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Abstract—This paper presents a method for characterizing
the DC operating points of analog circuits. We construct fuzzy
DC equations that model circuit parameter variations and apply
a global optimization algorithm to estimate the location of DC
points. We applied our method to analyze the stability of a
ring oscillator and the influence of the input voltage offset
on the DC characteristic of a differential pair. Our results
prove the effectiveness of our method in describing circuits DC
performance parameters and predicting possibilities of undesired
circuit operations.

I. INTRODUCTION

As designs are moving into submicron technologies, analog
effects are becoming a major concern during the verification
at the circuit level. A first step in analog verification should
start with a study of the main properties of the circuit, such as
identifying its operating points. Such task is crucial because
it directly affects the performance and yield of the circuit. In
addition, this analysis is problematic, since finding equilibrium
points consists in searching for the roots of a non linear
vector valued function [1]. Moreover, the root search problem
becomes more complicated under circuit parameters variation
that directly affect the location and stability of DC operating
points. For example, equilibrium points may move about or
change their properties, as the parameters of the circuit vary.

Most efforts in formal methods for circuit steady state
characterization have focused on using linear arithmetic
solvers [2] [3] [4] where environment variations are modeled
using a set of intervals. Besides the high computational time
and the shortcomings of interval arithmetics, those approaches
are often incomplete. The reason is the abstraction of transistor
models by piecewise linear approximations that can easily
miss operating points and fail to capture the real steady
state behavior of the circuit. Monte Carlo methods [5] are
typically used to manage device variation with steady state
analysis. This method requires a large number of simulations
to be evaluated. Also, due to the extremely large number of
parameters affected by process variation and the complexity
of analog circuits, such technique is usually time consuming
and non exhaustive.

Global non linear optimization involves a set of techniques
used to find the extrema of constrained nonlinear multivariable
functions [6]. Fuzzy dynamical models are an alternative to
introduce uncertainty in deterministic dynamical models [7].
Such models can be used for analog circuits to explore their
state space and study the effect of their parameters varia-
tion [8]. In this work, process variation and circuit imperfec-
tions are incorporated as fuzziness in DC equations. Then,
a global optimization algorithm is employed to determine

bounds of the DC solutions and characterize the DC behavior
deviation over these bounds.

In contrast to [2] [3] [4], our method uses fully non linear
device models, integrates efficiently device uncertainty using
fuzziness and provides a way to automatically compute the
bounds of any circuit parameter performance such as stability,
DC gain, noise margin and power using the obtained operating
points characterization. We do not claim finding the solution
to the problem of locating all the equilibrium points of analog
circuit. However, our method is capable of providing useful
information about the circuit reliability and robustness.

The rest of the paper is organized as follows: Section II
details our methodology for DC operating points characteriza-
tion using a fuzzy based modeling of the circuits and a global
optimization technique. We also propose an algorithm for
testing the effect of parameter variation on equilibrium points
properties. In Section III, we provide experimental results
for two analog circuits: a ring oscillator and a differential
amplifier. In Section IV, we present our conclusions and future
work.

II. DC SOLUTIONS CHARACTERIZATION METHODOLOGY

An overview of our proposed methodology for estimating
the location of DC equilibrium points under parameter varia-
tions is shown in Figure 1. The DC equations are transformed
into a set of non linear constraints. These non linear constraints
and the fuzzy circuit parameters are input to a global non linear
optimization step which estimates the DC solutions location.
The accuracy of the fuzzy global optimization is enhanced
by providing an initial guess determined during a previous
DC sweep for nominal circuit parameters. The resulting fuzzy
distribution can be analyzed in order to predict the circuit
sensitivity to the parameters variation.















 







Figure 1. Fuzzy DC solutions characterization
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A. Fuzzy DC Equations

Analog circuit DC equations have usually the form:

f(x,u,P) = 0 (1)
P = µP

where f is a non linear function, u ∈ Rm is a DC input
and P is a set of circuit parameters related to the physical
characteristics of the components. We model these parameters
as fuzzy set [7] µp defined using a membership function, as
given in Figure 2.

