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Abstract—In this paper we provide an approach for the formal
verification of a frequency domain equalizer using higher-order
logic based theorem proving. We perform a multi-level formal
error analysis to verify an implementation of the equalizer based
on the Fast LMS (Least Mean Square) algorithm. The formal
error analysis is performed at the floating-point, fixed-point, and
real numbers domains. The expressiveness of higher-order logic
allows us to model the equalizer in all the three number domains
and valuate the errors generated by approximating the floating-
and fixed-point designs to the real domain of the frequency
domain equalizer. This application shows the efficiency of formal
methods in analyzing and verifying complex systems such as the
frequency domain equalizer.

I. INTRODUCTION AND MOTIVATION

Equalization is one of the applications of adaptive filtering.
Its role consists of eliminating the inter-symbol interference
caused by the noise in the transmission environment. To
get an output matching as much as possible to the desired
response, uncountable adaptive algorithms are used to regulate
the filter or the equalizer coefficients. To decrease the filtering
complexity, the equalizer can be implemented in the frequency
domain using the Fast Fourier Transform (FFT) and IFFT (In-
verse FFT), where time convolution is replaced by frequency
multiplication. This method offers low complexity growth in
comparison with the time domain method.

Data processing and filtering in the frequency domain
requires dealing with data at different domains: real numbers,
floating-point numbers, and fixed-point numbers domains.
This conversion generates and accumulates errors due to
the different level of accuracy provided by each number’s
domain. Therefore, a frequency domain multiplication based
system must be tested thoroughly, and error analysis must be
conducted to be sure about the correctness of its operation.

Verifying the correctness of the equalizer is very challenging
because, first, the equalizer implementation is based on an
iterative algorithm, second, it contains multiple FFT and IFFT
blocks, finally, it contains multiple mathematical operators in
different number domains. As a result, errors are naturally
generated during data conversion between these domains, and
can accumulate while performing various algorithmic itera-
tions, FFT, and IFFT operations. Therefore, an implementation
of such system must be verified in order to be sure that
error accumulation is within acceptable limits. Traditionally,

this is achieved using simulation. For instance, the Simulink
framework [1] can be used in order to develop and simulate a
model for the system under test, where the error is estimated
in every step of the simulation for a number of iterations.
To achieve a certain level of assurance, specifically, in safety
critical applications, estimation based simulation becomes
inadequate and requires tremendous time. To overcome these
problems in simulation, we will use a theorem proving based
verification in order to provide formal error analysis for the
equalizer.

Higher-order-logic (HOL) theorem proving [2] is a formal
method that is used to conduct precise analysis of various
systems. It is based on a system of deduction with a precise
semantics and is expressive enough to be used for the pre-
cise specification of systems such as the frequency domain
equalizer. In this work we will use the HOL theorem prover
[2] in order to provide error analysis for an implementation
of the frequency domain equalizer based on the Fast LMS
algorithm [3]. This analysis is required to show that the error
generated in the implementation of the Fast LMS algorithm
conforms with the required accuracy of conversion in the
equalizer design to operate properly. The formal analysis of
the design intends to show that, when converting from one
number domain to another, the algorithm produces the same
values with an accepted error margin caused by the round-
off error accumulation. To this end, we will adopt a similar
approach to the DSP (Digital Signal Processing) verification
methodology developed by Akbarpour [4].

John Harisson [5] used the HOL-Light theorem prover to
approximate floating-point algorithms to their mathematical
counterparts. He mainly proved that the floating-point expo-
nential function has a correct overflow behavior and when this
overflow is absent, the result is linked to a precise error value.
Akbarpour [4] continued the work of [5] and proposed an error
analysis framework based on theorem proving and dedicated
specially to DSP algorithms. The methodology is based on
the idea of representing the system in the three domains; the
real, the floating-point and the fixed-point. Akbarpour applied
his technique on digital filters [6] as well as on a 16 point
radix 2 FFT [7]. Abdullah [8] adopted the methodology of
Akbarpour to study the error analysis of an FFT-IFFT system
which is a combination of a 64 point radix 4 FFT and IFFT
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blocks. This proved that the work in [4] is reusable, scalable,
and applicable on big case studies.

