real analysis [5], probability [6] and information theory, which are
widely used to model and reason about the continuous and unpredictable com-
ponents of physical systems. The reasons for its extensive usage, compared to
the commonly known Riemann integral, include the ability to handle a broader
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class of functions, which are defined over more general types than the real line,
and its better behavior when it comes to interchanging limits and integrals. In
order to facilitate the formal analysis of physical systems, two higher-order-logic
formalizations of the Lebesgue integral have been recently reported [3,15]. How-
ever, they either do not include, or have a very limited support for the Borel
algebra [2], which is a sigma algebra generated by the open sets. These defi-
ciencies restrict the formal reasoning about some very useful Lebesgue integral
properties, which in turn limits the scope of formally analyzing physical systems.

In this paper, we present a generalized formalization of the Lebesgue integral
in order to exploit its full potential for the formal analysis of other systems. We
first formalize the Borel algebra that provides a unified framework to prove the
Lebesgue integral properties and measurability theorems on any metric space,
such as the real numbers, the complex numbers or the n-dimensional Euclidean
space. Building on top of this formalization, we prove some of the key Lebesgue
integral properties as well as its convergence theorems. Similarly, we formalize
the notion of “almost everywhere” [1] and prove that the Lebesgue integral does
not distinguish between functions which differ on a null set along with some other
useful results based on the “almost everywhere” relation. In order to illustrate
the practical effectiveness of our work, we utilize it to verify the Chebyshev and
Markov inequalities and the Weak Law of Large Numbers (WLLN) [14], which
are widely used properties in probability and information theories.

We used the HOL theorem prover for the above mentioned formalization and
verification tasks. The main motivation behind this choice was to build upon
existing formalizations of measure [10] and Lebesgue integration [3] theories.

The rest of the paper is organized as follows: Section 2 provides a review of
related work. In Section 3, we give an overview of main definitions of the measure
theory [2]. Section 4 presents our formalization of the Borel theory, which is
used in Section 5 to prove the main properties of the Lebesgue integral and its
convergence theorems. In Section 6, we use our formalization for verifying some
important theorems from the theory of probability. Finally, Section 7 concludes
the paper and provides hints to future work.

2 Related Work

Coble [3] generalized the measure theory formalization by Hurd [10] and built
on it to formalize the Lebesgue integration theory. He proved some properties of
the Lebesgue integral but only for the class of positive simple functions. Besides,
multiple theorems in Coble’s work have the assumption that every set is mea-
surable which is not correct in most cases of interest. We propose to prove the
Lebesgue integral properties and convergence theorems for arbitrary functions
by providing a formalization of the Borel sigma algebra, which has also been
used to overcome the assumption of Cobles’s work.

Based on the work of Hurd [10], Richter [15] also formalized the measure
theory in Isabelle/HOL, where he restricts the measure spaces that can be con-
structed. In Richter’s formalization, a measure space is the pair (A, μ); A is a set
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of subsets of X , called the set of measurable sets and μ is a measure function.
The space is implicitly the universal set of the appropriate type. This approach
does not allow to construct a measure space where the space is not the universal
set. The only way to apply this approach for an arbitrary space X is to define
a new type for the elements of X , redefine operations on this set and prove
properties of these operations. This requires considerable effort that needs to
be done for every space of interest. The work we propose in this paper is based
on the formalization of Coble [3] where we define a measure space as a triplet
(X,A, μ); the set X being the space.

Richter [15] defined the Borel sets as being generated by the intervals. In the
formalization we propose in this paper, the Borel sigma algebra is generated by
the open sets and is more general as it can be applied not only to the real numbers
but to any metric space such as the complex numbers or R

n, the n-dimensional
Euclidean space. It provides a unified framework to prove the measurability
theorems in these spaces. Besides, our formalization allows us to prove that
any continuous function is measurable which is an important result to prove
the measurability of a large class of functions, in particular, trigonometric and
exponential functions. To prove this result we also formalize in this paper key
concepts of topology [13] in HOL.

In his work in topology in the PVS theorem prover, Lester [11] provided
formalizations for measure and integration theories but did not prove the prop-
erties of the Lebesgue integral nor its convergence theorems such as the Lebesgue
Monotone Convergence.

3 Measure Theory

The measure theory formalization in HOL was essentially done in [10] and [3]. We
make use of this formalization in our development and hence will only mention
the main definitions. A measure is a way to assign a number to a set, interpreted
as its size, a generalization of the concepts of length, area, volume, etc. A mea-
sure is defined on a class of subsets called the measurable sets. One important
condition for a measure function is countable additivity, meaning that the mea-
sure of a countable collection of disjoint sets is the sum of their measures. This
leads to the requirement that the measurable sets should form a sigma algebra.