Since it is not always possible to solve analytically the
given set of DC equations for a specified fuzzy distribution, we
need to convert it to a form that can be accepted by numerical
solvers and still express the uncertainty of parameters. Similar
to [9], we consider that a possibility distribution is a collection
of hαcut corresponding to a level h from 0 to 1, the resulting
set of intervals can be processed iteratively. The hαcut of a
fuzzy set having a triangular distribution is an interval of the
form [(1 − h)a + hb, hb + (1 − h)c] where (a, b, c) are the
parameters of the triangular membership function as shown in
Figure 2. The hαcut of a fuzzy set with a Gaussian distribution
is defined as [µ −

√
−2σ2 lnh, µ +

√
−2σ2 lnh] where σ, µ

are the parameters of the Gaussian membership function, as
shown also in Figure 2.
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Figure 2. Fuzzy membership function examples

B. Non linear Constraints Generation

In the proposed methodology, the non linear constraints
are:
- A number of non linear equalities, Ceq(x, u, P ) = 0 which
are equivalent to the DC equations f(x, u, P ) = 0.
- A set of non linear inequalities, Cineq(hαcut, P ) ≤ 0, which
express that each parameter lies in the hαcut interval.

C. Fuzzy Global Non linear Optimization

Solving the fuzzy DC equations is transformed into a multi-
variable optimization problem, where the circuit parameters are
constrained to a continuum set of hαcut . Algorithm 1 provides
a description of the fuzzy global optimization procedure to
solve the problem given in Equation (2).

min,max x subject to
{
Cineq (hαcut, P ) ≤ 0
Ceq (x, u, P ) = 0

(2)

The requirements of Algorithm 1 are:
- A set of constraints mycons generated in the previous steps.
- The input range parameters: starting, final and sweep values
of the circuit source (u0, uf ,∆u).
- The initial guess x0 of the global optimization step, deter-
mined by a DC sweep.

Alg. 1 Fuzzy Global Non Linear Optimization
Input: u0, uf ,∆u, dist,x0,∆h, h0, n,mycons, alg
Output: xmin,xmax

1: for h = h0 + ∆h to 1 do
2: for u = u0 + ∆u to uf do
3: for i ∈ 1 to n do
4: [ximin,ximax] = GO(xi(u,x0), alg,mycons)
5: end for
6: end for
7: end for

- The type of the algorithm to use during the optimization
which is the interior point [10] in our case.
- The step value ∆h level that depends on the desired degree
of accuracy.

For each level h from h0 to 1, a constant input u and
an initial guess x0 computed via DC sweep, a Global Op-
timization (GO) procedure determines the minimum and the
maximum of the equilibrium point for that fixed input u when
the circuit parameters vary in the hαcut interval (line 4).
The superposition of the computed intervals [ximin,ximax]
at each iteration forms a fuzzy distribution of the circuit DC
equilibrium points.

D. Analysis of Fuzzy DC Solutions

The last step of the methodology is the analysis of the
obtained fuzzy DC sets which characterize different circuit
performances. To illustrate this step, we focus on how to
perform circuit stability analysis [11]. Equation (3) provides
the stability conditions of an equilibrium point x based on the
sign of the real part of the eigenvalues of the Jacobian matrix
J of the DC equations at x and for a DC input u.

J =
∂f

∂x |x,u
(3)

Ω = eig(J)

if ∀ ω ∈ Ω, Real(ω) < 0 ⇒ stable x

if ∃ ω ∈ Ω, Real(ω) > 0 ⇒ instable x

Algorithm 2 shows our approach to analyze the stability
of the given circuit over the range of the fuzzy DC states
generated in the previous step. Therefore, in order to claim
that a circuit is stable for a fuzzy DC state, we need to show
that for each hαcut all the maximum of Λ, defined in line 3,
is negative. This concludes that at any point of the fuzzy DC
description, all the jacobian eigenvalues real parts are negative.
Alternatively, if for each hαcut , the maximum of Λ is positive,
we can conclude that the fuzzy DC point includes at least one
instable operating point. However, if we succeed to prove for
each hαcut that the minimum of Λ is also positive, we confirm
that the circuit is always instable and never locks to a fixed
state with the parameter values used.

