
Automated Formal Synthesis of Wallace Tree Multipliers

Osman Hasan
Dept. of Electrical & Computer Engineering

Concordia University
Montreal, Quebec, H3G 1M8

Email: o hasan@ece.concordia.ca

Skander Kort
Dept. of Electrical & Computer Engineering

Concordia University
Montreal, Quebec, H3G 1M8
Email: kort@ece.concordia.ca

Abstract— In this paper, we present a formal synthesis methodology
that is capable of performing correct synthesis at almost all levels of
abstraction and can be adapted to be used for most of the combinational
digital circuits irrespective of their size and complexity. The proposed
methodology calls for proving the correctness-preserving characteristic
for the transformations that are required in the synthesis of a particular
digital circuit in a higher-order-logic theorem prover. These correctness-
preserving transformation proofs can then be used to automatically verify
the correctness of the corresponding synthesis process within the theorem
prover in an automated way. For illustration purposes, we present the
construction of an automated formal synthesis tool for Wallace Tree
multipliers based on our methodology.

I. INTRODUCTION

Due to the increased complexity of digital circuits and their
corresponding synthesis algorithms, the correctness-by-construction
paradigm claimed by most automated synthesis tools cannot be
guaranteed. Therefore, in order to ensure correct functionality of
the final implementation of digital circuits, a significant portion of
the design time is spent in proving the correspondence between
the synthesized results and the given specifications using hardware
verification techniques. A very promising alternative is to use the
Formal Synthesis approach [9], which allows us to formally derive
the synthesis results within a formal environment and thus omits
the requirement of post-synthesis verification. In formal synthesis,
the circuit descriptions are formalized in a mathematical manner
and the synthesis process is restricted to logical transformations that
preserve the correctness of the original circuit specifications, usually
referred to as the correctness-preserving transformations. Therefore,
in contrast to conventional synthesis, the correctness of the synthesis
procedure is guaranteed to be correct in an implicit manner.

One major limitation of formal synthesis is that end users who
perform the actual synthesis need to be familiar with formal semantics
and reasoning techniques. Nowadays, designers working in the indus-
try lack expertise in these domains and prefer automated, push button
type tools. In this paper, we propose a formal synthesis methodology
that tends to bridge this gap. The main idea behind our methodology
is to use a theorem prover to verify the correctness-preserving
characteristic of a set of synthesis transformations, prior to the actual
synthesis process. Any computer aided synthesis process that is
composed of this set of synthesis transformations can then be verified
in an automated way. Our methodology is quite general and can be
used to build specialized formal synthesis based automatic tools for
any kind of digital circuit. For illustration purposes, we present the
construction details of an automatic synthesis tool specialized for
synthesizing Wallace Tree (WT) multipliers in this paper. We have
selected the higher-order-logic theorem prover Isabelle/HOL [11] for
the verification part and the synthesis tool is developed in C++.

II. SYNTHESIS METHODOLOGY

The proposed methodology, illustrated in Fig. 1, consists of two
major components; a synthesis and a validation tool. We use a
higher-order-logic theorem prover as the validation tool to verify the
correctness-preserving characteristic of a set of synthesis transforma-
tions, prior to the actual synthesis process. The synthesis tool, which
is a specialized software program capable of performing synthesis
of a particular digital circuit, has access to this pre-verified set of
synthesis transformation along with certain built-in compression and
optimization algorithms. It accepts the specification of the digital
circuit under consideration and generates a sequence of synthesis
transformations, called transformation trace (TT), which can be
used to generate the synthesized netlist when applied to the given
specification. The synthesis tool then replays this TT to obtain the
synthesized netlist and also generates a correctness lemma that checks
the correctness-preserving characteristic of the TT for the current
synthesis process in higher-order-logic. The correctness lemma serves
as a bridge between the synthesis and validation tools and can be
automatically verified since the proof process merely consists of
checking the fact that all the transformations in the TT have already
been verified to be correctness-preserving.

It is important to note that the basis of our methodology is
the correctness-preserving characteristic of synthesis transformations.
This fact differentiates our methodology from post-synthesis verifi-
cation where no information about the actual synthesis process is
available. The presented synthesis methodology is completely auto-
matic and the end user only needs to supply the circuit specification.
The final output is a synthesized netlist in some hardware description
language (HDL) accompanied by a formal proof of its correctness.

