
Parallelization Strategies of the Canny Edge
Detector for Multi-core CPUs and Many-core GPUs

Taieb Lamine Ben Cheikh, Giovanni Beltrame,
Gabriela Nicolescu and Farida Cheriet

Department of Computer Science
Ecole Polytechnique de Montréal

Montréal, Canada
Email: taieb.lamine-ibnecheikh@polymtl.ca

Sofiène Tahar
Department of Electrical and Computer Engineering

Concordia University
Montréal, Canada

Email: tahar@ece.concordia.ca

Abstract—In this paper we study two parallelization strategies
(loop-level parallelism and domain decomposition), and we inves-
tigate their impact in terms of performance and scalability on two
different parallel architectures. As a test application, we use the
Canny Edge Detector due to its wide range of parallelization op-
portunities, and its frequent use in computer vision applications.
Different parallel implementations of the Canny Edge Detector
are run on two distinct hardware platforms, namely a multi-core
CPU, and a many-core GPU. Our experiments uncover design
rules that, depending on a set of applications and platform factors
(parallel features, data size, and architecture), indicate which
parallelization scheme is more suitable.

I. INTRODUCTION

Parallel architectures are considered an efficient solution for
the implementation of high-computation applications, such as
computer vision software. This choice is motivated by (1) the
use of large amounts of data, (2) the highly parallel nature of
these applications, and (3) by the high computation capability
of current multiprocessor architectures.

Among these architectures, we focus in particular on multi-
core CPUs, and on many-core graphics processors (GPU).
Multi-core CPUs offer great flexibility, and can execute code
employing different parallelization strategies. However, cur-
rent technology is limited to a small number of cores. Con-
versely, many-core GPUs provide a large number of cores, but
their peak efficiency is limited to data parallel applications [1].

Since applications have increasing complexity and present
a wide variety of parallel features, it becomes difficult to
decide which parallelization strategy is suitable for a given
architecture to reach peak performance. In this paper, we eval-
uate two different parallelization strategies, on two separate
architectures: a multi-core CPU and a many-core GPU. We
aim at determining guidelines for the efficient parallelization
of common application classes.

We chose the Canny Edge Detector (CED) [2] as a bench-
mark for our experiments since it includes many common
parallelism features, and it is widely used in computer vision
applications. We compared four different parallel CED imple-
mentations on an AMD multi-core CPU and on an NVIDIA
GPU.

The rest of the paper is organized as follows: Section II
describes previous implementations of CED and some related

work on parallelization; Section III introduces the Canny
Edge Algorithm and the proposed parallelization strategies;
In Section IV we show the evaluation results of each strategy;
Finally, Section V draws some concluding remarks.

(a) Input Image (b) OpenCV Implementa-
tion [3]

(c) Previous GPU Imple-
mentation [4]

(d) MATLAB Implementa-
tion [5]

(e) Our Implementation

Fig. 1. Quality Comparison: output images for different CEDs, with the
proposed implementation showing longer and smoother edges

II. RELATED WORK

Domain decomposition and loop-level parallelism are well
known techniques in parallel programming. Domain decom-
position is used for solving partial differential equations on
multiprocessor architectures [6] and for computer vision appli-
cations [7], while loop-level parallelism is a common strategy
used by standards like OpenMP [8].

CED is used as a preprocessing phase in several computer
vision applications. For example, CED has been used as a
first step in the process of identifying and tracking instruments
during laparoscopic surgery [9].

Several implementations of CED can be found in the
literature, using different languages on different hardware
platforms. These implementations generally lack accuracy or
suffer from a long execution time. The CED included in the
Intel OpenCV Libray [3] offers fast edge detection, but does
not perform optimally in a noisy environment (see Fig. 1(b)).
This lack of accuracy is caused by the use of relativly narrow
filters with integer weights. Conversely, MATLAB [5] includes

978-1-4673-0859-5/12/$31.00 ©2012 IEEE

49

GaussianBlur

Gradient at X

Direction

Gradient at Y

Direction

Magnitude

Calculation

Non Maxima Suppression

at Direction 1

Non Maxima Suppression

at Direction 2

Non Maxima Suppression

at Direction 3

Non Maxima Suppression

at Direction 4

Edge Points

Connection
Thinning Edges

Pure Parallel
Nested Sequential

and Parallel
Sequential

Section 1 Section 2 Section3

Fig. 2. Canny Edge Detector Diagram

an accurate Canny Edge Detector with larger filters and
floating point weights, but requires longer execution times.

