
Towards the Formal Verification of Optical
Interconnects

Sanaz Khan Afshar, Osman Hasan, and Sofiène Tahar
Department of Electrical and Computer Engineering, Concordia University

1515 St. Catherine West, Montreal, Quebec, Canada H3G 2W1
Email: {s khanaf,o hasan,tahar}@ece.concordia.ca

Abstract—Optical solutions have been proposed for on-die
interconnect utilizing the speed-of-light signal propagation and
the large bandwidth of the waveguides. However, the inability to
efficiently analyze photonic devices, which are continuous in na-
ture, using traditional analysis approaches somewhat limits their
applications. In this paper, we present the formalization of two of
the most widely used structures in optical interconnect systems,
i.e., the planar waveguide and Fabry-Pérot cavity, using a higher-
order-logic theorem prover. The proposed formalization can be
utilized to precisely analyze many fundamental components of
an optical interconnect system.

I. INTRODUCTION

Electrical interconnects are the primary bottleneck for the
development of high-performance and low-power consumption
devices. To address this problem, optical interconnects have
emerged as the most promising alternative [1]. The higher
frequency, shorter wavelength, and larger photon energy of
light waves allow faster, wider bandwidth and minimum cross-
talk between signal transmission paths of optical interconnects
compared to electrical counterparts. These factors result in
less propagation delays and higher signal integrity for on-die
applications and also provide extremely dense, high-bandwidth
I/Os onto a chip [2].

Considering the importance of optical interconnects as an
alternate to electrical counterparts and their expected extensive
usage in all domains, there is a dire need of reliable analysis
tools which are as accurate as possible. The most commonly
used computer based techniques for optical system analysis
are based on simulation and numerical methods. There is an
extensive effort on optimizing and improving simulation based
approaches, which accordingly results in specialized tools in
optics, e.g., Lumerical solutions [3]. However, the inherent na-
ture of numerical and simulation based methods fails to bring
100% accuracy in the analysis. The next approach in optical
system analysis is symbolic computations. Computer algebra
systems incorporate a wide variety of symbolic techniques
for the manipulation of calculus problems. Based on these
capabilities, they have been also tried in the area of optical
system analysis, which resulted in dedicated optical analysis
packages, e.g., Optica [4]. However, the analysis results from
computer algebra systems are also not 100% precise due to
the many approximations and heuristics used for automation
and reducing memory constraints.

Recently, formal methods have been employed for veri-
fication of optical systems, e.g., [5], [6], [7]. The main idea
behind formal methods is to develop a mathematical model for
the given system and analyze this model using computer-based

mathematical reasoning, which in turn increases the chances
for catching subtle but critical design errors that are often
ignored by traditional techniques, i.e., simulations and sym-
bolic computations. Analyzing optical interconnects in nano-
scales applications is done in electromagnetic optics. However,
the reported formal analysis of optics are majorly focused on
either ray optics [7] or quantum optics [6]. To the best of
our knowledge, the only formalization done in electromagnetic
optics is [5], which presents the formal analysis of planar
waveguides using the higher-order-logic theorem prover HOL.
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Fig. 1. Optical Interconnect System.

Figure 1 illustrates the schematic of an optical intercon-
nect in an integrated photonics systems. In order to formally
describe the behaviour of optical interconnects, all components
and their interactions need to be formalized. We propose
to employ higher-order-logic theorem proving for the formal
verification of optical interconnects. This paper focuses pri-
marily on two most fundamental components of interconnects,
i.e., the waveguide and Fabry-Pérot cavity [8]. Physically,
the waveguide can be described as an optical structure with
three different refractive indices that allow the confinement
of electromagnetic light waves within their boundaries by
total internal reflection (TIR). Whereas, the Fabry-Pérot cavity,
used extensively in on-die optical interconnects to improve
their performance, is basically composed of two parallel flat
mirrors that are closely spaced and illuminated near normal
incidence. Light wave reflection between two mirrors leads
to constructive and destructive interference of light fields
resulting in a series of stationary electromagnetic waves in the
cavity with interesting features. Depending on the application
in which Fabry-Pérot cavity is used, the electromagnetic field
of the light trapped within the cavity or the intensity of the light
which is transmitted through the cavity are of high importance.

This paper presents a formal specification of the planar
waveguide structure and the Fabry-Pérot cavity and based on
these specifications, we formally verify a few key properties,
which play a vital role in analyzing optical interconnect sys-
tems. The work described in this paper is done using the HOL
Light theorem prover [9]. This choice was made because of
the comprehensive theories of complex analysis [10] available
in the HOL Light library.
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The rest of the paper is organized as follows: Section II
is about the formalization of the planar waveguide. Section
III provides the formalization of Fabry-Pérot cavity and its
application in lasers and photodetectors. Finally, Section IV
concludes the paper.

