

1513

1-4244-1164-5/07/$25.00 ©2007 IEEE.

Run-time Verification using the VHDL-AMS

Simulation Environment

Zhi Jie Dong, Mohamed H. Zaki, Ghiath Al Sammane, Sofiène Tahar and Guy Bois⋆

ECE Dept., Concordia University
⋆Génie Informatique, École Polytechnique de Montreal

Montreal, Québec, Canada

Email: {zh do, mzaki, sammane, tahar}@ece.concordia.ca, guy.bois@polymtl.ca

Abstract— Analog and Mixed Signal (AMS) designs are an
important part of embedded systems that link digital designs to
the analog world. Due to challenges associated with its verification
process, AMS designs require a considerable portion of the
total design cycle time. In this paper, we propose a run-time
verification approach for VHDL-AMS designs. The essence of this
approach is the construction of timed automata from the given
specification. Such automata used as monitor, when interfaced
with the VHDL-AMS simulator, detect whether the property
of interest is violated or satisfied by a simulation trace. For
illustration purposes, we applied the approach using VHDL-AMS
simulation environment for the verification of a PLL design.

I. INTRODUCTION

Analog and Mixed Signal (AMS) Hardware Description

Languages (AMS-HDLs) (e.g., VHDL-AMS [4]) were de-

veloped to provide a unified and coherent modeling and

verification environment for AMS designs. Such designs are

an important part of embedded systems that link the digital

components to the analog world. One advantage offered by

such AMS-HDLs is the fact they allow the design and verifi-

cation at different levels of abstraction supporting a structured

design methodology. They help choose the appropriate mod-

eling approach, whether a structural description, a behavioral

description, or a combination of the two. The modeling is

not restricted to AMS systems but also other systems such as

mechanical and optical.

Classically, the verification of AMS-HDL designs is carried

out using simulation. However, such method is not enough to

validate interesting properties of the design behavior involving

for instance temporal requirements. Such commodity is usually

offered by formal verification techniques, like model checking

[5], which aim to prove that a circuit behaves correctly by

satisfying a set of temporal properties. Unfortunately, model

checking AMS designs is computationally expensive and

therefore suffers even more from the state-space explosion

problem that makes exhaustive verification very hard [5].

With the goal to achieve confidence requirements in the

design process and to tackle the drawbacks of the above-

mentioned verification techniques, the integration of both

simulation and formal methods was advocated. One such

integration is known as run-time verification [2]. Run-time

verification is a technique for checking whether an execution

of the design model under verification violates the given

properties. The AMS design is simulated by attaching it to

a testbench which provides the inputs while monitoring its

output by means of logical models that describe the property

of interest, in order to detect possible errors. The monitor could

be as simple as observing the current or voltage at different

nodes of the design. The main challenge in monitoring AMS

designs is the development of adequate monitors able to

express the properties.

In this paper, we propose a run-time verification approach

for VHDL-AMS designs. The essence of this approach is the

construction of timed automata from the given specification;

Such automata, when interfaced with the VHDL-AMS simu-

lator, monitor whether the property of interest is violated or

satisfied by a simulation trace.

The rest of the paper is organized as follows: We start by

providing a discussion about related work in Section II. In

Section III, we describe the proposed verification methodol-

ogy. A PLL design is used as illustrative example in Section

IV, before concluding with a discussion in Section V.

II. RELATED WORK

According to [8], run-time verification can be classified

in two different groups: offline and online monitoring. In

offline monitoring, the property verification starts after the

whole simulation trace is provided, while in online monitoring,

the monitoring is interleaved with the simulation process.

The advantage of online monitors is the ability to detect

violation or satisfaction as soon as they happen. Several works

have been recently proposed for run-time verification of AMS

designs.

In [9], an online monitoring technique was proposed, where

the authors used linear hybrid automata as template monitors

for the time domain features of oscillatory behavior (e.g.,

jitter). The monitors are implemented within the PHAver tool,

where the design nonlinear equations are approximated with

piecewise differential models. A similar work was proposed

in [10], where the authors used interval arithmetics based

methods to generate the solution flow for the design equations.

However, instead of creating template automata to use as

monitor, they build a timed automata monitor from timed com-

putational temporal logic (T-CTL) properties. Such monitor

can then detect bad behaviors within a specified time period

1514

Fig. 1. Verification Methodology

of the interval arithmetics simulation. The work in [9] and

[10] consider only analog behaviors, while mixed systems are

not supported. In addition, they are computationally expensive,

due to the requirement to build a solution flow for the system

equations, making them only adequate for small designs.