III. APPLICATIONS

In this section, we apply our method to estimate DC
operating points locations and analyze their stability for a
Three-Stage Ring Oscillator subject to a fuzzy description
related to the size of its inverters. Also, we examine the effect
of a fuzzy input voltage offset on the DC operating points and
the performance of a Differential Amplifier. All simulations
were conducted in a MATLAB environment [12].
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Alg. 2 Stability Analysis
Input: u0, uf ,∆u,∆h, h0, alg
Output: max,min

1: for h = h0 + ∆h to 1 do
2: for u = u0 + ∆u to uf do
3: Λ := sup(real(eig(J(x, u)))
4: mycons := x ∈ [xmin(h), xmax(h)]
5: x0 = (xmax(h)− xmin(h))/2
6: [minΛ,maxΛ] = GO(Λ, x0, alg,mycons)
7: end for
8: end for

A. Ring Oscillator

Figure 3 represents a ring oscillator built from three in-
verters connected in series. Each inverter is composed of a
cascaded nmos and pmos transistors.

!" !# !$

Figure 3. 3-Stage Ring Oscillator

The inverters transistors width ratio r = w(pmos)
w(nmos) affects

the location and the stability of the circuit DC equilibria [13].
We apply our methodology to answer the questions: how does
the variation of the inverters size affect the operating points
location? and is there any possibility that the circuit locks?
Therefore, we model the parameter r as a fuzzy set which leads
to Equation (4), where the first three lines and the last two lines
correspond to the non linear equalities Ceq and inequalities
Cineq constraints, respectively.

In(x3, x1, gnd, r) + Ip(x3, x1, vdd, r) = 0 (4)
In(x2, x1, gnd, r) + Ip(x2, x1, vdd, r) = 0

In(x2, x3, gnd, r) + Ip(x2, x3, vdd, r) = 0

r − hαcutmax ≤ 0

hαcutmin − r ≤ 0

where x1, x2 and x3 are the voltages at the output of each
inverter, gnd = 0 is the ground voltage and vdd = 1.8V is
the power supply voltage. The functions In and Ip model the
non linear current generated by the nmos and pmos transistors,
respectively, based on their gate, drain and source voltages. The
objective function during the GO procedure is the circuit state
variable vector. At each iteration, the parameter r belongs to an
hαcut. Table I summarizes the results from the analysis of the
ring oscillator DC solutions. In the first experiment, we define
the fuzzy number µr using a triangular membership function
of parameters (a=1, b=2, c=3).

Figure 4(b) shows the obtained results. For each interval
hαcut, in which the parameter r lies, we locate a single
region [ximin, ximax] of equilibrium points. The minima are
represented by the red color while the maxima are in blue. The
superposition of the located regions forms a possibilistic trian-
gular distribution offering an overapproximation that covers all
the possible values of the operating points and maintains the
same membership function of the parameter r. If we suppose

Table I. EXPERIMENTAL RESULTS

Experiment 1 Experiment 2
Membership triangular gaussianfunction

Fuzzy a=1, b=2, c=3 σ = 0.1, µ = 0.4parameters
Performance Stable oscillation May oscillate or not

results X X

that the circuit is initially designed to work properly such as
the width of the pmos transistor is twice the nmos one, the
voltage at each output node of the inverters is in this case
0.85V . In the worst case scenario in the proposed triangular
distribution of the r parameter, the operating point may reach
a minimum of 0.76V which is approximately a degradation
of 10% or a maximum of 0.9V which is an increase of
approximately 5%. Those information can be very useful to the
designer to predict the performance parameters sensitivity over
transistor size variation. We analyze the stability of the DC
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Figure 4. Fuzzy triangular distribution and stability testing