Fig. 1. Synthesis Methodology

III. WALLACE TREE MULTIPLIERS

The WT multiplier [13] sums up all the bits of the same weights
in a merged tree rather than completely adding the partial products

in pairs. Full adder (FA) and Half adder (HA) cells are used to add
three or two equally weighted bits respectively to produce two bits:
the sum bit with a weight equal to that of the operands and the carry
bit with a weight equal to one more than that of the operands. The
height of the WT is reduced by a factor of 3:2, whenever a FA is
used. The final tree is composed of as many levels of FA and HA
cells as are necessary to reduce the height of the tree to 2.

The hardware synthesis process for a WT multiplier mainly con-
sists of two steps. The first step is to arrange the partial product
bits as the initial WT structure, as shown in Fig. 2 for the case of
a 4x4 multiplier with operands (a3, a2, a1, a0) and (b3, b2, b1, b0).
Secondly, a series of FA and HA transformations are applied on the
WT structure until the tree height is reduced to 2. At this point, any
n-bit conventional adder may be used to add the remaining two n-bit
rows of the tree to get the final multiplication result.

Fig. 2. Initial WT structure for a 4x4 Multiplier

In this paper, we present the automated formal synthesis of WT
multipliers using the proposed methodology. For correctly synthe-
sized WT multipliers we have to make sure that both FA and
HA transformations are correctness-preserving and for the synthesis
process to be complete we have to make sure that the final height
of the WT structure is reduced to 2. As outlined in Section II, our
synthesis methodology is composed of two major components; the
synthesis tool and the validation tool. The synthesis tool in the case
of WT multiplier synthesis accepts the widths of the operands and
provides the synthesized gate level netlist in some HDL along with
the correctness lemma for the WT synthesis process. The validation
tool contains the formal proofs for the correctness-preserving charac-
teristic of FA and HA transformations and thus automatically proves
the correctness lemma generated by the synthesis tool.

IV. WALLACE TREE MULTIPLIER FORMALIZATION

This section presents the formalization of WT structure and the two
synthesis transformation, FA and HA, in Isabelle/HOL. This formal-
ization is required to verify the correctness-preserving characteristics
of FA and HA transformations as well as to prove the correctness of
the WT synthesis process.

A. Formalization of WT structure

We modeled the WT structure as a list of columns, where each
column is a list of bits, by a higher-order-logic function, wallace tree.
This function accepts the two multiplication operands as bit-lists and
generates the initial WT structure model (Fig 2). The initial WT
structure generation process can be divided into two major tasks;
generation of partial products and the arrangement of these partial
products in the initial WT structure format.

The partial products are generated by two recursive functions.
The function list and recursively performs the logical and operation
between a bit and all the bits of a bit list to form a list of partial
products. Whereas, the function par prod accepts two bit-lists (the
multiplicand and the multiplier) and recursively calls function list and
with the multiplicand and all the bits of the multiplier one by one to
generate a two dimensional partial product list or a pre-arranged WT
structure as shown for a 4x4 multiplier in Fig 3(a).

The WT structure arrangement process can be subdivided into
three steps. Fig. 3 illustrates the arrangement process for a 4x4 WT

Fig. 3. Initial WT structure generation for a 4x4 Multiplier in Isabelle/HOL

structure and it can be extended to any WT structure. In the first step,
a list with only one element is created for each element in the pre-
arranged WT structure (Fig 3.b). In the second step, empty lists (Nil
[]) are appended to each row of the structure obtained after step 2 such
that the number of empty lists is equal to the number of remaining
rows, e.g., 3 empty lists are appended to the first row of Fig. 3.c.
In the third step, the nth elements of each row are concatenated in
order to form the arranged WT structure (Fig. 3.d), which represents
the initial WT structure, as shown in the case of a 4x4 multiplier in
Fig 2, where each partial product list corresponds to a WT column.

We used the integer value of a WT structure to define its semantics
as it is a unique characteristics of every WT structure. The conversion
from a WT structure to an integer value is defined by two recursive
functions. Function eval col computes the integer value of a Wallace
tree column. Function eval wts accepts the WT structure and recur-
sively calls the function eval col for all the WT structure columns to
obtain the integer value of the whole WT structure

eval col :: WT col → nat → int
∀ i a as. eval col Nil i = 0

eval col (Cons a as) i =
((bitval a) * 2i) + (eval col as i)

eval wts :: WTS → nat → int
∀ i a as. eval wts Nil i = 0

eval wts (Cons a as) i =
(eval col a i) + (eval wts as (Suc i)