II. PLANAR WAVEGUIDES

The planar waveguide, shown in Figure 2, is considered to
be infinite in extent in two dimensions, lets say the yz plane,
but finite in the x direction. It consists of a thin dielectric film
surrounded by materials of different refractive indices. The
refractive index of a medium is usually defined as the ratio
between the phase velocity of the light wave in a reference
medium to the phase velocity in the medium itself and is a
widely used characteristic for optical devices. In Figure 2, nc,
ns, and nf represent the refractive indices of the cover region,
the substrate region, and the film, which is assumed to be of
thickness h, respectively.

Fig. 2. Planar Waveguide Structure

The most important concept in optical waveguides is that of
TIR. When a wave crosses a boundary between materials with
different refractive indices, it is partially refracted and partially
reflected. TIR happens when the refraction is minimum. In
ray optics, this minimum is approximated to zero, however, in
electromagnetic optics, it is modelled as an evanescent wave.
Since, the objective of waveguides is to have minimum loss,
we want to ensure TIR. This happens when the following
two conditions are satisfied. Firstly, the refractive index of the
transmitting medium must be greater than its surroundings, and
secondly, the angle of incidence of the wave at the medium is
greater than a particular angle, which is called critical angle.
The first condition is satisfied by choosing nf to be greater
than both ns and nc. The second condition, on the other hand,
depends on the angle of incidence of the wave on the boundary
of the waveguide and thus involves the characteristics of the
wave itself, which makes it more challenging to ensure.

In electromagnetic optics, propagation of light waves
through a medium is characterized by their electromagnetic
fields. Based on Maxwell equations [11], which completely
describe the behaviour of light waves, it is not necessary
to solve electromagnetic problems for each and every field
component. It is well known that for a planar waveguide, it
suffices to consider two possible electric field polarizations,
transverse electric (TE) or transverse magnetic (TM) [8]. In
this paper, we focus on the TE mode, though the TM mode can
also be analyzed in a similar way. The electric and magnetic
field amplitudes in the TE mode for the three regions of the
planar waveguide are given as follows [8]:

Ey(x) =

 Ae−γcx x > 0
B cos(κfx) + C sin(κfx) −h < x < 0
Deγs(x+h) x < −h

(1)

γc, γs, κf =
√
β2 − k20n2c ,

√
β2 − k20n2s,

√
k20n

2
f − β2 (2)

Hz =
j

ωµ0

∂Ey
∂x

(3)

where A, B, C, and D are amplitude coefficients, γc and γs are
attenuation coefficients of the cover and substrate, respectively,
κf is the transverse component of the wavevector k = 2π

λ in
the guiding film, ω is the angular frequency of light and µ is the
permeability of the medium. k0 is the vacuum wavevector, such
that k0 = k

n with n being the refractive index of the medium,
and β and κ are the longitudinal and transverse components
of the wavevector k, respectively, inside the film. The angle θ,
is the required angle of incidence of the wave.

We formalized the electric and magnetic field equation,
given in Equations 1 and 3, by utilizing the higher-order-logic
formalizations of the Heaviside step function, derivative of
a real-valued function and transcendental functions. We also
formally verified the following expression for the magnetic
field by differentiating the electric field expression.

Hz(x) =
j

ωµ0

 −γcAe
−γcx x > 0

κf (−B sin(κfx) + C cos(κfx)) −h < x
γsDe

γs(x+h) x < −h
(4)

This completes the formalization of the light wave in a
planar waveguide, which leads us back to the original question
of finding the angle of incidence θ of the wave to ensure TIR.
β is the most interesting vector in this regard. It summarizes
two important characteristics of a wave in a medium. Firstly,
because it is the longitudinal component of the wavevector,
β contains the information about the wavelength of the wave.
Secondly, it contains the propagation direction of the wave
within the medium, which consequently gives us the angle
of incidence θ. Now, in order to ensure the second condition
for TIR, we need to find the corresponding βs. These specific
values of βs are called the eigenvalue of waveguides since they
contain all the information required to describe the behaviour
of the wave and the waveguide.

