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Abstract— Reliability analysis of combinational circuits has
become imperative these days due to the extensive usage of
nanotechnologies in their fabrication. Traditionally, reliability
analysis is done using simulation or paper-and-pencil proof
methods. But, these techniques do not ensure accurate results
and thus may lead to disastrous consequences when dealing with
safety critical applications. In this paper, we mainly tackle the
accuracy problem of reliability analysis by presenting a formal
approach that is based on higher-order-logic theorem proving.
The paper presents formal definitions of gate fault and reliability
and utilizes them to formally verify some key reliability properties
in a theorem prover. This formal infrastructure can be used
to formally analyze the reliability of any combinational circuit.
For illustration purposes, we utilize the proposed framework to
analyze the reliability of a comparator and a full adder.

I. INTRODUCTION

Nowadays, the ability to efficiently analyze the reliability
of combinational circuits has become very challenging since
they are being fabricated at the nanoscale level and are thus
not only humongous in size but are also more prone to
errors because of the inherent variability in the fabrication
processes. A number of reliability analysis approaches have
been recently proposed that tend to somewhat meet the above
mentioned challenges. One approach is based on representing
the erroneous behavior of a gate as a matrix, referred to as the
probabilistic transfer matrix (PTM) [9]. The PTM evaluation
is based on the exhaustive listing of all input and output
probabilities. Therefore, a circuit with 𝑖 inputs and 𝑗 outputs
is represented by a PTM with 2(𝑖+𝑗) entries. Thus, the main
problem with this approach is that, as circuits grow bigger in
size, their PTMs require a significant amount of memory for
storage and computational time for their reliability evaluation.
Algebraic decision diagrams have been utilized to minimize
these requirements but still the scalability remains a big issue
for the PTM based approach. A similar, but more efficient,
approach [5] is based on developing von-Neumann models,
called the probability gate models (PGMs), for unreliable logic
gates. It uses these models to manually analyze the reliability
for a single output and an input pattern combination. Such
a capability has been found to be particularly useful for the
reliability modeling of certain critical paths in a circuit.

Despite their practical effectiveness, the main limitation of
the above mentioned techniques is their approximate nature.

This is the case because these approaches are primarily based
either on paper-and-pencil proof methods or simulation. The
paper-and-pencil proof methods have always some risk of
an erroneous analysis due to the lengthy nature of com-
putations involved in the reliability analysis of present age
combinational circuits coupled with the human-error factor.
Whereas in computer simulations, the fundamental idea is to
approximately answer a query by analyzing a large number of
samples and thus by its inherent nature the results cannot be
termed as accurate.

The accuracy of hardware system reliability analysis results
has become imperative these days because of their extensive
usage in safety critical areas, like medicine, military and
transportation, where an erroneous analysis could even result
in the loss of human lives. Formal methods [4], which analyze
a system based on pure mathematical techniques, are capable
of conducting precise system analysis and thus overcome the
above mentioned limitations. Given the dire need of accuracy
in the area of reliability analysis of combinational circuits,
probabilistic model checking, which is a state-based formal
technique for analyzing random systems, has been recently
used for their analysis as well [1]. Due to the inherent nature
of model checking, the worst case space and time complexity
for the reliability analysis of a combinational circuit with 𝑖
inputs and 𝑗 outputs is 𝑂(2(𝑖+𝑗)). This limits the applicability
of probabilistic model checking for such an analysis due to
the well-known state-space explosion problem [2]. Similarly,
to the best of our knowledge, it has not been possible to
precisely reason about most of the commonly used reliability
related statistical quantities, such as averages and variances,
using probabilistic model checking so far.

We believe that due to its high expressiveness nature, higher-
order-logic theorem proving [7]can be utilized to overcome the
above mentioned limitations of probabilistic model checking
in the domain of accurate reliability analysis of combinational
circuits. This paper illustrates the practical effectiveness of
this idea and thus,presents the first theorem proving based
approach for the reliability analysis of combinational circuits.
Our approach is primarily based on the PGM approach. We
formalize the behavior of an erroneous combinational logic
gate and the notion of reliability for such a gate in higher-
order logic. These definitions exhibit random and probabilistic
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behaviors, due to the random nature of gate-faults, and thus
have been formally defined by building upon the methodol-
ogy for higher-order-logic formalization and verification of
probabilistic algorithms, given in [8]. These definitions are
then utilized to verify key properties associated with the
reliability evaluation of combinational circuits in the PGM
approach. These properties include a generalized form of von-
Neumann equation, which allows us to evaluate the probability
of getting a logical 1 for any combinational gate, and a
generic expression that allows us to evaluate the reliability
of a combinational circuit. Due to their generic nature, these
formally verified results can be utilized to reason about the
reliability of any combinational circuit. In order to illustrate
the practical effectiveness of the proposed reliability analysis
approach, we utilize it to assess the reliability of a simple
comparator and a full adder. The foremost motivation of
selecting these circuits is the ability to compare our results
with the ones available using the PGM approach. The work
described in this paper is done using the HOL theorem prover
[3], which is based on higher-order logic. This choice was
made to leverage upon its available probabilistic analysis
framework.