CED was implemented on a Tilera processor in [10],
using loop-level parallelism and domain decomposition. The
results of [10] show that domain decomposition offers better
scalability compared to loop-level parallelism. However, their
implementation is restricted to the Tilera64 architecture, and
results are shown for only eight cores out of sixty-four
available.

CED was also run on a NVIDIA GPU [4], using fine-
grained loop-level parallelism. Although this last implementa-
tion offers the best performance in terms of execution time,
it does not produce accurate and smooth edges as shown in
Fig. 1(c).

The main challenge of all these implementations is to attain
real-time execution, while keeping accurate edge detection.
Our proposed implementation on GPU offers both high accu-
racyaround (e.g., for laparoscopic surgery) and low execution
time as shown in Fig. 1(e) and Fig. 6, respectively.

In addition to this contribution, this paper describes two
parallelization strategies that are generally not well studied
for many-core GPUs. In the following, we provide a detailed
performance evaluation of these strategies, for both multi-core
CPUs and many-core GPUs.

III. PARALLELIZATION STRATEGIES

Similarly to the MATLAB version [5], our algorithm con-
sists of 6 stages (see Fig. 2): (1) Gaussian Blur, (2) Gradient
Calculation, (3) Magnitude Calculation, (4) Non Maxima
suppression, (5) Connecting Edge Points, and (6) Thinning
Edges. We can distinguish three sections in the algorithm,
depending on the way in which parallelism can be exploited.

The first section is purely parallel, and can be equally
distributed over different threads. The second section is strictly
sequential, and the third consists of a sequential loop including
purely parallel subsections. Based on this classification, we
experiment with two different parallelization strategies.

A. Loop-level Parallelism vs. Domain Decomposition

Loop-level parallelism is considered a fine-grained tech-
nique: it consists of parallelizing loops where iterations can

be executed independently. If one considers OpenMP, this
operation is performed by adding specific directives, and the
OpenMP runtime will be in charge of the allocation and
distribution work to threads. Loop-level parallelism has a po-
tentially higher reusability than domain decomposition: since
CED includes a set of algorithms common to computer vision
programs, such as Gaussian Blur and Gradient Calculation,
their parallel implementation can be easily reused in other
computer vision programs. However, loop-level parallelism
may suffer from the overhead due to the thread’s fork-join
operations, and from poor data locality.

Conversely, domain decomposition is considered a coarse-
grained technique, consisting in equally dividing an input data
structure into sub data structures. In our study, the input image
to the CED is split into sub images of equal sizes, and the
original sequential program is executed on each sub image
independently and in parallel. The main benefit of data de-
composition is the ease of parallelization, since a large section
of the code base is maintained, even though some additional
code is needed to split and merge the data structures. It is
also necessary to assess the presence of dependencies between
neighbouring sub-images: in this case, the partitioning strategy
has to be tuned to minimize the dependencies’ impact on
performance. Additional advantages of domain decomposition
include avoiding the additional overhead caused by fork-join
operations, and an increase in data locality.

The parallelization scheme for loop-level parallelism and
domain decomposition is shown in Fig. 3(a) and Fig. 3(b),
respectively.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

The proposed CED is similar to that offered by MATLAB:
we translated the MATLAB function to C++ and implemented
it using OpenMP and CUDA [11], respectively, on a multi-
core CPU and a many-core GPU. We applied our solutions
to target images of different sizes (512x512 and 2048x2048)
to evaluate the impact of data size on the scalability of the
proposed implementations.