B. Formalization of WT synthesis transformations

The WT synthesis process involves two types of synthesis transfor-
mations; FA and HA, which basically perform bit-level addition on
the top 3 and 2 bits of a WT column, respectively. The formalization
details of a FA transformation function, fa trans, are as follows:

sum fa :: bit → bit → bit → bit
∀ a b c. sum fa a b c = a⊕b⊕c
cout fa :: bit → bit → bit → bit
∀ a b c. cout fa a b c =(a.b)+(a⊕b).c
fa msb :: bit list → bit
∀ a. fa msb a = cout fa (bv msb a)

(bv msb (tl a)) (bv msb (tl(tl a)))
fa lsb :: bit list → bit
∀ a. fa lsb a = sum fa (bv msb a)

(bv msb (tl a)) (bv msb (tl(tl a)))
fa trans ::
bit list → bit list → bit list list

∀ as bs. fa trans as bs = ((fa lsb as)#
(tl(tl(tl as))))#((fa msb as)# bs)#[]

The functions sum fa and cout fa implement the bit level full adder
sum and carry bits. The functions fa msb and fa lsb accept a list of
bits and return the sum and carry bits obtained by adding the top three
bits of this list respectively. The function fa trans accepts two bit lists
and adds the top three bits of the first list, and replaces them with
their sum bit and appends the carry bit of these three bits on top of the
second bit list and returns the concatenation of these two modified bit
lists as a two dimensional bit list. The HA transformation, ha trans,
is also formalized similarly.

A valid WT transformation must include a WT column number
where it needs to be applied and transformation type. We for-
malized these transformations as a higher-order-logic record called
trans col rec with two fields named trans and col of type transfor-
mation and nat respectively. Data type transformation consists of two
elements FA and HA. trans field represents the transformation type
and col field represents the WT column number.

V. WALLACE TREE MULTIPLIER VERIFICATION

In this section, we present the verification of the correctness-
preserving characteristics of the FA and HA transformations and the
correctness of a WT synthesis process.

A. Correctness of the initial WT Structure

We first prove the correctness of our initial WT structure by
proving its integer value to be equal to the product of the integer
value of its operands

L1:∀ as bs i.eval wts (wallace tree as bs) i =
(2i) * (bv to nat as) * (bv to nat bs)

where, the function bv to nat converts a bit list to integer.

B. FA and HA transformations are correctness-preserving

The most vital step in our formal synthesis methodology is to
establish the fact that all the synthesis transformations preserve the
correctness of the initial model. A correctness-preserving synthesis
transformation for a WT structure can be defined as the one that
preserves the semantics of the initial WT structure. We proved that
in the Isabelle/HOL theorem prover in two steps. In the first step,
it is proved that both the FA and HA transformations preserve the
integer value of any two WT structure columns.

L2 fa:∀ as bs i. eval wts (fa trans as bs) i =
eval wts (as#bs#[]) i

L2 ha:∀ as bs i. eval wts (ha trans as bs) i =
eval wts (as#bs#[]) i

Functions fa trans and ha trans accept two WT structure columns
as and bs and replace the first 2 or 3 bits respectively of the first
column as with their sum bit and append their carry bit to the top of
the second column bs. Both functions return a partially compressed
WT structure by concatenating the two modified columns. On the
right hand side of the equations above, the two WT structure columns
as and bs are simply concatenated. Function eval wts is used on both
sides to find the respective integer values.

In the second step, lemmas L2 fa and L2 ha are used to prove that
both the FA and HA transformations preserve the integer value of
the whole WT structure irrespective of its number of columns.

L3 fa:∀ as n i.eval wts(fa trans tree as n) i =
eval wts as i

L3 ha:∀ as n i.eval wts(ha trans tree as n) i =
eval wts as i

where functions fa trans tree and ha trans tree accept a WT structure
as and a column number n and apply the functions fa trans and
ha trans respectively on the nth and (n + 1)th columns in the WT
structure as. Both these functions return the corresponding partially
compressed WT structure. Function eval wts is used to find the
integer value of both the modified and the unmodified WT structures.
Lemmas L3 fa and L3 ha prove that FA and HA transformations
do not change the integer value of a WT structure and are thus
correctness preserving.