This paper is also considered as an application of the formal
verification framework developed in [4] since it is dealing with
the error analysis of a frequency domain equalizer. However,
the application we verify in this work is considered more
complex and error prone than the design in [9], where there is
only a single combination FFT and IFFT blocks, whereas our
system is composed of three FFTs and two IFFTs. In addition,
the equalizer is based on more arithmetic operations that use
complex numbers of type real, floating-point and fixed-point
numbers. Hence, the formalization of error expressions and
error analysis we intend to perform on the design requires
more complex theorems for the different number domains and
design blocks. Finally, error analysis for the equalizer requires
formalizing input vectors to be able to store various symbols
in each iteration of the Fast LMS algorithm.

II. FREQUENCY DOMAIN EQUALIZER

The implementation of the frequency domain equalizer [10]
is based on the Fast LMS adaptive frequency domain algorithm
[11]. As illustrated in Figure 1 below, it uses the overlap-save
convolution algorithm [11]. First, the input signal is transferred
from time domain into frequency domain using FFT. Then its
conjugate is multiplied by the current error in the frequency
domain, and gradient constraints is applied on the resulting
signal. The result is multiplied by the step size parameter and
added to the previous coefficients values. The output is then
used to calculate the error for the next iteration. This operation
is repeated again.

The implementation of the equalizer was tested using sim-
ulation in the Simulink environment [3]. In this work, we will
use the theorem proving based verification in order to provide
an accurate formal error analysis of the Fast LMS algorithm.
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Fig. 1. Frequency Domain Equalizer using the Fast LMS Algorithm

III. FORMAL ERROR ANALYSIS IN HOL

To formalize the error due to the floating-point rounding in
the HOL theorem prover, we use two fundamental theorems:
the first one deals with floating-point rounding errors, and
states that if x is a real number within the floating-point
range, then 𝑥𝑅 = 𝑥(1 + 𝛿), ∣𝛿∣ ≤ 2−𝑝; while the second
one deals with fixed-point rounding errors, and states that
if x is a real number within the fixed-point range, then
𝑥

′
𝑅 = (𝑥 + 𝜖), ∣𝜖∣ ≤ 2−𝑓𝑟𝑎𝑐𝑏𝑖𝑡𝑠(𝑋), where 𝑝 is the precision

of the floating-point format, 𝑥 is the real number, 𝑥𝑅 is the
floating-point value and 𝑥

′
𝑅 is the fixed-point value. The

rounding error in the floating-point domain is multiplicative,
while it is additive in the fixed-point domain [12], [13].
Evaluating arithmetic operations, denoted as ★, is defined as
𝑓𝑙(𝑥★𝑦) = (𝑥★𝑦)(1+𝛿), where ∣𝛿∣ ≤ 2−𝑝 in the floating-point
domain, and ∣𝛿∣ ≤ 2−𝑓𝑟𝑎𝑐𝑏𝑖𝑡𝑠(𝑋) in the fixed-point domain.

The verification methodology, as depicted in Figure 2, is
based on a formal model for numbers in three different
domains: fixed point, floating-point, and real domains and a
valuation procedure for numbers conversion. Based on this
conversion, error analysis is performed between the actual real
values obtained and the converted ones from both floating-
point and fixed-point domains. Finally further analysis is
performed to show the error analysis between fixed-point and
floating-point.
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Fig. 2. Formal Error Analysis Methodology in HOL

In Figure 2, circular shapes refer to the Fast LMS algorithm
in a specific number domain; real, floating-point or fixed-point,
while the hexagon ones represent the error analysis that we
conducted on the design in these domains.

To perform the error analysis of the Fast LMS algorithm, we
used existing theories (libraries) in HOL and built on top of
them the necessary theories to reason about error generation
and accumulation in the equalizer. First, the construction of
complex numbers was necessary for the implementation of
the specification. Regarding the floating-point and the fixed-
point modeling of the design, we used, respectively, the
formalization of the IEEE 754 standard based floating-point
arithmetic [6] and the fixed-point arithmetic HOL theorems
developed by Akbarpour et. al. [14].

We formalize errors in the floating-point and fixed-point
domains for the designs using the following two lemmas;
float complex val and fxp complex value, denoted as 𝑉 𝑎𝑙𝑓𝑝
and 𝑉 𝑎𝑙𝑓𝑥 , respectively, and defined as follows:
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float_complex_val =
⊢lemma ∀ z. float_complex_val z =
complex(Val(float_Re z),Val(float_Im z))

fxp_complex_value =
⊢lemma ∀ z. fxp_complex_value z =
complex(value(fxp_Re z),value(fxp_Im z))

where the function 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is used to compose a complex
variable from two floating-point or fixed-point values. The ef-
fect of these functions on the arithmetic operations is inherited
from the effect of the function Val and value. The function Val
is used to define the rounding error due to the valuation of the
floating-point in real number. The effect of the Val function
on arithmetic operations is defined as:

∀ 𝑎 𝑏.∃ 𝑒.𝑉 𝑎𝑙(𝑎+ 𝑏) = (𝑉 𝑎𝑙 𝑎+ 𝑉 𝑎𝑙 𝑏) ∗ (1 + 𝑒)

∀ 𝑎 𝑏.∃ 𝑒.𝑉 𝑎𝑙(𝑎− 𝑏) = (𝑉 𝑎𝑙 𝑎− 𝑉 𝑎𝑙 𝑏) ∗ (1 + 𝑒)

∀ 𝑎 𝑏.∃ 𝑒.𝑉 𝑎𝑙(𝑎 ∗ 𝑏) = (𝑉 𝑎𝑙 𝑎 ∗ 𝑉 𝑎𝑙 𝑏) ∗ (1 + 𝑒)

where a and b be two floating-point numbers and e a real
number. e in the above lemmas defines the error caused by
the valuation of the fixed-point in real number. The effect of
the value function on arithmetic operations is given as:

∀ 𝑎 𝑏 𝑋.∃ 𝑒.𝑣𝑎𝑙𝑢𝑒(𝐹𝑥𝑝𝐴𝑑𝑑 𝑋 𝑎 𝑏) = 𝑣𝑎𝑙𝑢𝑒 𝑎+ 𝑣𝑎𝑙𝑢𝑒 𝑏+ 𝑒

∀ 𝑎 𝑏 𝑋.∃ 𝑒.𝑣𝑎𝑙𝑢𝑒(𝐹𝑥𝑝𝑆𝑢𝑏 𝑋 𝑎 𝑏) = 𝑣𝑎𝑙𝑢𝑒 𝑎− 𝑣𝑎𝑙𝑢𝑒 𝑏+ 𝑒

∀ 𝑎 𝑏 𝑋.∃ 𝑒.𝑣𝑎𝑙𝑢𝑒(𝐹𝑥𝑝𝑀𝑢𝑙 𝑋 𝑎 𝑏) = 𝑣𝑎𝑙𝑢𝑒 𝑎 ∗ 𝑣𝑎𝑙𝑢𝑒 𝑏+ 𝑒

These lemmas are dedicated to complete the error analysis
for rounding numbers between different domains, and will be
used to formalize FFT in the next Section.

IV. FORMALIZING THE FREQUENCY DOMAIN EQUALIZER

IN HOL

In this section, we will discuss the major theorems we de-
fined for the equalizer design. The structure of these theorems
is shown in Figure 3. In order to perform complete error
analysis for the whole design, each block of the Fast LMS
algorithm described above in Figure 1 must be formalized in
HOL. As shown in the figure below, the theorems for every
block are intended to show the validity of rounding and error
accumulation.

The first theorem deals with error analysis between the real
and the floating-point representations of the FFT block. It
consists of a simple subtraction between the floating point val-
uation and the real valuation of FFT. Using 𝐶 for composing
a complex number, 𝑃𝑓𝑝 for float principal root function, and
𝑃 for real principal root, this theorem, denoted as 𝐸𝐹𝑅𝐹𝑝

, is
formalized as follows:
⊢thm ∀ 𝑥, 𝑦, 𝑘 ⋅ ∃ 𝑒1, 𝑒2, 𝑒3 ⋅ 𝐸𝐹𝑅𝐹𝑝(𝑥, 𝑦, 𝑘) =

𝑉 𝑎𝑙𝑓𝑝(𝑃𝑓𝑝(0, 𝑘) ∗ 𝐸𝐿(0, 𝑦) ∗ 𝐶(1 + 𝑒3, 0))+
𝑉 𝑎𝑙𝑓𝑝(𝑃𝑓𝑝(1, 𝑘) ∗ 𝐸𝐿(1, 𝑦) ∗ 𝐶(1 + 𝑒2, 0))+
𝑉 𝑎𝑙𝑓𝑝(𝑃𝑓𝑝(2, 𝑘) ∗ 𝐸𝐿(2, 𝑦) ∗ 𝐶(1 + 𝑒1, 0))−
∑3

𝑛=0(𝑃 (𝑛, 𝑘) ∗ 𝐸𝐿(𝑛, 𝑥))