50

Th1 Th2 Th3
Th

N

Th1 Th2 Th3
Th

N

Gaussian

Blur

Gradient at

X Direction

Connecting

Edge Points

Th1 Th2 Th3
Th

N

Th1 Th2 Th3
Th

N

Non Maxima

Suppression

Thinning

Edges

Th1 Th2 Th3
Th

N

Section 3

Section 1

Section 2

(a) Loop-level parallelism

Gaussian

Blur

Gradient at

X Direction

Gradient at

Y Direction

Connecting

Edge Points

Th1 Th2 Th3 ThN

Th1 Th2 Th3 ThN

Non Maxima

Suppression

Thinning

Edges

Section 1

Section 2

Section 3

(b) Domain Decomposition

Fig. 3. Parallelization Strategies

Our multi-core CPU platform is a dual AMD Opteron 6128,
where each processor has 8 cores working at 2 GHz. For each
processor, the cache memory is distributed as follows: 8 x 64
KB Data L1, 8 x 64 KB Instruction L1, 8 x 512 KB L2, and
10 MB shared L3. The system features 6 GB DDR3 memory
at 1333 MHz for each processor.

Our GPU platform is the NVIDIA GeForce GTX 480, a
Fermi-series graphics processor. This platform includes 480
Streaming Processors (SP) or cores distributed on 15 Stream-
ing Multiprocessors (SM) as 32 SP per SM. Each core is
working at 1.4 GHz, and the global memory assigned to the
GPU is 1.5 GB.

B. Performance Evaluation

The CED was divided into three sections according to
the parallelism opportunities provided by the algorithm
(see Fig. 2). These sections were sequentially profiled using
two images of different sizes, to identify the workload of

TABLE I
PROFILING OF CANNY EDGE DETECTOR’S SECTIONS ON CPU

512x512 2048x2048
Program Sections Exec. Exec.

Time % Time %
Section 1 132 51.5 3889 72.4
Section 2 3 1.1 26 0.4
Section 3 118 46.1 1431 26.6
Total 256 100 5371 100

1 2 4 6 8 10 12 14 16
0

1,000

2,000

3,000

4,000

5,000

of Cores

E
xe

cu
tio

n
Ti

m
e

(m
s)

Loop-level Parallelism
Domain Decomposition

Fig. 4. Execution Profiling for 2048x2048 Image on a Multi-core CPU

each section, as illustrated in Table I. The profiling results
show that: (1) the execution time of Section 2, the sequential
section, is insignificant compared to the other parallel sections,
thereby it has minor influence on the parallel scalability
of CED and (2) most of the execution time takes place
in Section 1 (increasingly with data size), which requires
an efficient parallelization strategy for this section to reach
optimal performance.

1) Parallelization strategies on multi-core CPUs: We com-
pared the speedup of domain decomposition and loop-level
parallelism on a multi-core CPU: Fig. 4 shows that the
domain decomposition strategy offers a considerable lower
execution time than the loop-level parallelism strategy for
large image sizes due to increased data locality. For small

51

0 2 4 6 8 10 12 14 16
0

5

10

15

of Cores

Sp
ee

du
p

Ideal Speedup
Loop-level Parallelism (512x512)

Loop-level Parallelism (2048x2048)
Domain Decomposition (512x512)

Domain Decomposition (2048x2048)

Fig. 5. Overall Speedup on a Multi-core CPU

Tota
l(5

12
x5

12
)

Sec
tio

n1
(51

2x
51

2)

Sec
tio

n3
(51

2x
51

2)

Tota
l(2

04
8x

20
48

)

Sec
tio

n1
(20

48
x2

04
8)

Sec
tio

n3
(20

48
x2

04
8)

0

50

100

E
xe

cu
tio

n
Ti

m
e

(m
s)

Combined
Loop-level Parallelism

Domain Decomposition

Fig. 6. Execution Profiling on a Many-core GPU

images (512x512) no considerable difference in the execution
time could be found between the two strategies. As shown in
Fig. 5 the domain decomposition provides better speedup and
scalability than loop-level parallelism, and increasingly so for
larger images.