The electric and magnetic field equations can be utilized
along with their well-known continuous nature [8] in HOL-
Light to verify the following useful relationship, which is
usually termed as the eigenvalue equation for β.

tan(hκf ) =
γc + γs

κf

(
1− γcγs

κ2
f

) (5)

The above relationship was verified under the assumptions
that (0 < h) ∧ (β < k0nf ) ∧ (k0ns < β) ∧ (k0nc < β) ∧
(0 < ω) ∧ (0 < µ0) ∧ ¬(κ2f = γcγs). The good thing about
this relationship is that it contains β along with all the physical
characteristics of the planar waveguide, such as refractive
indices and height. Thus, it can be used to evaluate the value of
β in terms of the planar waveguide parameters. This way, we
can tune these parameters in such a way that an appropriate
value of β is attained that satisfies the second condition for
TIR, i.e., sin−1(λβ2π ) < critical angle. All the values of β
that satisfy the above conditions are usually termed as the TE
modes in the planar waveguide.
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Due to the inherent soundness of theorem proving, our
verification results exactly matched the paper-and-pencil anal-
ysis counterparts for the eigenvalue equation, as conducted in
[8], and thus can be termed as 100% precise. Interestingly,
the assumption ¬(κ2f = γcγs), without which the eigenvalues
are undefined, was found to be missing in [8]. This clearly
demonstrates the strength of formal methods based analysis as
it allowed us to highlight this corner case, which if ignored
could lead to the invalidation of the whole analysis.

III. FABRY-PÉROT CAVITY

A Fabry-Pérot cavity, shown in Figure 3, consists of two
parallel partially reflecting mirrors with a free space between
them. Due to the effects of interference, only certain frequen-
cies are sustained while others are suppressed by destructive
interference. The two mirrors have field reflection coefficients
of r1e−jp1 and r2e

−jp2 . These factors describe how much
light is reflected by the front and back mirrors, Mf and Mb,
respectively. r1 and r2 are the amplitude reflectivities of the
two mirrors, respectively, and represent the ratio of transmitted
electromagnetic field of light to the incident one, and p1 and p2
denote phase-shifts due to light penetration into the mirrors.
The transmission coefficients of mirrors, t1 and t2, describe
how much light passes through each mirror. The two mirrors
are separated by an l-width medium with absorption coefficient
a, which measures the rate of decrease in the intensity of light
as it passes through the cavity.

Fig. 3. Fabry-Pérot Cavity

The most important concept in Fabry-Pérot cavity is that
of constructive interference of the light fields. The incident
light, which is defined by electrical field Ei, is partially trans-
mitted and partially reflected at each mirror. The amplitude of
each subsequent reflection and transmission is reduced due
to the losses encountered from previous reflection and the
absorption of the medium, and an additional phase-shift of
2kl is introduced, for each round-trip they travel, whereas
k is called wavevector and defined as 2π/λ. In the Fabry–
Pérot cavity the electrical field at three wavefronts is of high
interest. Wavefronts are surfaces of constant electrical field
phase. The first wavefront is located exactly at the output
of cavity, which is the external surface of Mb. In Figure 3,
this wavefront is represented by its corresponding electrical
field Eout. The second wavefront is at the internal surface of
Mf , represented by Ef , and the last one is at the internal
surface of Mb, represented by Eb in Figure 3. Depending on
the particular application, Eout, Ef , Eb or all can be of high
importance. For applications, such as light emitting diodes,

lasers, and modulators, where the output of the system is in
the form of optical signals, Eout is of high interest. On the
other hand, Ef and Eb are of high interest when the system
operates on optical signals, like photo-detectors.

We formalized the behaviour of Fabry-Pérot cavity in
higher-order logic by first formalizing the behaviour of its
two most basic components, i.e., a mirror and a medium.
The behaviour of a mirror can be best described by Fresnel’s
law [8], according to which both reflection and refraction of
light occur when a light strikes a surface with a different
refractive index. The fraction of light that is reflected from
the surface depends on its field reflection coefficient re−jp
and the refracted portion of light from the surface depends
on its transmission coefficient t. These coefficients in turn
depend on the refractive indices of the surface as well as
the medium through which the light was traveling before
striking the surface, the angle of incidence of light, and the
characteristics of the light wave involved [8]. The second major
component of the Fabry-Pérot cavity is the medium between
the two mirrors. Firstly, some of the light is absorbed while
passing through a medium and this absorbtion is characterized
by the absorbtion coefficient a and the length of the medium l.
Secondly, the phase of the light passing through a medium also
changes based on the wavevector k and the medium length l.

Building on these basic definitions, we formalized the
complete Fabry-Pérot cavity and verified relations for the
electric fields at the internal and external surfaces of the two
mirrors. These relations are then used to verify the intensity
of light at the output of a cavity [8], formalized as follows:

Io =
(t21t

2
2e

−al)Ii

(1− r1r2e−al)2(1 + 4r1r2e−al

(1−r1r2e−al)2 sin2(kl + p1+p2
2

))
(6)

where Ii is the intensity of incident light at Mf . The above
relationship was formally verified under the assumptions
that 0 ≤ r1 ∧ 0 ≤ r2 ∧ r1 < 1 ∧ r2 < 1. The formaliza-
tion and verification details can be found in [12]. Equation
6 plays a vital role in formally reasoning about resonant
cavity enhanced light-emitting diodes, lasers, and modulators.
It allows to evaluate the transmission intensity for the Fabry-
Pérot cavity in terms of the characterizing parameters of the
system, i.e., r1, r2, p1, p2, t1, t2, a, and l and the light, i.e.,
the wavevector k. Therefore its formal verification allows us
to precisely design many systems that utilize the transmission
intensity of the Fabry-Pérot cavity.