C. Correctness of WT synthesis process

The WT synthesis process consists of applying a sequence of FA
and HA transformations on the WT structure. This is modeled by
a recursive function apply trans that accepts a WT structure and a
list of trans col rec records and applies all the transformations in
the trans col rec list recursively. The final output of the apply trans
function is the final synthesized WT structure. The correctness
theorem for the WT synthesis process can now be stated as follows:

T1: ∀ as bs ts i. eval wts
(apply trans(wallace tree as bs) ts) i =

(2i) * (bv to nat as) * (bv to nat bs)

where as and bs are the multiplier operands and ts is the transfor-
mation sequence which is declared as a trans col rec list. The left
hand side expression represents the integer value of the whole WT
synthesis process, whereas the right hand side represents an integer
multiplier. Thus, T1 can be used to guarantee correctness of any WT
synthesis process independent of its operand widths or TT.

D. Successful Termination of WT synthesis process

The WT synthesis process is said to be successfully terminated if
the post-synthesis height of the WT structure is reduced to 2, i.e., no
column in the WT structure has a length more than 2. We developed
a function eval fin wal tree that checks for successful termination
of a WT process by adding the integer value of the bit strings
of the first two rows of the WT structure and checking it against
the multiplication of the initial operands. The successful termination
theorem can be stated as follows:

T2: ∀ as bs ts. (check len eq 2
(apply trans (wallace tree as bs) ts)) ⇒
eval fin wal tree

(apply trans (wallace tree as bs) ts) =
(bv to nat as) * (bv to nat bs)

Theorem T2 cannot be proved in general as it is not valid for an
unsuccessfully terminated WT synthesis process where the height of
the final WT structure is more than 2. Therefore we proved it under
the assumption of a successfully terminated WT synthesis process
and the function check len eq 2 returns True if and only if the length
of any column in its WT structure argument is not more than two.
The antecedent of the implication checks for successful termination
and the conclusion of the implication states the correctness of the
WT synthesis process. Theorem T2 represents all the conditions of
a correctly synthesized WT multiplier and can be used to verify the
correctness and termination of any WT synthesis process independent
of its operand widths or TT.

VI. SYNTHESIS OF AN MXN MULTIPLIER

This section presents the working of our automated WT synthesis
tool with the help of an example of synthesizing an MxN multiplier.
The end user initiates the synthesis process by providing the operand

widths (M,N) to the synthesis tool. All the subsequent steps that are
required to generate the gate-level netlist of the WT multiplier and the
mathematical proof of its correctness are automated. The synthesis
tool shown in Fig. 1 applies a compression algorithm to obtain the
TT for the synthesis of a MxN WT multiplier. The TT is basically a
sequence of HA and FA transformations that are required to reduce
the height of the WT structure to two. This TT is used by the HDL
translator and the higher-order-logic theory translator blocks shown
in Fig. 1 to generate the HDL gate level netlist and the Isabelle/HOL
lemma for the MxN multiplier correctness, respectively. The format
of the generated correctness lemma and its proof steps is given below:

lemma "eval fin wal tree (apply trans
(wallace tree [(Xm−1:: bit), . . . (X0 :: bit)]
[(Yn−1:: bit), . . . (Y0 :: bit)])
([(|trans = <HA or FA>, col=number|),. . .]))=
bv to nat[Xm−1,. . .X0] * bv to nat[Yn−1,. . .Y0]";

apply (rule T2);
apply (simp add: wallace tree def);
apply (simp add: trans tree def);

The Lemma explicitly states the operand widths and the sequence
of transformations generated by the WT compressor. The transforma-
tion sequence has been expressed as a list of trans col rec records.
The lemma is followed by three proof steps. These steps have been
designed in such a way that they can prove any lemma of this kind
irrespective of the operand widths or the TT. This, in fact, leads to
the automated formal synthesis without user intervention.

The Isabelle/HOL proof assistant loads the lemma and applies
the three proof steps to prove it. The first proof step is to use
theorem T2 as a simplification rule. T2 proves the correctness and
successful termination of a WT synthesis process and is described in
the previous section. Isabelle/HOL proof assistant uses the modus
ponens inference rule along with T2 on the lemma and returns
a sub goal that checks if the post synthesis height of the WT
structure is two. Proof steps 2 and 3 add function definitions for
wallace tree and trans tree respectively to the simplification rules.
The Isabelle/HOL proof assistant obtains the initial WT structure for
the given operand widths using the wallace tree definition and applies
the given sequence of transformations on this structure using the
trans tree definition. Thus the whole synthesis process is performed
within the Isabelle/HOL core. The subgoal is successfully proved if,
after all the transformations have been applied, the final WT structure
does not contain a single column with a length greater than 2.