The rest of the paper is organized as follows. In Section
II, we present an overview of the infrastructure for the
probabilistic analysis of algorithms. Section III presents the
formalization details of the reliability properties that allow us
to conduct the reliability analysis of combinational circuits in a
theorem prover. The experimental results are given in Section
IV. Finally, Section V concludes the paper.

II. PROBABILISTIC ANALYSIS IN HOL

The foremost criteria for implementing a theorem proving
based reliability analysis framework is to be able to formal-
ize random variables in higher-order logic and verify their
probabilistic properties. Random variables are fundamentally
probabilistic functions that can be modeled in higher-order
logic as deterministic functions with access to an infinite
Boolean sequence 𝔹

∞; a source of infinite random bits [8].
These deterministic functions make random choices based on
the result of popping the top most bit in the infinite Boolean
sequence and may pop as many random bits as they need for
their computation. When the functions terminate, they return
the result along with the remaining portion of the infinite
Boolean sequence to be used by other programs. Thus, a
random variable which takes a parameter of type 𝛼 and ranges
over values of type 𝛽 can be represented by the function.

ℱ : 𝛼 → 𝐵∞ → 𝛽 ×𝐵∞

Consider the following formalization of the Bernoulli( 12 )
random variable that returns 1 or 0 with equal probability 1

2 :

bit=(𝜆s.if shd s then 1 else 0,stl s)

where s is the infinite Boolean sequence and shd and stl
are the sequence equivalents of the list ’head’ and ’tail’.

Now, by formalizing a probability space of infinite Boolean
sequences in higher-order logic, where the probability function

ℙ maps from sets of infinite Boolean sequences to real
numbers between 0 and 1, we can formally prove probabilistic
properties for random variables in a theorem prover [8].
For example, the following Probability Mass Function (PMF)
property can be verified for the function bit.

ℙ{s | fst(bit s)=1}= 1
2

The HOL function fst returns the first component of its
argument, which is a pair.

The above approach has been successfully used to formalize
most of the commonly used random variables and verify
them based on their corresponding probability distribution
properties. In this paper, we utilize the model for the Bernoulli
random variables, formalized as the function ber rv, and
verified using the following PMF relation [8]:

Lemma 1: PMF of Bernoulli(p) Random Variable
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒

ℙ {s | fst (ber rv p s)} = p

The function ber rv for the Bernoulli(p) random variable
models an experiment with two outcomes; True and False,
whereas 𝑝 represents the probability of obtaining a True.

III. RELIABILITY ANALYSIS IN HOL

The first step in the proposed approach is to formally
express the behavior of a faulty component.

Definition 1: von-Neumann Faulty Component
∀ f P e. faulty comp f P e =
bind(bern rv e) (𝜆x. bind(indep rv l P)
(𝜆y.unit(if x then ¬(f y) else (f y))))

where ¬ denotes the logical negation and (𝜆𝑥.𝑡) denotes the
lambda abstraction function that maps its argument 𝑥 to 𝑡(𝑥).
The function indep rv l accepts a list of random variables
and returns the list of the same random variables such that the
outcome of each one of these random variables is independent
of the outcomes of all the others. The function faulty comp
accepts three variables, i.e., a function f that represents the
Boolean logic functionality of the given component with data
type 𝑏𝑜𝑜𝑙 𝑙𝑖𝑠𝑡 → 𝑏𝑜𝑜𝑙, where the 𝑏𝑜𝑜𝑙 𝑙𝑖𝑠𝑡 represents the
list of Boolean values corresponding to the inputs of the
component and the return type 𝑏𝑜𝑜𝑙 corresponds to the output
of the component, a list of Boolean random variables P,
which corresponds to the values available at the input of
the component, and the probability e of error occurrence
in the component. The function faulty comp returns a
Boolean value corresponding to the output of the component
with parameters f and e, when its inputs are modeled by
calling the random variables in the list of random variables
P independently. It is important to note here that the output
of such a faulty component, which follows the von-Neumann
model [5], is an unpredictable quantity, which is dependent
on the error probability e and the input random variable list
P. Therefore, this function is formally modeled using the
Bernoulli random variable function, which is in turn based
on the infrastructure explained in the previous section.
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Gate Theorem