Definition 1. Let A be a collection of subsets of a space X. A defines a sigma
algebra on X iff A contains the empty set ∅, and is closed under countable unions
and complementation within the space X.

Definition 1 is formalized in HOL as

� ∀X A. sigma_algebra (X,A) =
subset_class X A ∧ {} ∈ A ∧ (∀s. s ∈ A ⇒ X\s ∈ A) ∧
∀c. countable c ∧ c ⊆ A ⇒ ⋃

c ∈ A

where X\s denotes the complement of s within X ,
⋃

c the union of all elements
of c and subset_class is defined as
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� ∀X A. subset_class X A = ∀s. s ∈ A ⇒ s ⊆ X

A set S is countable if its elements can be counted one at a time, or in other
words, if every element of the set can be associated with a natural number, i.e.,
there exists a surjective function f : N → S.

� ∀s. countable s = ∃f. ∀x. x ∈ s ⇒ ∃n. f n = x

The smallest sigma algebra on a space X is A = {∅, X} and the largest is its
powerset, P(X), the set of all subsets of X . The pair (X,A) is called a σ-field
or a measurable space, A is the set of measurable sets.

For any collection G of subsets of X we can construct the smallest sigma algebra
on X containing G, we call it the sigma algebra on X generated by G, denoted
by σ(X, G). There is at least one sigma algebra on X containing G, namely the
power set of X . σ(X, G) is the intersection of all those sigma algebras.

� ∀X G. sigma X G = (X,
⋂{s | G ⊆ s ∧ sigma_algebra (X,s)})

Definition 2. A triplet (X,A, μ) is a measure space iff (X,A) is a measurable
space and μ : A → R is a non-negative and countably additive measure function.

� ∀X A mu. measure_space (X,A,mu) =
sigma_algebra (X,A) ∧ positive (X,A,mu) ∧
countably_additive (X,A,mu)

A probability space (Ω,A, p) is a measure space satisfying p(Ω) = 1.
There is a special class of functions, called measurable functions, that are struc-
ture preserving, in the sense that the inverse image of each measurable set is also
measurable. This is analogous to continuous functions in metric spaces where the
inverse image of an open set is open.

Definition 3. Let (X1,A1) and (X2,A2) be two measurable spaces. A function
f : X1 → X2 is called measurable with respect to (A1,A2) (or (A1,A2) measur-
able) iff f−1(A) ∈ A1 for all A ∈ A2.

f−1(A) denotes the inverse image of A. The HOL formalization is the following.

� ∀a b f.
f ∈ measurable a b =
sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a

In this definition, we did not specify any structure on the measurable spaces. If
we consider a function f that takes its values on a metric space, most commonly
the set of real numbers or complex numbers, then the Borel sigma algebra on
that space is used.
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4 Borel Theory

Working with the Borel sigma algebra makes the set of measurable functions
a vector space. It also allows us to prove various properties of the measurable
functions necessary for the development in HOL of the Lebesgue integral and its
properties.

Definition 4. The Borel sigma algebra on a space X is the smallest sigma al-
gebra generated by the open sets of X.

� borel X = sigma X (open_sets X)

An important example, especially in the theory of probability, is the Borel sigma
algebra on R, denoted by B(R).

� Borel = sigma UNIV (open_sets UNIV)

Clearly, to formalize as well as prove in HOL various properties of B(R), we need
to formalize some topology concepts of R and also provide a formalization of the
set of rational numbers Q. A theory for the rational numbers was developed in
HOL but does not include the theorems that we need and is in fact unusable for
our development because we need to work on rational numbers as a subset of
real numbers and not of a different HOL type. We will prove later that B(R) is
generated by the open intervals. This was actually used in many textbooks as
a starting definition for the Borel sigma algebra on R. While we will prove that
the two definitions are equivalent in the case of the real line, our formalization
is vastly more general and can be used for any metric space such as the complex
numbers or R

n, the n-dimensional Euclidian space.

4.1 Rational Numbers

A rational number is any number that can be expressed as the quotient of two
integers, the denominator of which is positive. We use natural numbers and
express Q, the set of rational numbers, as the union of non-negative (Q+) and
non-positive (Q−) rational numbers.

� Q = {r | ∃ n, m. r = n
m ∧ m > 0} ∪ {r | ∃ n, m. r = −n

m ∧ m > 0}
We prove in HOL an extensive number of reassuring properties on the set Q as
well as few other less straightforward ones, namely, Q is countable, infinite and
dense in R.

Theorem 1. N ⊂ Q and ∀x, y ∈ Q, −x, x + y, x − y, x ∗ y ∈ Q and ∀y �= 0,
1
y and x

y ∈ Q

A proof of this theorem in HOL is at the same time straightforward and tedious
but it is necessary to manipulate elements of the newly defined set of rational
numbers and prove their membership to Q in the following theorems.