Next, we analyze the interference of light inside the Fabry-
Pérot cavity by building upon the formally verified electrical
field relations at the internal surfaces of the mirrors, Ef
and Eb, in presence of an active layer within the cavity,
demonstrated in Figure 4. The interference behaviour is then
utilized to formalize the ratio of the power absorbed by the
active layer to the incident power, called quantum efficiency.
Quantum efficiency is widely used in analyzing resonant cavity
enhanced optical devices [13]. The expression is formalized as
follows:

η =
t21(e

−al1 + r22e
−al2e−(X))(1− e−add)

1− 2r1r2e−(X) cos(2kl + p1 + p2) + (r1r2)2e−2(X)

(7)

where the variable X denotes the term al1 + al2 + add.
A simplified and widely used alternate expression for the
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Fig. 4. Fabry-Pérot cavity with an Extra Active Layer

quantum efficiency can be obtained by assuming that the
absorbtion of the layers on both sides of the active layer is
negligible, i.e., a = 0. It is important to note here that since
k = 2nπ

λ0
, where n is the refractive index and λ0 is the vacuum

wavelength of the incident light, it can be clearly observed
from Equation 7 that the quantum efficiency is a periodic
function of the inverse wavelength. Thus, by controlling the
Fabry-Pérot cavity parameters (r1, r2, ad), we can maximize
the quantum efficiency of the cavity, for any particular light
wavelength. Hence, the formal verification of Equation 7 plays
a major role in the precise design of optical interconnects
and other Fabry-Pérot cavity applications. Details on our
formalization can be found in [12].

We now apply the above formal analysis of the Fabry-Pérot
cavity on a laser output [14] and on quantum efficiency of a
photodetector [13] as fundamental components of the optical
interconnect. Details can be found in [12].

1) Laser Source: A symmetric Fabry-Pérot cavity, with
t1 = t2 =

√
0.1, r1 = r2 =

√
0.9, no phase-shifts, i.e.

p1 = p2 = 0, and e−al = 0.98, illuminated by a gas-laser,
has been studied by [14]. It is shown that for a selective
range of wavelengths, over 70% of light intensity is transmitted
through the cavity. The cavity has 0.6cm width and the laser
wavelength is λ0 = 638.8nm which has ∆λ = 40nm. This
means k belongs to [ 2π

λ0+
∆λ
2

, 2π
λ0−∆λ

2

]. We utilized the formally
verified Equation 6 to prove that the cavity, specified by the
above parameters, has 70% transparency on intensity of light.

2) Photodetector: In [13], a conventional photodetector is
compared to a photodetector enhanced by Fabry-Pérot cavity.
A conventional photodetector, to have quantum efficiency over
90%, requires a very thick absorption layer in excess of
5µm while a Fabry-Pérot cavity with r21 = 0.9, r22 = 0.99,
ad = 104cm−1, a ≈ 0, and l1 = l2 = 1µm, can remain
within the same range of quantum efficiency with an 1µm-
width absorbtion. In this cavity, phase-shifts and attenuation
coefficients are considered to be zero, and r21 + t21 = 1. We
utilized the Quantum Efficiency theorem, given in Equation 7,
to formally verify in the HOL Light theorem prover that this
photodetector has over 90% quantum efficiency.

The above formal analysis is straightforward which clearly
demonstrates the effectiveness of our results in Section III. It is
mainly due to the availability of the formally verified Equations
6 and 7 that we are able to tackle this kind of verification
problem with such a minimal effort, while providing 100%
precision.

IV. CONCLUSIONS

This paper presents the formal analysis of the planar
waveguide and Fabry-Pérot cavity using the HOL Light theo-
rem prover. Since these two are most widely used components
in an optical interconnect system, their formal analysis can
be regarded as the first step towards the formal analysis of
the complete optical interconnect system. Due to the formal
nature of the analysis, the results produced from our work can
be termed as 100% precise, something that cannot be achieved
by any other existing analysis approach. This feature makes
our approach very useful for analyzing optical interconnect
systems that are used in chips for safety-critical applications
like medicine, military and transportation.

The successful analysis of planar waveguides and the
Fabry-Pérot cavity clearly demonstrates the effectiveness and
applicability of higher-order-logic theorem proving for analyz-
ing optical interconnect systems. Some of the interesting future
directions in this novel domain include the verification of the
analysis of couplers that represent two or more optical devices
linked together with an optical coupling relation, which can be
done by building on top of the results presented in this paper.
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