AND
ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑎𝑛𝑑 𝑔𝑎𝑡𝑒[𝑋1;𝑋2]𝑒 𝑠)} =

𝑋1𝑋2 + 𝑒(1− 2𝑋1𝑋2)

NAND
ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑛𝑎𝑛𝑑 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= (1− 𝑒) + (2𝑒− 1)𝑋1𝑋2

NOR

ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑛𝑜𝑟 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= 1−𝑋2 −𝑋1 +𝑋1𝑋2(1 − 2𝑒)+

𝑒(2𝑋1 + 2𝑋2 − 1)

Inverter
ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑛𝑜𝑡 𝑔[𝑋]𝑒 𝑠)}
= 1−𝑋 − 𝑒+ 2𝑒𝑋

Majority

ℙ{𝑠∣𝑓𝑠𝑡(𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑜𝑚𝑝 𝑚𝑎𝑗 𝑔[𝑋1;𝑋2]𝑒 𝑠)}
= 𝑋1𝑋2 +𝑋1𝑋3 +𝑋2𝑋3 − 2𝑋1𝑋2𝑋3+

𝑒(4𝑋1𝑋2𝑋3 − 2𝑋1𝑋2 − 2𝑋1𝑋3 − 2𝑋2𝑋3 + 1)

TABLE I

PROBABILITY OF OUTPUT EQUAL TO 1 FOR COMMONLY USED GATES

Next, we verify a general expression for the probability of
obtaining a 𝑇𝑟𝑢𝑒 or a logical 1 at the output of the von-
Newmann model of a component.

Theorem 1: General Expression for Gate Reliability
∀ e f P. (0 ≤ e ≤ 1) ⇒

(ℙ {s|fst(faulty comp f P e s)} =
e (1 - ℙ {s|f(fst (rv list P s))}) +
(1 - e) (ℙ {s|f(fst (rv list P s))}))

The theorem is verified under the assumption that the error
probability of the component e is bounded in the closed
interval [0, 1]. The right-hand-side (RHS) of the theorem
represents the given probability in terms of the probability
of obtaining a 𝑇𝑟𝑢𝑒 from an error-free component, which
is much easier to reason about. The HOL proof is primarily
based on the independence of error occurrence and PMF of
the Bernoulli random variable, given in Lemma 1.

Theorem 1 can now be used to formally reason about
the probability of obtaining a logical 1 from any logical
gate with functionality f. The formally verified theorems
corresponding to such probabilities for some commonly used
2-input logical gates are given in Table I, which are verified
under the assumption that e lies in the interval [0, 1]. In
this table, the probability of an input 𝑥𝑖 being equal to 1,
i.e., ℙ{s∣fst(xi s)}, is represented as 𝑋𝑖. For illustration
purposes, consider the theorem for a 2-input AND gate, given
in the first row of Table I. The function and g accepts a
list of Boolean values and recursively returns their logical
conjunction. The variables x1 and x2 are Boolean random
variables and [x1;x2] is a list containing them, which
represents the inputs of the 2-input AND-gate. The proof of
this theorem is based on Theorem 1 along with the fact that the
probability of obtaining a logical 1 at the output of an error-
free AND-gate is equal to the product of the probabilities of
obtaining all logical 1’s at its inputs.

Next, we formally define the reliability of a gate as the
probability that the gate produces the error free result [5].

A

B

O1

O2

O3

Fig. 1. A 2-bit Comparator

Definition 2: Reliability
∀ f L e. rel f L e=

ℙ {s|fst(faulty comp f (L e) e s) =
fst(faulty comp f (L 0) 0

(snd (faulty comp f (L e) e s)))}
The function rel accepts three parameters. The variables f
and e represent the Boolean logic functionality of the given
component and the probability of error occurrence in the
component, respectively. The third variable L is a function that
accepts an error probability as a real number and returns a list
of Boolean random variables with the same type as the variable
P in the function faulty comp. The function rel returns
the desired reliability of the component with functionality f
and error probability e. The left-hand-side (LHS) term in the
set represents the output of the component while considering
the effect of error and the the RHS term represents the error
free output of the given component.

Using our reliability definition, we verified the following
alternative expression for it [10].