In [7], Maler et.al proposed an offline methodology for

monitoring the simulation of continuous time signals described

by differential equations. The work is based on extending the

PSL (Property Specification Language) [1] logic to support

monitoring analog signals. A synthesized timed automata is

then used to monitor Matlab simulation traces to check for

property violation. The main drawback of the approach is that

violation cannot be checked unless the whole simulation is

finished, which consumes time and memory resources.

Our methodology is close to the one proposed by Tan

et. al in [6], where the authors developed tools for online

monitoring of hybrid systems using timed and linear hybrid

automata to monitor hybrid system behavior. However, we

distinguish ourselves in the following. We build the monitors

as timed automata in the VHDL-AMS environment along

with the AMS design to verify. Therefore, we do not need

to do any translation which can be quite expensive like

the transformation of timed automata monitors into hybrid

automata, etc.

III. METHODOLOGY

The proposed run-time verification for AMS designs is illus-

trated in Figure 1. Given an AMS design description written in

VHDL-AMS, we describe the properties to be verified as timed

automata, which are translated to VHDL-AMS as connected

components. The monitoring components together with the

VHDL-AMS design libraries and the simulation test bench are

then input to the ADM VHDL-AMS simulator [3] to perform

run-time verification.

In the remaining of this section, we will briefly overview

the VHDL-AMS simulation and give the description of the

monitors and how they can be used to detect properties of the

VHDL-AMS design.

A. VHDL-AMS

VHDL-AMS is an extension of the IEEE standard VHDL

language, which allows the unified modeling of the analog

and digital parts of the design. For the simulation of such

models, a synchronization between the discrete-time and the

continuous-time simulators engines to handle mixed-signal

interactions (e.g., threshold crossings) is usually required. In

fact, the simulation of discrete-time models relies on event-

driven techniques for which the states of the model are

reevaluated when signals change their values. On the other

hand, the simulation engine of continuous-time models uses

numerical techniques to solve the set of differential equations

describing the analog behavior. The differential equations are

discretized using a fixed or a variable time step τ = ti+1 − ti.

We can interpret a simulation trace of the VHDL-AMS

model as a sequence of tuples: Σ = 〈s0,ν0,T0〉 . . .〈s f ,ν f ,T f 〉,
where si is the valuation of the discrete signals during time

interval T i = [T l
i ,T r

i], with T r
i = T l

i+1, νi is the valuation of

the continuous variables at T i, where 0 and f are the starting

and ending time intervals T specified for the whole simulation

trace and 0 ≤ i ≤ f .

B. Monitoring Timed Automata

A Monitoring Timed Automaton (MTA) [6] is a determinis-

tic finite states automaton, with a set of timers constraints

for each state location. A timed automaton is said to be

deterministic if only one transition can be taken at a time from

any location si. Formally, an MTA M is a tuple {S,S0,V,Q,

Θ,G,T,SC,C } where S is a finite set of locations, S0 ⊆ S is

the finite set of initial locations, V is a set of state variables,

Q : S → 2Σ is a labelling function assigning each location

a set of atomic propositions {p|p ∈ Σ} over state variables

v j, v j ∈ V . Θ is the set of clocks with time valuation (timer

assignment) δ : Θ→R. G : S → 2TC(Θ) assigns to each location

a set of timers constraints (TC) over the location timers Θ. For

example, the satisfaction of a timer constraint x > 0 (where

x ∈ Θ) by a timer valuation δ is defined as follows: δ |= x > 0

iff δ(x) > 0. T ⊆ S× S is the set of edges between locations

and SC : T → 2Θ associates with each edge a set of clocks that

need to be set. The monitoring automata is also extended with

the acceptance condition that determines the set of allowable

states; therefore rejecting bad states, i.e., the automata is

extended with the acceptance set C , such that s ∈ C ⊆ S if

there is no path from s to any s′ ∈ B , where B ⊆ S is the

Büchi acceptance condition.