Theorem 2. The set of rational numbers Q is countable.
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Proof. We prove that there exists a bijection f1 from the set of natural numbers
N to the cross product of N and N

∗ (f1 : N → N × N
∗). Let f2 : N × N

∗ → Q
+

such that f2(a, b) = a
b . and f = f2 ◦ f1. Then ∀x ∈ Q

+, there exists n ∈ N such
that f(n) = x. This proves that Q

+ is countable. Similarly, we prove that Q
− is

countable and that the union of two countable sets is countable. ��
Theorem 3. (Q dense in R)
∀x, y ∈ R and x < y, there exists r ∈ Q such that x < r < y.

Proof. We start by defining the ceiling of x as the smallest natural number larger
than x, denoted by �x� and prove that ∀x, x ≤ �x� and ∀x ≥ 0, �x� < x + 1.
Let x, y ∈ R such that x < y. We use the ceiling function and the Archimedean
property to construct r such that x < r < y. ��
Another definition that will be useful in our development is the set of open
intervals with rational end-points Ir = {]r1, r2[: r1, r2 ∈ Q}.
� open_intervals_set = {{x | a<x ∧ x<b} | a ∈ UNIV ∧ b ∈ UNIV}

We prove that Ir is countable by showing that the mapping Ir → Q×Q that sends
an open interval ]r1, r2[∈ Ir to the ordered pair of rational numbers (r1, r2) ∈
Q × Q is injective, and that the cross product of two countable sets, Q in this
case, is countable.

4.2 Topology

To define the Borel sigma algebra on R, we need some concepts of the topology
of R formalized in HOL. Some of this was already developed by Harrison [7] but
his formalization in HOL does not use the set theory and also lacks some of the
important theorems that we need in our development. Harrison, later, developed
an extensive topology theory [8] in HOL-Light. In the following, we define the
concepts of neighborhood and open set in R and prove the required theorems.

Definition 5. Let a ∈ A ⊂ R. A is a neighborhood of a iff there exists a real
number d > 0 such that ∀x. |x − a| < d ⇒ x ∈ A. In other words, a is an
interior point of A.

� ∀A a.
neighborhood_R A a = ∃d. 0<d ∧ ∀y. a - d<y ∧ y<a + d ⇒ y ∈ A

Definition 6. A set that is a neighborhood to all of its points in an open set.
Equivalently, if every point of a set is an interior point then the set is open.

� ∀A. open_set_R A = ∀x. x ∈ A ⇒ neighborhood_R A x

Theorem 4. The empty set and the universal set are open.

Theorem 5. Every open interval is an open set.
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Theorem 6. The union of any family of open sets is open. The intersection of
a finite number of open sets is open.

Theorem 7. Every open set in R is the union of a countable family of open
intervals.

Proof. We only show the proof for Theorem 7. Let A be an open set in R,
then by the definition of open set, for all x in A there exists an open interval
containing x such that ]a, b[⊂ A. Using the property of density of Q in R, there
exists ]ar, br[⊂ A containing x, ar and br being rational numbers. A is the union
of family of elements of Ir which is then countable because Ir is countable. ��
Theorem 8. The inverse image of an open set by a continuous function is open.

Proof. Let A be an open set in R. From the previous theorem, A is a countable
union of open intervals (Ai). f−1(A) = f−1(

⋃
Ai) =

⋃
f−1(Ai). Using Theo-

rem 6, it suffices to prove that the inverse image of an open interval is open. For
this we use the definition of a continuous function and the limit of a function to
prove that any point of f−1(Ai) is an interior point. ��

4.3 Borel Measurable Sets

In this section, we prove in HOL that the Borel algebra on the real line B(R)
is generated by the open intervals (]c, d[ for c, d ∈ R). We show that it is also
generated by any of the following classes of intervals: ]−∞, c[, [c, +∞[, ]c, +∞[,
] −∞, c], [c, d[, ]c, d], [c, d], where c, d ∈ R.

Theorem 9. B(R) is generated by the open intervals ]c, d[ where c, d ∈ R

Proof. The sigma algebra generated by the open intervals, σI , is by definition
the intersection of all sigma algebras containing the open intervals. B(R) is one of
them because the open intervals are open sets (Theorem 5). Hence, σI ⊆ B(R).
Conversely, B(R) is the intersection of all the sigma algebras containing the open
sets. σI is one of them because every open set on the real line is the union of
a countable collection of open intervals (Theorem 7). Consequently B(R) ⊆ σI

and finally B(R) = σI .
To prove that B(R) is also generated by the other classes of intervals, it suffices

to prove that any interval ]a,b[ is contained in the sigma algebra corresponding
to each class. For the case of the intervals of type [c, d[, this follows from the
equation ]a, b[ =

⋃
n [a + 1

2n , b[.
For the open rays ]−∞, c [, the result follows from the fact that [a, b[ can be

written as the difference of two rays, [a, b[ = ] −∞, b [ \ ] −∞, a [.
In a similar manner, we prove in HOL that all mentioned classes of intervals
generate the Borel sigma algebra on R. ��
Another useful result, asserts that the singleton sets are measurable sets of B(R).