Theorem 2: Alternate Expression for Reliability
∀ f L e. 0 ≤ e ≤ 1 ⇒
(rel f L e =

ℙ{s|fst(faulty comp f (L e) e s)}
ℙ{s|fst(faulty comp f (L 0) 0 s)} +
(1-ℙ{s|fst(faulty comp f (P e) e s)})
(1-ℙ{s|fst(faulty comp f (P 0) 0 s)}))

The main advantage of the above expression is that it can be
used to evaluate the reliability of a logical gate in terms of
the probability of attaining a logical 1 at its output, which we
have already verified for the common gates (Table I).

IV. EXPERIMENTAL RESULTS

For illustration purposes, consider the comparator circuit of
Figure 1. The reliability for its output 𝑂1 or 𝑂3 for an input
pattern (pA,pB) can be formally expressed as follows:

Theorem 3: Reliability for Comparator Output O1/O3
∀ pA pB e. (0 ≤ e ≤ 1) ∧
(0 ≤ pA ≤ 1) ∧ (0 ≤ pB ≤ 1) ⇒

(rel and g
(𝜆x. [ber rv pA; (faulty comp nand g

[ber rv pA;ber rv pB] x)]) e =
(pA(1-e+(2e-1)pApB)+
e(1-2pA(1-e+(2e-1)pApB)))(

pA(1-(pApB)))+(1-(pA(1-e+(2e-1)pApB)+e(1
-2pA(1-e+(2e-1)pApB))))(1-pA(1-(pApB))))
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Fig. 2. Majority Gate based Full Adder

The assumptions ensure that probability variables, pA, pB and
e lie within the interval [0, 1]. The LHS of the proof goal
represents the reliability of the given comparator circuit, using
the function rel given in Definition 2, and the RHS gives the
reliability in terms of the variables pA, pB and e. The function
and g represents the AND-gate in Figure 1, the output of
which is the one that we are interested in finding the reliability
for. It is a two input gate and its list of random variables,
which corresponds to the inputs of the gate, contains two
random variables. The first input is coming from a primary port
and therefore we use the Bernoulli random variable function
ber rv with input probability pA of getting a logical 1 at
this input for its input random variables list. The second input
of the AND-gate is coming from a 2-input NAND-gate, for
which the inputs are in turn connected to the primary ports
A and B and these connections can be observed in the input
random variable list for the function nand g. The reasoning
process for Theorem 3 is primarily based on the theorems
given in Table I and Theorem 2. The distinguishing feature of
the above theorem is its generic nature, i.e., it is true for all
values of e, pA and pB. In other words, once this theorem
is verified, it can be readily used to evaluate the reliability of
outputs 𝑂1 or 𝑂3 for any values of e, pA and pB.

We now assess the reliability of a majority gate based full
adder, given in Figure 2. Both outputs are independent so we
get the overall reliability by simply multiplying the individual
reliabilities of the two outputs. Since the expression that we
verify in a theorem prover is generic, i.e., it is valid for any
value of the gate error probability e, we used it to evaluate
the reliability values for different values of e and the results
are summarized in Figure 3. Reliability analysis for the same
full adder circuit was done in [6] using the simulation based
PGM approach and the results obtained are quite different
from what we get and the difference gets more prominent
as the probability of gate error increases (> 10−3). In our
opinion, the source of this discrepancy is the usage of the
approximate random variable models and the inherent nature
of simulation. This clearly demonstrates the effectiveness of
the proposed approach because if we are getting inaccurate
results for such small circuits, the impact of approximations
in the simulation based analysis would be most likely greater
as the circuit sizes increase.

V. CONCLUSIONS

The paper presents the first theorem proving based infras-
tructure for the reliability analysis of combinational circuits.
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Fig. 3. Reliability for Majority Gate based Full Adder

Due to the formal nature of the approach, the reliability
results are 100% accurate and thus can be very useful for
the analysis of combinational circuits used in safety critical
applications. The results of the formal reliability analysis in
the paper form the main core of the proposed infrastructure
and were interactively verified in HOL. These formally verified
theorems then in turn can be used to assess the reliability of
any combinational circuit, which has been illustrated in the
paper by a couple of examples.

This work opens the doors of many new areas in the
direction of theorem proving based reliability analysis of
combinational circuits. First of all, we are in the process of
analyzing some benchmark combinational circuits in order to
further illustrate the practical effectiveness of our approach.
Besides that, we are also working to develop an automatic
reliability analysis tool based on the proposed approach. The
reasoning process regarding the reliability theorems of combi-
national circuits is decidable as it utilized the theorems given
in Table I and Theorem 2 only and thus can be automated.
Another important aspect to work on is the scalability of our
approach. We are investigating the option to partition the given
circuits in smaller modules and using the reliability of these
small modules to assess the reliability of the complete circuit.
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