points distribution as described in Algorithm 2. The maximum
and minimum of Λ when the DC points belong to each located
interval [ximin, ximax] are also shown in Figure 4(c). For all
hαcut, the minimum of Λ is always positive, the DC equilibria
in the located possibilistic distribution are then all unstable.
We notice that the variation of the parameter r as considered
in this example does not affect the properties of the DC
equilibria (unstable). Similar results were found for other odd
stage ring oscillators. Using our proposed approach, we can
conclude that an odd stage ring oscillator will not lock at a
stable DC equilibrium point. The ring oscillator will probably
maintain stable oscillations. Same results were found in [14]
but for a fixed value of the inverter size r = 2, while in
our experiment we assume that we have qualitative, uncertain
knowledge about the value that enables us to cover different
circuit realizations. In the second experiment, we propose
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Figure 5. Fuzzy Gaussian distribution and stability testing

to estimate the location of DC equilibrium points when the
parameter r is very small which means that the width of the
nmos transistor is much larger than the pmos one. We define
the fuzzy number µr using a Gaussian membership function
of parameters (σ = 0.1, µ = 0.4). The resulted region forms
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a possibilistic Gaussian distribution as shown in Figure 5(b).
The experimental results are summarized in Table I.

The stability testing results in Figure 5(c) shows that the
minimum of Λ is always negative which means that there exist
stable equilibrium points in the located distribution. Therefore,
the variation of the parameter r may change the property of
the DC equilibrium point from unstable to stable. It is then
possible that the operating point settles at some stationary state
and causes a failure to oscillation.

B. Differential Amplifier

We consider a CMOS differential amplifier [13] that con-
sists of a current mirror and a differential pair as shown in
Figure 6. The performance of such circuit is very sensitive
to device mismatch. Such mismatch leads to a random offset
that we model as a fuzzy input offset voltage inserted at one
of the input terminal, leading to Equation (5). The objective
of our experiment is to analyze the effect of the offset
on the differential pair operating points and characterize its
performance.

In(Vos, x1, x3) + Ip(x1, x1, vdd) = 0 (5)
In(vss, x2, x3) + Ip(x1, x2, vdd) = 0

In(Vos, x1, x3) + In(vss, x2, x3)− In(x4, x3, vss) = 0

Vos − hαcutmax ≤ 0

hαcutmin − Vos ≤ 0

In Figure 7(a), we consider the offset voltage Gaussian distri-
bution where σ = 0.1 and µ = 0, to model the mismatch. The
minimum and the maximum of the voltage at the output, given
in Figure 7(b), form a Gaussian distribution that covers all the
possible equilibria locations and offers a complete estimation
of the equilibrium values. Ideally, if we ground both inputs, the
output voltage is zero. The circuit is desired to work around
that operating point to ensure a maximum gain and a proper
operation. Our results show that if the offset voltage magnitude
is 0.2V, then the output will be driven away from its ideal
value and saturates either near a negative or positive voltage
level (±2V ). Such output saturation causes a degradation of
the amplifier performances. The effect of Vos on the stability
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Figure 6. CMOS differential amplifier

of the DC operating points is analyzed using Algorithm 2.
Ideally, when the input is 0V , the output should remain
stable. This scenario is illustrated in Figure 7(c) when the
offset is 0V and the maximum of Λ is negative. The stability
analysis shows that the minimum of Λ is always negative while
the maximum becomes rapidly positive as the offset voltage
magnitude increases. Due to the offset voltage, our approach
shows how the operating point may easily become unstable
and lead to an undesired behavior.
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Figure 7. Gaussian distribution of equilibrium points and stability testing

IV. CONCLUSION

This paper proposed a methodology based on global opti-
mization and fuzzy theory to characterize the sensitivity of DC
operating points to parameters variation. The good estimation
of the possible DC values allowed by the fuzzy modeling
approach of analog effects offers a valuable means to predict
the circuit behavior. Our approach is able to cover anomalous
behavior of DC points that can cause circuits failure. It offers
a better coverage than Monte Carlo method and avoids the
oversimplification of circuit models and the huge running
time of formal techniques for DC analysis. The accuracy of
the outcome is comparable to that of a common method of
optimization. The initial point can have a large effect on the
solution. Evolutionary optimization algorithms, which use a
population approach to increase the chance to converge to a
global minimum, can address this limitation.
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