Theorem 10. ∀c ∈ R, {c} ∈ B(R)
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The proof of this theorem follows from the fact that a sigma algebra is closed
under countable intersection and the equation

∀c ∈ R {c} =
⋂

n

[c − 1
2n

, c +
1
2n

[

4.4 Real Valued Measurable Functions

Recall that in order to check if a function f is measurable with respect to
(A1,A2), it is necessary to check that for any A ∈ A2, its inverse image f−1(A) ∈
A1. The following theorem states that, for real-valued functions, it suffices to
perform the check on the open rays (] −∞, c[, c ∈ R).

Theorem 11. Let (X,A) be a measurable space. A function f : X → R is
measurable with respect to (A,B(R)) iff ∀c ∈ R, f−1(] −∞, c[) ∈ A
Proof. Suppose that f is measurable with respect to (A,B(R)), we showed in
the previous section that ∀c ∈ R, ] −∞, c[∈ B(R). Since f is measurable then
f−1(] − ∞, c[) ∈ A. Now suppose that ∀c ∈ R, f−1(] − ∞, c[) ∈ A, we need
to prove ∀A ∈ B(R), f−1(A) ∈ A. This follows from Theorem 7 stating that
A is a countable union of open intervals and the equalities f−1(

⋃
n∈N

An) =⋃
n∈N

f−1(An) and f−1(] −∞, c[) =
⋃

n∈N
f−1(] − n, c[) ��

In a similar manner, we prove in HOL that f is measurable with respect
to (A,B(R)) iff ∀ c, d ∈ R the inverse image of any of the following classes of
intervals is an element of A: ] − ∞, c[, [c, +∞[, ]c, +∞[, ] − ∞, c], [c, d[, ]c, d],
[c, d].

Every constant real function on a space X is measurable. In fact, if ∀x ∈
X, f(x) = k, then if c ≤ k, f−1(] −∞, c[) = ∅ ∈ A. Otherwise f−1(] −∞, c[) =
X ∈ A. The indicator function on a set A is measurable iff A is measurable. In
fact, I−1

A (] −∞, c[) = ∅, X or X\A when c ≤ 0, c > 1 or 0 < c ≤ 1 respectively.
We prove in HOL various properties of the real-valued measurable functions.

Theorem 12. Let f and g be measurable functions and c ∈ R then the following
functions are also measurable: cf, |f |, fn, f + g, fg and max(f, g).

Theorem 13. If (fn) is a sequence of real-valued measurable functions such
that ∀n, x, fn(x) → f(x) then f is a measurable function.

Theorem 14. Every continuous function g : R → R is measurable with respect
to (B(R),B(R)).

Theorem 15. If g : R → R is continuous and f is measurable then g ◦ f is also
measurable.

Theorem 14 is a direct result of Theorem 8 stating that the inverse image of an
open set by a continuous function is open. Theorem 15 guarantees, for instance,
that if f is measurable then exp(f), Log(f), cos(f) are measurable. This is
derived using Theorem 14 and the equality (g ◦ f)−1(A) = f−1(g−1(A)). We
now show how to prove that the sum of two measurable functions is measurable.
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Proof. We need to prove that for any c ∈ R, (f + g)−1(]−∞, c[) is a measurable
set. One way to solve this is to write it as a countable union of measurable sets.
By definition of the inverse image, (f + g)−1(] − ∞, c[) = {x : f(x) + g(x) <
c} = {x : f(x) < c − g(x)}. Using Theorem 3 we prove that it is equal to⋃

r∈Q
{x : f(x) < r and r < c − g(x)}. We deduce that (f + g)−1(] −∞, c[) =

⋃
r∈Q

f−1(] − ∞, r[) ∩ g−1(] − ∞, c − r[). The right hand side is a countable
union of measurable sets because Q is countable and f and g are measurable
functions. ��

5 Lebesgue Integral

Similar to the way in which step functions are used in the development of the
Riemann integral, the Lebesgue integral makes use of a special class of functions
called positive simple functions. They are measurable functions taking finitely
many values. In other words, a positive simple function g can be written as a
finite linear combination of indicator functions of measurable sets (ai).