The real to fixed-point error analysis of the FFT is estab-
lished by proving that the produced error is equivalent to the
subtraction between the valuated fixed-point FFT expression
and the real one. Using 𝑀𝑈𝐿 for complex multiplication, and
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Fig. 3. Structure of HOL Theorems for the Equalizer

𝑃𝑓𝑥 for fixed-point principal root function, this error, denoted
as 𝐸𝐹𝑅𝐹𝑥

, is formalized as follows:

⊢thm ∀ 𝑥, 𝑦,𝑋, 𝑘 ⋅ ∃ 𝑒1, 𝑒2, 𝑒3 ⋅ 𝐸𝐹𝑅𝐹𝑥(𝑥, 𝑦, 𝑋, 𝑘) =
𝑉 𝑎𝑙𝑓𝑥(𝑀𝑈𝐿(𝑋,𝑃𝑓𝑥(𝑋, 0, 𝑘), 𝐸𝐿(0, 𝑦))) + 𝐶(𝑒3, 𝑒3)+
𝑉 𝑎𝑙𝑓𝑥(𝑀𝑈𝐿(𝑋,𝑃𝑓𝑥(𝑋, 1, 𝑘), 𝐸𝐿(1, 𝑦))) + 𝐶(𝑒2, 𝑒2)+
𝑉 𝑎𝑙𝑓𝑥(𝑀𝑈𝐿(𝑋,𝑃𝑓𝑥(𝑋, 2, 𝑘), 𝐸𝐿(2, 𝑦))) + 𝐶(𝑒1, 𝑒1)−∑3

𝑛=0(𝑃 (𝑛, 𝑘) ∗ 𝐸𝐿(𝑛, 𝑥))

Once the real to fixed-point error analysis is achieved, the
fixed-point to floating-point error analysis of the FFT block
is obtained by deducting the results of the real to floating-
point and the real to fixed-point error expressions as given in
Figure 2 above. The following theorem, denoted as 𝐸𝐹𝐹𝑝𝐹𝑥

,
is defined in order to formalize the fixed-point to floating-point
error analysis of the FFT. This error, denoted as 𝐸𝐹𝑅𝐹𝑥

, is
formalized as follows:

⊢thm ∀ 𝑥, 𝑥𝑝, 𝑥𝑓 , 𝑋, 𝑘 ⋅ ∃ 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 ⋅
𝐸𝐹𝐹𝑝𝐹𝑥(𝑥, 𝑥𝑝, 𝑥𝑓 , 𝑋, 𝑘) =

𝑉 𝑎𝑙𝑓𝑥(𝑀𝑈𝐿(𝑋, 𝑃𝑓𝑥(𝑋, 0, 𝑘), 𝐸𝐿(0, 𝑥𝑓 ))) + 𝐶(𝑒3, 𝑒3)+
𝑉 𝑎𝑙𝑓𝑥(𝑀𝑈𝐿(𝑋, 𝑃𝑓𝑥(𝑋, 1, 𝑘), 𝐸𝐿(1, 𝑥𝑓 ))) + 𝐶(𝑒2, 𝑒2)+
𝑉 𝑎𝑙𝑓𝑥(𝑀𝑈𝐿(𝑋, 𝑃𝑓𝑥(𝑋, 2, 𝑘), 𝐸𝐿(2, 𝑥𝑓 ))) + 𝐶(𝑒1, 𝑒1)−
(𝑉 𝑎𝑙𝑓𝑝(𝑃𝑓𝑝(0, 𝑘) ∗ 𝐸𝐿(0, 𝑥𝑝)) ∗ 𝐶(1 + 𝑒6, 0)+
𝑉 𝑎𝑙𝑓𝑝(𝑃𝑓𝑝(1, 𝑘) ∗ 𝐸𝐿(1, 𝑥𝑝)) ∗ 𝐶(1 + 𝑒5, 0)+
𝑉 𝑎𝑙𝑓𝑝(𝑃𝑓𝑝(2, 𝑘) ∗ 𝐸𝐿(1, 𝑥𝑝)) ∗ 𝐶(1 + 𝑒4, 0))

Similar theorems were defined and proven for the IFFT
block. For illustration purposes, the theorem for real to floating
point error, denoted as 𝐸𝐼𝑅𝐹𝑝

, is formalized follows:

⊢thm ∀ 𝐿,𝐿𝑥, 𝑘 ⋅ ∃ 𝑒, 𝑒1, 𝑒2, 𝑒3 ⋅ 𝐸𝐼𝑅𝐹𝑝(𝐿,𝐿𝑥, 𝑘) =
𝑉 𝑎𝑙𝑓𝑝(𝐶4𝑓 ∗ 𝐶(1 + 𝑒, 0)∗
((𝑉 𝑎𝑙𝑓𝑝(𝑃𝑖𝑓𝑥(0, 𝑘), 𝐸𝐿(0, 𝐿𝑥)) ∗ 𝐶(1 + 𝑒3, 0) +
𝑉 𝑎𝑙𝑓𝑝(𝑃𝑖𝑓𝑥(1, 𝑘), 𝐸𝐿(1, 𝐿𝑥))) ∗ 𝐶(1 + 𝑒2, 0) +
𝑉 𝑎𝑙𝑓𝑝(𝑃𝑖𝑓𝑥(2, 𝑘), 𝐸𝐿(2, 𝐿𝑥))) ∗ 𝐶(1 + 𝑒1, 0))−
𝐶4 ∗∑3

𝑛=0(𝑃𝑓𝑥(𝑛, 𝑘) ∗ 𝐸𝐿(𝑛, 𝑥))

 
191 



Having a HOL theorem defined and proved for every
building block of the design, we then need to define one
comprehensive theorem for the whole design. This algorithm
combines all algorithms that define the blocks of the design
together. This theorem is used to obtain the rounding error
from each block and accumulate it together with the error
produced by the successor block in the design as depicted in
Figure 3. Eventually, the rounding error is obtained for the
whole design and validated for the algorithm. This theorem
is proved in HOL, which verifies that the rounding and
accumulated error produced by steps of the algorithm are
within the accepted range given in the specification of the
design. Theorems for error analysis of the blocks of the
frequency domain equalizer that were formalized and proved
in HOL are presented in [15].

V. DISCUSSION

Many existing theories in HOL, e.g., arithmeticTheory,
realTheory, listTheory, pairTheory, realLib, numLib, floatThe-
ory, fxpTheory, ieeeTheory, . . . , were used to derive the
rounding error analysis of the frequency domain equalizer. The
definitions of the Fast LMS algorithm were formalized and
proved based on these theories. All definitions were formalized
first in the real domain, and then all arithmetic operators were
overloaded to build the design in the floating-point and fixed-
point domains using floatTheory and fxpTheory, respectively.

The equalizer application shows that formal error analysis
is applicable on larger scale systems such as the one we
have analyzed, which is traditionally analyzed with paper
and pencil or simulation techniques based on estimating the
error. Formal analysis proves that the implementation meets
its specification with 100% coverage, something that is not
feasible in simulation. In addition compared to the classical
analytical technique, this method is computerized and the
theorems can be efficiently reused to verify other designs that
make use of the same algorithm.

Some specific error analysis theorems that were used in
this work were defined and proven by Akbarpour [4] and
Abdullah [8]. However, we had to build our own theorems
on top of these in order to formalize and verify every block
of the Fast LMS algorithm, and consequently define one
single theorem for the whole design. This shows that relevant
theorems that are proven in HOL can be reused efficiently
in order to verify complex systems of similar properties. In
fact, scalability of HOL theorems is one of its best features,
since proven theorems can be reused efficiently to verify
other designs, which reduces time and effort, in particular
while using the interactive HOL framework environment. The
HOL formalization and error analysis of the frequency domain
equalizer was approximately 2600 lines of code and took more
than 800 man-hours of labor.

VI. CONCLUSION

In this work we apply theorem proving to provide the
formal error analysis for a frequency domain equalizer design.
The equalizer implementation using the Fast LMS algorithm
is based on a number of mathematical operations in three

different domains: floating-point, fixed-point and real numbers.
This required data to be converted between these domains,
which in turn produces errors that can accumulate during
several iterations of the algorithm.

Formal error analysis is used to show that errors in the
equalizer algorithm occurring while converting from one num-
ber domain to the another are within the accepted range based
on the design specification of the equalizer. However, this
required building on top of existing HOL theorems for error
analysis and the derivation of new expressions for the accu-
mulation of round-off error in the algorithm. We developed
a HOL theorem for every building block of the design, then,
we defined one comprehensive theorem for the whole design
to show the validity of rounding and error accumulation. Our
framework scales well with the size of the systems and many
of the theorems that we have proved can be reused in the error
analysis of other signal processing applications.

As future work, we plan to extend the current work and
perform error analysis using the GAPPA framework [16],
where error analysis returns a numerical error range. Another
interesting approach is to use first order theorem proving to
verify properties about the functional behavior of the equalizer.
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