Consider the digitally controlled sine wave generator (de-

signed using a typical Wien-Bridge oscillator) as shown in

Figure 2(a). Such circuit can generate sine wave signals at

three different frequencies in a sequence determined by the

digital controller. For instance, by setting the NMOS switches

M11 and M12 on and the other switches o f f , the output will be

a sine wave signal with frequency f1. Suppose the specification

requires that the analog circuit generates sine wave signals

with different frequencies f1, f2, f3, in a repetitive increasing

order (e.g., f1 → f2 → f3 → f1 . . .), where each signal lasts for

a maximum period of 10 ms. An interesting temporal property

1515

to check on this design would be: If the current frequency of

the sine wave is f1, then in the future within a maximum period

of 30 ms, the frequency will eventually go back to f1.

The automaton that models this property is shown in Figure

2(b), where state S1 refers to output signal where frequency f1,

and the state S2 refers to output signal with the frequency being

either f2 or f3. S3 and S4 are the failure states, representing

the property violations. Tp represents the signal time period

with Tp = 1
f

, and T pn is the constant value with T pn = 1
fn

,

1 ≤ n ≤ 3.

C. Run-Time Verification

To understand how an automaton accepts a sequence of

states, we define the notion of trace. A trace of an automaton

is a sequence of states together with an associated time counter

evaluating the time spent (time interval) at each state location.

A trace of monitoring timed automata M is a sequence π =
< s0,δ0,ν0, I0 > < s1,δ1,ν1, I1 > .. ., where δi are evaluations

of the clocks upon entering the location si, I i is the time

interval representing the time spent at location Si. The timer

associated with each state is a decreasing timer such that

we have for each pair < si,δi, I i > < si+1,δi+1, I i+1 >, e =
(si,si+i), δi+1 = δi −|I i| or δi+1(x) = t ∈ R for x ∈ SC(e) [6].

For simplicity, we consider here, only that timed automata

accept timed words on the valuation of variables. Hence,

we define a timed word as a timed state sequence η =
{ν0,T0},{ν1,T1}, . . ., where T i = [T l

i ,T r
i], with T r

i = T l
i+1

and νi(t) denotes the evaluation of the state variables at time

t ∈ T i [6]. Such timed word could be interpreted as the VHDL-

AMS simulation sequence of states Σ mentioned earlier. We

say that MTA M accepts a finite timed word η if M has

an accepting trace π for η. More formally, a timed word

η = {ν0,T0},{ν1,T1}, . . . is accepted by an automaton M ,

if there is a trace of M : π =< s0,δ0, I0 >< s1,δ1, I1 > .. .,

such that if t ∈ T i, then there is an l such that t ∈ I l and

νi(t) |= p ⇒ p ∈ Q(sl(t)), where Q(sl(t)) is the labelling

function for location sl .

The verification results are shown in Figure 2(c). Inspecting

the Violation simulation trace, we notice that there is no

violation detected during the first cycle where each signal lasts

9 ms. The MTA−states trace shows the transition between the

automaton states. In the first cycle, The automaton changes

states from S1 to S2 and back to S1 within 30 ms. However,

during the second cycle the monitor reports a violation as

shown by the Violation trace. In that case, we see that the

MTA − states indicate that the automaton reaches a failure

state, i.e., S3. The reason of such violation is that the digital

controller allows the frequency of the output signal to change

back to f1, only after 32 ms.

IV. PLL BASED FREQUENCY SYNTHESIZER DESIGN

We applied our verification methodology to a PLL design

based frequency synthesizer. Figure 3(a) shows a block di-

agram for the frequency synthesizer which consists of five

blocks: comparator, voltage-controlled oscillator (VCO), dig-

ital phase and frequency detector (PFD), analog loop filter

+

-

D1

D2

R5

R3
R4

C1

R13R12R11

M11 M12 M13

M21

M22

M23

R21

R22

R23

C2

XOP

Sin-out

f-ctrl1

f-ctrl2

f-ctrl3

Control

logic

ctrl-clk

reset

Digital part Analog part

(a) Circuit (b) Monitoring Timed Automaton

(c) Simulation Results

Fig. 2. Illustrative Non-linear Analog Circuit

with charge pump and digital divider. The PFD is composed

of two D Flip-Flops followed by a charge pump and an analog

passive lead-lag loop filter. The input reference clock is a sine

wave signal with frequency W0. The VCO output is a cosine

wave signal with frequency N times of W0. If the frequency

control signal Freq sel is set to 0, N will be equal to 1 and the

frequency of the reference clock input and VCO output will

be the same. If Freq sel is set to 1, N will be equal to 2 and

the VCO output frequency is two times of the reference input

clock.