∀x ∈ X, g(x) =
∑

i∈s

αiIai(x) ci ≥ 0 (1)

Let (X,A, μ) be a measure space. The integral of the positive simple function g
with respect to the measure μ is given by

∫

X

g dμ =
∑

i∈s

αiμ(ai) (2)

Various properties of the Lebesgue integral for positive simple functions have
been proven in HOL [3]. We mention in particular that the integral above is
well-defined and is independent of the choice of (αi), (ai), s. Other properties in-
clude the linearity and monotonicity of the integral for positive simple functions.
Another theorem that was widely used in [3] has however a serious constraint,
as was discussed in the related work, where the author had to assume that every
subset of the space X is measurable. Utilizing our formalization of the Borel
algebra, we have been able to overcome this problem. The new theorem can be
stated as

Theorem 16. Let (X,A, μ) be a measure space, f a non-negative function mea-
surable with respect to (A,B(R)) and (fn) a monotonically increasing sequence
of positive simple functions, pointwise convergent to f such that ∀n, x, fn(x) ≤
f(x) then

∫
X

f dμ = limn→∞
∫

X
fn dμ.

The next step towards the Lebesgue integration for arbitrary measurable func-
tions is the definition of the Lebesgue integral of positive measurable functions
which is given by

∫

X

f dμ = sup{
∫

X

g dμ | g ≤ f and g positive simple function} (3)



396 T. Mhamdi, O. Hasan, and S. Tahar

Finally, the integral for arbitrary measurable functions is given by
∫

X

f dμ =
∫

X

f+ dμ −
∫

X

f− dμ (4)

Where f+ and f− are the positive functions defined by f+(x) = max(f(x), 0)
and f−(x) = max(−f(x), 0).

5.1 Integrability

In this section, we provide the criteria of integrability of a measurable function
and prove the integrability theorem which will play an important role in proving
the properties of the Lebesgue integral.

Definition 7. Let (X,A, μ) be a measure space, a measurable function f is
integrable iff

∫
X |f | dμ < ∞ or equivalently iff

∫
Xf+ dμ < ∞ and

∫
Xf− dμ < ∞

Theorem 17. For any non-negative integrable function f there exists a se-
quence of positive simple functions (fn) such that ∀n, x, fn(x) ≤ fn+1(x) ≤
f(x) and ∀x, fn(x) → f(x). Besides

∫

X

f dμ = lim
n

∫

X

fn dμ

For arbitrary integrable functions, the theorem is applied to f+ and f− and
results in a well-defined integral, given by

∫

X

f dμ = lim
n

∫

X

f+
n dμ − lim

n

∫

X

f−
n dμ

Proof. Let the sequence (fn) be defined as

fn(x) =
4n−1∑

k=0

k

2n
I{x: k

2n ≤f(x)< k+1
2n } + 2nI{x:2n≤f(x)} (5)

We show that the sequence (fn) satisfies the conditions of the theorem and use
Theorem 16 to conclude that

∫
X

f dμ = limn

∫
X

fn dμ. First, we use the definition
of (fn) to prove in HOL the following lemmas

Lemma 1. ∀n, x, f(x) ≥ 2n ⇒ fn(x) = 2n

Lemma 2. ∀n, x, and k < 4n, k
2n ≤ f(x) < k+1

2n ⇒ fn(x) = k
2n

Lemma 3. ∀x, (f(x) ≥ 2n) ∨ (∃k, k < 4n and k
2n ≤ f(x) < k+1

2n )

Using these lemmas we prove that the sequence (fn) is pointwise convergent
to f (∀x, fn(x) → f(x)), upper bounded by f (∀n, x, fn(x) ≤ f(x)) and
monotonically increasing (∀n, x, fn(x) ≤ fn+1(x)). ��
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5.2 Lebesgue Integral Properties

We prove in HOL key properties of the Lebesgue integral, in particular the
monotonicity and linearity. Let f and g be integrable functions and c ∈ R then

Theorem 18. ∀x, 0 ≤ f(x) ⇒ 0 ≤ ∫
X

f dμ

Theorem 19. ∀x, f(x) ≤ g(x) ⇒ ∫
Xf dμ ≤ ∫

Xg dμ

Theorem 20.
∫

X
cf dμ = c

∫
X

f dμ

Theorem 21.
∫

Xf + g dμ =
∫

Xf dμ +
∫

Xg dμ

Theorem 22. A and B disjoint sets ⇒ ∫
A∪B

f dμ =
∫

A
f dμ +

∫
B

f dμ

Proof. We only show the proof for Theorem 21. We start by proving the property
for non-negative functions. Using the integrability property, given in Theorem 17,
there exists two sequences (fn) and (gn) that are pointwise convergent to f and
g, respectively, such that

∫
X

f dμ = limn

∫
X

fn dμ and
∫

X
g dμ = limn

∫
X

gn dμ.
Let hn = fn + gn then the sequence hn is monotonically increasing, pointwise
convergent to f + g and ∀x hn(x) ≤ (f + g)(x) and using Theorem 16,

∫
Xf +

g dμ = limn

∫
X

hn dμ. Finally, using the linearity of the integral for positive
simple functions and the linearity of the limit,

∫
Xf + g dμ = limn

∫
Xfn dμ +

limn

∫
Xgn dμ =

∫
Xf dμ+

∫
Xg dμ. Now we consider arbitrary integrable functions.