VII. RELATED WORK

Formal synthesis is a promising approach and has been shown to
work successfully at both the system [1] and algorithmic [3] levels.
Several formal synthesis systems have been introduced such as, T-
Ruby [12] and HASH [2]. Kumar et al. [9] present an interesting
summary and classification of formal synthesis research activities.
The proposed approach is primarily based on the formal synthesis
concepts but also allows the end user to get the synthesis results
along with their proof of correctness in an automated manner, as has
been seen in this paper for the case of WT multiplier synthesis.

The post-synthesis verification of wide integer multipliers remained
an open problem for a long time due to the state space explosion
problem of the state based verification approaches [4]. Theorem
proving based post-synthesis verification is capable of handling the
computational complexity of wide multipliers [7] but such efforts
have also been limited as they involve considerable end user interven-
tion. A number of dedicated multiplier verification algorithms have

been published in recent years which allow us to verify multipliers
of arbitrary sizes [8]. Similarly, combinations of model checking and
theorem proving techniques have also been successfully tried in this
domain [6]. These recent approaches are even though capable of
verifying wide multipliers but their complexity definitely increases
with the increase in operand widths. On the other hand, the WT
multiplier synthesis approach, presented in this paper, is capable
of handling arbitrary operand widths without any change in the
computation complexity levels.

VIII. CONCLUSIONS

We presented a formal synthesis methodology that can be au-
tomated and thus it not only ensures formally verified synthesis
results but also is very easy to use for end users who do not have
any background in formal semantics and reasoning. Our synthesis
methodology achieves correctness by construction and thus eliminates
the post synthesis verification requirements, which in turn reduces
design time. We have demonstrated the practical effectiveness of
our methodology by successfully constructing an automated tool
that is capable of correctly synthesizing WT multipliers of arbitrary
length operands. The proposed formal synthesis methodology is quite
general and can be applied to correctly synthesize any digital circuit.
As a future work for this project, it would be interesting to verify the
correctness-preserving characteristic of synthesis transformations for
other digital circuits as well. This way we will be able to enhance the
library of formally verified correctness-preserving synthesis transfor-
mations and thus formally synthesize a bigger set of combinational
digital circuits.

REFERENCES

[1] C. Blumenröhr. A formal approach to specify and synthesize at the
system level. In Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen, 1999.

[2] C. Blumenröhr, D. Eisenbiegler, and D. Schmid. On the efficiency
of formal synthesis – experimental results. IEEE Transactions on
Computer-Aided Design of Intergrated Circuits and Systems, 18(1):25–
32, 1999.

[3] C. Blumenröhr and V. Sabelfeld. Formal synthesis at the algorithmic
level. In CHARME, 1999.

[4] R. E. Bryant. On the complexity of VLSI implementations and
graph representations of Boolean functions with application to integer
multiplication. IEEE Transactions on Computers, 40(2):205–213, 1991.

[5] A. J. Camilleri, M. J. C. Gordon, and T. F. Melham. Hardware
verification using higher-order logic. HDL Descriptions to Gauranteed
CorrectCircuit Designs, pages 43–67, 1987.

[6] R. Kaivola and N. Narasimhan. Formal verification of the pentium 4
floating-point multiplier. In DATE, 2002.

[7] D. Kapur and M. Subramaniam. Mechanically verifying a family of
multiplier circuits. In LNCS 1102, Computer Aided Verification, 1996.

[8] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor. Poly-
nomial formal verification of multipliers. Formal Methods in System
Design, 22(1):39–58, 2003.

[9] R. Kumar, C. Blumenröhr, D. Eisenbiegler, and D. Schmid. Formal syn-
thesis in circuit design-A classification and survey. In First international
conference on formal methods in computer-aided design, volume 1166,
pages 294–299, 1996.

[10] N. Narasimhan, E. Teicad, R. Radhakrishnan, S. Govindarajan, and R.
Vemuri. Theorem proving guided development of formal assertions in a
resource-constrained scheduler for high-level synthesis. Formal Methods
in System Design, 19(3):237–273, 2001.

[11] L. C. Paulson. Isabelle: A generic theroem prover. In LNCS, 1994.
[12] R. Sharp and O. Rasmussen. The T-Ruby design system. Formal

Methods in System Design: An International Journal, 11(3):239–264,
1997.

[13] C . S. Wallace. A suggestion for a fast multiplier. IEEE transactions in
Electronic Computers, 13, 1964.