The lock time is one of the main issues in the verification

of PLL based frequency synthesizer. It is the time necessary

for the synthesizer to switch from one frequency to another

within a given range. Such property is important because

during the lock time, no data can be transmitted, so having

a larger lock time can reduce the data rate of the system.

The property to be verified is described as follows; if the

Freq sel changes, the VCO output signal should be changed

to a new frequency within the lock time. The corresponding

automaton is shown in Figure 3(b), where S0 is the initial state

after reset. S1 is the state referring to VCO output signal with

frequency f1. S2 is the transition state referring to VCO output

signal with frequency changing from f1 to f2. S3 is the state

where the VCO output signal frequency is equal to f2. S4 is

the failure state representing property violation. If the VCO

output signal frequency has not changed to f2 after the lock

time (LOCK TIME), the monitor will reach state S4 and the

violation of the property will be reported. Tp represents the

signal time period with Tp = 1
f

and Tpn is the constant value

with Tpn = 1
fn

.

The simulation result is shown in Figure 3(c). The reference

clock input signal Ref sig is a sine wave signal with a constant

frequency of 500 KHz. VCO’s central frequency is 500 KHz

with the VCO control signal; Filter out equals to 0. Assuming

1516

(a) PLL Model (b) Monitoring Timed Automaton

(c) Simulation Results

Fig. 3. Frequency Synthesizer

the design specification requires the LOCK TIME to be 50

µs, we will verify whether the VCO output signal frequency

can change from 500 KHz to 1 MHz within 50 µs. If it is

true, the property is satisfied. Otherwise, it is violated and a

violation will occur at time T1 = T0 +LOCK T IME = 190 µs.

From the simulation we can see that the actual LOCK TIME is

around 100 µs, where the voltage of Filter out is equal to 2.0V.

Inspecting the Violation simulation trace, we notice that there

is a violation detected at time 190 µs, where the frequency of

VCO output signal is not equal to 1 MHz and MTA reaches

to the failure state S4.

V. CONCLUSION

In this paper, we have presented a practical run-time verifi-

cation methodology for AMS designs. The approach is based

on modeling and simulating the AMS design along with the

monitoring automata in VHDL-AMS environment in an online

fashion, hence avoiding state space explosion problems. We

have used the methodology to verify the PLL locking time of

a frequency synthesizer design.

This process is much more reliable than manual (visual

or textual) inspection of simulation traces which will also

cost lots of time. On the other hand, combining simulation

and temporal properties based verification is an attempt to

achieve the benefits of both approaches, while avoiding some

of the pitfalls of adhoc simulation and the complexity of

formal methods. Future work includes the verification of more

complex case studies. In addition, we plan to investigate

methods for guiding the input signal test generation using the

monitors, which can help in violations detection.

REFERENCES

[1] Accellera Property Specification Language Reference Manual (2004),
http://www.accellera.org

[2] K. Kundert and H. Chang. Verification of Complex Analog Integrated
Circuits. In Proc. IEEE Custom Integrated Circuits Conference, pp.177-
184, 2006.

[3] ADVance MSTM Reference Manual, Mentor Graphics,
http://www.mentor.com

[4] E. Christen and K. Bakalar. VHDL-AMS: A Hardware Description Lan-
guage for Analog and Mixed-signal Applications. In IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing., 46:
1263-1272, 1999.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[6] L. Tan, J. Kim, I. Lee: Testing and Monitoring Model-based Generated
Program. Electronic Notes in Theoretical Computer Science. 89(2):
(2003)

[7] O. Maler, D. Nickovic. Monitoring Temporal Properties of Continuous
Signals. In Formal Modelling and Analysis of Timed Systems, LNCS
3253, Springer, 2004, pp.152-166

[8] O. Maler, D. Nickovic, Amir Pnueli. Real Time Temporal Logic: Past,
Present, Future. In Formal Modelling and Analysis of Timed Systems,
LNCS 3829, Springer, 2005, pp.2-16

[9] Goran Frehse, Bruce H. Krogh, Rob A. Rutenbar, Oded Maler: Time
Domain Verification of Oscillator Circuit Properties. Electronic Notes
in Theoretical Computer Science. 153(3): 9-22, 2006.

[10] M. Zaki, S. Tahar, and G. Bois: A Practical Approach for Monitoring
Analog Circuits; Proc. ACM Great Lakes Symposium on VLSI, April
2006, pp. 330-335.