We first prove in HOL the following lemma.

Lemma 4. If f1 and f2 are positive integrable functions such that f = f1 − f2

then
∫

X
f dμ =

∫
X

f1 dμ − ∫
X

f2 dμ

The definition of the integral is a special case of this lemma where f1 = f+ and
f2 = f−. Going back to our proof, let f1 = f+ + g+ and f2 = f− + g− then f1

and f2 are non-negative integrable functions satisfying f + g = f1 − f2. Using
the lemma we conclude that∫

Xf+g dμ =
∫

Xf1 dμ−∫
Xf2 dμ = (

∫
Xf+ dμ+

∫
Xg+ dμ)−(

∫
Xf+ dμ+

∫
Xg+ dμ) =

(
∫

X
f+ dμ − ∫

X
f− dμ) + (

∫
X

g+ dμ − ∫
X

g− dμ) =
∫

X
f dμ +

∫
X

g dμ. ��

5.3 Lebesgue Monotone Convergence

The monotone convergence is arguably the most important theorem of the
Lebesgue integration theory and it plays a major role in the proof of the Radon
Nikodym theorem [2]. In this section, we present a proof of the theorem in HOL.

Theorem 23. Let f be an integrable function and (fn) be a sequence of func-
tions such that ∀n, x, 0 ≤ fn(x) ≤ fn+1(x) ≤ f(x) and ∀x, fn(x) → f(x).
Then ∫

X

f dμ = lim
n→∞

∫

X

fn dμ
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Proof. By the monotonicity of the integral, we deduce that ∀n,
∫

X
fn dμ ≤∫

X
f dμ. Hence limn→∞

∫
X

fn dμ ≤ ∫
X

f dμ. It remains to prove that
∫

X
f dμ ≤

limn→∞
∫

Xfn dμ. From Theorem 17, there exists a sequence of positive simple
functions (gn) such that ∀n, x, gn(x) ≤ gn+1(x) ≤ f(x) and ∀x, gn(x) → f(x)
satisfying

∫
X

f dμ = limn→∞
∫

X
gn dμ. It is sufficient to prove that ∀k ∈ N,∫

Xgk dμ ≤ limn→∞
∫

Xfn dμ. For a fixed k, since gk is a positive simple function
then there exists (αi), (ai) and a finite set s such that

∫
X

gk dμ =
∑

i∈s αiμ(ai).
On the other hand, splitting the integral of fn and using the properties of
the integral and limit, we have limn→∞

∫
X

fn dμ = limn→∞
∑

i∈s

∫
X

fnIai dμ =∑
i∈s limn→∞

∫
X

fnIai dμ. Consequently, it suffices to prove that ∀ i ∈ s, αiμ(ai)
≤ limn→∞

∫
XfnIai dμ Or, equivalently, that ∀ i ∈ s and z such that 0 < z <

1, zαiμ(ai) ≤ limn→∞
∫

X
fnIai dμ. Let bn = {t ∈ ai : zαi ≤ fn(t)} then⋃

n bn = ai and zαiμ(ai) = zαiμ(
⋃

n bn) = zαi limn μ(bn) = limn zαiμ(bn) =
limn

∫
XzαiIbn dμ. Furthermore, from the definition of bn and the monotonic-

ity of the integral,
∫

X
zαiIbn dμ ≤ ∫

X
fnIbn dμ ≤ ∫

X
fnIai dμ. We conclude that

zαiμ(ai) ≤ limn→∞
∫

XfnIai dμ. ��

5.4 Almost Everywhere

In this section we will define the “almost everywhere” relation [1] and prove in
HOL some properties of the Lebesgue integral based on this relation. Consider
a measure space (X,A, μ). A null set E is a measurable set of measure zero.

Definition 8. Almost Everywhere
Let A be a subset of X and P be a property about elements of A. We say that
P is true almost everywhere in A, abbreviated as “P a.e. in A”, relative to the
measure μ, if the subset of A where the property does not hold is a null set.

� ∀m P. ae m P =
{x | x ∈ m_space m ∧ ~P x} ∈ measurable_sets m ∧
(measure m {x | x ∈ m_space m ∧ ~P x} = 0)

When A = X , we simply say “P a.e.”. For example, f = g a.e. means that the
set {x | f(x) �= g(x)} is a null set.
Similarly, fn → f a.e. means that there exists a null set E such that ∀x ∈
X\E fn(x) → f(x).