2) Parallelization strategies on many-core GPUs: Concern-
ing fine-grained parallelism, as expected, the application has
a lower execution time for Section 1, as shown in Fig. 6.
This is due to the fact that the GPU architecture is more
suitable for fine-grained data parallelism, as opposed to multi-
core CPUs [12]. Fig. 6 shows that, however, coarse-grained
parallelism offers a lower execution time for Section 3. This
is essentially due to the structure of the last section, which
consists of an outer loop nested with a series of inner loops:
each loop can be parallelized at pixel level, but each iteration
of the outer while loop has to be executed sequentially. This
means that the host CPU has to exchange data between the
GPU and the CPU memory at each loop iteration, adding a
significant overhead. Combining the two parallelization strate-
gies under the parallelization strategy named Combined leads
to the lowest execution time as shown in Fig. 6 . In addition,
Fig. 7 shows that combining the two strategies guarantees the
best speedup (33x when compared to sequential execution,
and up to 3x with respect to 16 cores) for the 2048x2048
image sizes.

V. CONCLUSIONS

In this paper we showed that there is no “silver bullet” par-
allelization strategy for a given program. One parallelization

0 2 4 6 8 10 12 14 16
0

10

20

30

of Cores

Sp
ee

du
p

Combined (512x512)
Combined (2048x2048)

Loop-level Parallelism (512x512)
Loop-level Parallelism (2048x2048)
Domain Decomposition (512x512)

Domain Decomposition (2048x2048)

Fig. 7. Many-core GPU vs. Multi-core CPU

strategy may perform well in a given context (architecture,
parallel features and data sizes), while it may be performing
poorly in another. Based on the performance evaluation of
the two studied parallelization strategies, we can conclude
that loop-level parallelism works well for pure data parallel
program running on GPUs, while domain decomposition is
well suited for the processing of large amounts of data on
multi-core architectures. As future work, we plan to evaluate
the performance of different programming models for each of
our strategies.

REFERENCES

[1] S. Lee, M. M. T. Chakravarty, V. Grover, and G. Keller, “GPU kernels
as data-parallel array computations in haskell,” Methods, vol. 23, pp.
1–9, 2009.

[2] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.
679–698, 1986.

[3] G. Bradski, “The opencv library,” Dr Dobbs Journal of Software
Tools, vol. 25, no. 11, pp. 120–126, 2000. [Online]. Available:
http://opencv.willowgarage.com

[4] Y. M. Luo and R. Duraiswami, “Canny edge detection on NVIDIA
CUDA,” IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pp. 1–8, 2008.

[5] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[6] K. Sun, Q. Zhou, K. Mohanram, and D. C. Sorensen, “Parallel domain
decomposition for simulation of large-scale power grids,” IEEE/ACM
International Conference on Computer Aided Design, no. 3, pp. 54–59,
2007.

[7] T. P. Chen, D. Budnikov, C. J. Hughes, and Y.-K. Chen, “Computer
vision on multi-core processors: Articulated body tracking,” IEEE In-
ternational Conference on Multimedia and Expo, pp. 1862–1865, 2007.

[8] C. Terboven, D. An Mey, and S. Sarholz, “Openmp in multicore archi-
tectures,” International Workshop on OpenMP A Practical Programming
Model for the MultiCore Era, pp. 1–15, 2008.

[9] L. Windisch, F. Cheriet, and G. Grimard, “Bayesian differentiation of
multi-scale line-structures for model-free instrument segmentation in
thoracoscopic images,” in International Conference on Image Analysis
and Recognition, 2005, pp. 938–948.

[10] A. Z. Brethorst, N. Desai, D. P. Enright, and R. Scrofano, “Performance
evaluation of canny edge detection on a tiled multicore architecture,” in
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, vol. 7872, 2011, pp. 1–8.

[11] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide, 2007.

[12] N. Bell, S. Dalton, and L. Olson, “Exposing fine-grained parallelism
in algebraic multigrid methods,” NVIDIA Technical Report, NVIDIA
Corporation, June 2011.

52