Theorem 24. If A is a null set then for any measurable function f ,
∫

A
f dμ = 0

Theorem 25. If f and g are two integrable functions such that f = g almost
everywhere, then

∫
X

f dμ =
∫

X
g dμ

Theorem 26. If f and g are two integrable functions such that f ≤ g almost
everywhere, then

∫
Xf dμ ≤ ∫

Xg dμ

We provide the proof of the first theorem as it is used to prove the last two.
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Proof. It suffices to prove the theorem for positive measurable functions as the
integral of an arbitrary function g is the difference of the integrals of g+ and g−.
By definition,

∫
Af dμ =

∫
XfIA dμ = sup{∫Xg dμ | g ≤ fIA} where the functions

g are positive simple functions.
We will show that the set over which the supremum is taken is equal to {0}. For
a positive simple function g such that g ≤ fIA we show that g(x) = 0 outside
of A. Hence

∫
X

g dμ =
∫

A
g dμ =

∫
X

gIA dμ. Furthermore, there exists (αi), (ai)
and a finite set s such that ∀x ∈ X, g(x) =

∑
i∈s αiIai(x). The indicator

function of A can be split as IA =
∑

i∈s IA∩ai . Hence gIA can be written as
gIA =

∑
i∈s αiIA∩ai . This implies that

∫
X

gIA dμ =
∑

i∈s αiμ(A ∩ ai). Since
0 ≤ μ(A ∩ ai) ≤ μ(A) = 0 and s is finite, then

∫
Xg dμ = 0 ��

6 Applications

In this section, we use our formalized Lebesgue integration theory to prove in
HOL some important properties from the theory of probability, namely, the
Chebyshev and Markov inequalities and the Weak Law of Large Numbers [14].

6.1 Chebyshev and Markov Inequalities

In probability theory, both the Chebyshev and Markov inequalities provide esti-
mates of tail probabilities. The Chebyshev inequality guarantees, for any prob-
ability distribution, that nearly all the values are close to the mean and it plays
a major role in the derivation of the laws of large numbers [14]. The Markov in-
equality provides loose yet useful bounds for the cumulative distribution function
of a random variable.

Let X be a random variable with expected value m and finite variance σ2.
The Chebyshev inequality states that for any real number k > 0,

P (|X − m| ≥ kσ) ≤ 1
k2

(6)

The Markov inequality states that for any real number k > 0,

P (|X | ≥ k) ≤ m

k
(7)

Instead of proving directly these inequalities, we provide a more general proof
using measure theory and Lebesgue integrals in HOL that can be used for both
and a number of similar inequalities. The probabilistic statement follows by
considering a space of measure 1.

Theorem 27. Let (S,S, μ) be a measure space, and let f be a measurable func-
tion defined on S. Then for any nonnegative function g, nondecreasing on the
range of f,

μ({x ∈ S : f(x) ≥ t}) ≤ 1
g(t)

∫

S

g ◦ f dμ .
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� ∀m f g t.
(let A = {x | x ∈ m_space m ∧ t ≤ f x} in

measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ g x) ∧ (∀x y. x ≤ y ⇒ g x ≤ g y) ∧
integrable m (\x. g (f x)) ⇒
measure m A ≤ (1 / (g t)) * fn_integral m (\x. g (f x)))

The Chebyshev inequality is derived by letting t = kσ, f = |X − m| and g
defined as g(t) = t2 if t ≥ 0 and 0 otherwise. The Markov inequality is derived
by letting t = k, f = |X | and and g defined as g(t) = t2 if t ≥ 0 and 0 otherwise.

Proof. Let A = {x ∈ S : t ≤ f(x)} and IA be the indicator function of A.
From the definition of A, ∀x 0 ≤ g(t)IA(x) and ∀x ∈ A t ≤ f(x). Since
g is non-decreasing, ∀x, g(t)IA(x) ≤ g(f(x))IA(x) ≤ g(f(x)). As a result,
∀x g(t)IA(x) ≤ g(f(x)). A is measurable because f is (S,B(R)) measurable.
Using the monotonicity of the integral,

∫
S

g(t)IA(x)dμ ≤ ∫
S

g(f(x))dμ. Finally
from the linearity of the integral g(t)μ(A) ≤ ∫

S
g ◦ fdμ. ��

6.2 Weak Law of Large Numbers (WLLN)

The WLLN states that the average of a large number of independent measure-
ments of a random quantity converges in probability towards the theoretical
average of that quantity. Interpreting this result, the WLLN states that for a
sufficiently large sample, there will be a very high probability that the average
will be close to the expected value. This law is used in a multitude of fields.
It is used, for instance, to prove the asymptotic equipartition property [4], a
fundamental concept in the field of information theory.

Theorem 28. Let X1, X2, ... be an infinite sequence of independent, identically
distributed random variables with finite expected value E[X1] = E[X2] = ... = m

and let X = 1
N

∑N
i=1 Xi then for any ε > 0,

lim
n→∞P (|X − m| < ε) = 1 (8)

� ∀p X m v e.
prob_space p ∧ 0 < e ∧
(∀i j. i �= j ⇒ uncorrelated p (X i) (X j)) ∧
(∀i. expectation p (X i) = m) ∧ (∀i. variance p (X i) = v) ⇒
lim (\n. prob p {x | x ∈ p_space p ∧

abs ((\x. 1/n * SIGMA (\i. X i x) (count n))x-m) < e}) = 1

Besides the Chebyshev inequality, to prove this theorem in HOL, we need to
formalize and prove some key properties of the variance of a random variable.
The main property being that the variance of a sum of uncorrelated random
variables is the sum of their variances. Notice that the requirement of the random
variables being independent in the WLLN can be relaxed to simply requiring
them to be uncorrelated.
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Let X and Y be random variables with expected values μX and μY , respec-
tively. The variance of X is given by V ar(X) = E[|X−μX |2] and the covariance
between X and Y is given by Cov(X, Y ) = E[(X −μX)(Y −μY )]. X and Y are
uncorrelated iff Cov(X, Y ) = 0.

We prove the following properties in HOL: V ar(X) = E[X2]−μ2
X ; Cov(X, Y )

= E[XY ] − μXμY ; V ar(X) ≥ 0 and V ar(aX) = a2V ar(X). V ar(X + Y ) =
V ar(X) + V ar(Y ) + 2Cov(X, Y ) and V ar(X + Y ) = V ar(X) + V ar(Y ) if
X and Y are uncorrelated. Finally if ∀i �= j, Xi, Xj are uncorrelated, then
V ar(

∑N
i=1 Xi) =

∑N
i=1 V ar(Xi).

Proof. Using the linearity property of the Lebesgue integral as well as the prop-
erties of the variance we prove that E[X ] = 1

N

∑N
i=1 m = m and V ar(X) = σ2

N .
Applying the Chebyshev inequality to X, we get P (|X−m| ≥ ε) ≤ σ2

Nε2 . Equiva-
lently, 1− σ2

Nε2 ≤ P (|X −m| < ε) ≤ 1. It then follows that limn→∞ P (|X −m| <
ε) = 1. ��
To prove the results of this section in HOL we used the Lebesgue integral prop-
erties, in particular, the monotonicity and the linearity, as well as the properties
of real-valued measurable functions. The above is not available in the work of
Coble [3] because his formalization does not include the Borel sets so he cannot
prove the Lebesgue properties and the theorems of this section. The Markov and
Chebyshev inequalities were previously proven by Hasan and Tahar [9] but only
for discrete random variables. Our formalization allows us to provide a proof
valid for both the discrete and continuous cases. Richter’s formalization [15]
only allows random variables defined on the whole universe of a certain type.
The above mentioned formalizations do not include the definition of variance
and proofs of its properties and hence cannot be used to verify the WLLN.

7 Conclusions

In this paper, we have presented a formalization in HOL of the Borel algebra
to fill the gap in previous formalizations in higher-order-logic of the Lebesgue
integral. Our formalization is general as it can be applied on functions defined on
any metric space. Building on this framework, we proved important properties of
the Lebesgue integral, in particular, the monotonicity and linearity properties.
We also proved in HOL the Lebesgue monotone convergence, a key result of the
Lebesgue integration theory. Additionally, we formalized the concept of “almost
everywhere” and proved that the Lebesgue integral does not distinguish between
functions which differ on a null set as well as other important results based on the
“almost everywhere” relation. These features of the proposed approach facilitate
the formal reasoning process for the continuous and unpredictable components
of a wide range of physical systems. For illustration purposes, we proved in
HOL key theorems from the theory of probability, namely the Chebyshev and
Markov inequalities as well as the WLLN. The HOL codes corresponding to all
the formalization and proofs, presented in this paper, are available in [12].
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Overall our formalization required more than 7000 lines of code. Only 250 lines
were required to verify the key properties of the applications section. This shows
the significance of our work in terms of simplifying the formal proof of properties
using the Lebesgue integration theory. The main difficulties encountered were
the multidisciplinary nature of this work, requiring deep knowledge of measure
and integration theories, topology, set theory, real analysis and probability and
information theory. Some of the mathematical proofs also posed challenges to
be implemented in HOL.

Our future plans include using the Lebesgue integral development to formal-
ize key concepts of the information theory. We will use the Lebesgue monotone
convergence theorem and the Lebesgue integral properties to prove the Radon
Nikodym theorem [2], paving the way to defining the probability density func-
tions as well as the Kullback-Leibler divergence [4], which is related to the mutual
information, entropy and conditional entropy [4].
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