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Abstract—This paper presents an approach for studying non-
linear circuits dynamics. In particular, we study deterministic
vs. stochastic dynamics by distinguishing chaotic behavior from
noise. The proposed approach is general enough to detect any
type of noise with no restriction on the noise distribution. It is
based on a statistical proof by contradiction using hypothesis
testing with Lempel-Ziv Complexity (LZC) method as discrimi-
nating statistics. The LZC method is adopted as a nonparametric
test that has the advantage of detecting any kind of noise.
Experimental results on a Σ−Δ Modulator and a Lorentz circuit
showed that the proposed approach provides a reliable distinction
between chaotic/hyperchaotic behavior and non-Gaussian noise.

I. INTRODUCTION

Chaos refers to the unpredictable noise similar behavior

that is difficult to be deciphered with an exponential sensitive

dependency on initial conditions and circuit parameters. In

fact, even very small initial condition variations exponen-

tially change the behavior of the circuit over time which

is known as the Butterfly effect [1]. Chaotic circuits present

thereby very promising features that make them used in many

applications such as communication [2], signal processing

[3], and neural networks [4]. Nonetheless, the absence of a

precise mathematical definition of the chaos phenomena makes

it very challenging to be distinguished from noisy circuit

behavior. Because noise is omnipresent in analog circuits,

chaos detection is posing a real challenge to both designers and

verification engineers due to its random like behavior. This is

particularly important for applications wherein chaotic behav-

ior is undesired and can cause catastrophic failures. Examples

of this are deadly cardiac arrhythmias, a fatal voltage collapse

in power networks, and regulating responses of machines [5].

It is therefore imperative to develop techniques and tools that

can reliably discriminate noise from chaos in analog circuits.

For long decades, classical Lyapunov theory has been

used as a hallmark of chaos because it was believed that

chaotic circuits have unstable equilibrium points. A circuit

is considered chaotic if it presents one or more positive

Lyapunov exponent. Whereas, recent research showed that

there exist chaotic circuits with stable equilibrium points [6].

Hence, a positive Lyapunov exponent is neither necessary nor

sufficient proof of chaos. Simulation is the standard technique

for analog circuits verification. However, available technology

techniques for circuit verification, like spectral analysis, fail

to discriminate chaotic from noisy circuit responses since

both of them have continuous broadband power spectra [7].

Periodic Steady State (PSS) analysis was also used in [8]

to discriminate periodic from chaotic behavior. A periodic

behavior is detected when the obtained convergence norm

is equal or less than unity. Conversely, a chaotic behavior

is reported when the Spectre simulator does not converge

and the PSS analysis fails to find any periodicity in the

circuit response. Nevertheless, a non-periodic behavior could

also emerge from noise and not from chaos. In addition, the

Newton algorithm used by the PSS method requires a pre-

known oscillation frequency as well as the computation of the

Jacobian matrix of the output. Therefore, this technique suffers

from serious scalability and applicability issues. A surrogate

generation method is proposed in [9] to statistically probe

chaos from noise. It is based on a surrogate generation method

and hypothesis testing with Gaussian Kernel test statistic.

However, this Gaussian Kernel test is suitable only for the

case of Gaussian noise. Hence, a clear differentiation between

chaotic and non-Gaussian noisy behaviors seem to be rather

problematic.

In this paper, we are concerned with the verification of

possible aberrant circuit dynamics that can be emerging from

chaos due to process variations in the circuit parameters

steming from fabrication imperfections. To do so, we extend

the work proposed in [9] to handle noise that does not follow

the shape of Gaussian distribution such as 1/f noise (a.k.a.

flicker noise). The rest of the paper is organized as follows:

Section II provides an overview of the proposed methodology.

Experimental results of the verification of a Σ−Δ Modulator

and a Lorentz circuit are reported in Section III. Section IV

summarizes the contributions of this paper.

II. PROPOSED METHODOLOGY

Figure 1 details our surrogate based methodology to sta-

tistically discriminate chaos from noisy responses in analog

circuits. Given a circuit topology, a design specification and a

technology library, the analog circuit behavior is modeled as

Extended-System of Recurrence Equations (E-SREs) [10] that

describe its behavior with and without noise. The methodol-

ogy starts by conducting transient simulations of the circuit

behavior in light of process variations. Then, the surrogate

verification scheme is deployed in the state-space domain

using a statistical proof by contradiction hypothesis testing

procedure. In the sequel, we detail the different steps and

methods of the proposed methodology.
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Fig. 1. Proposed chaos detection methodology

Extended-SREs (E-SRE) are extentions of differential equa-

tions describing the analog circuit behavior by expressing them

with if-else logical formulas as follows:

Xi(n) = fi(Xj(n− γ)), ∀i, j, n ∈ Z (1)

where Xi(n) ∈ R depicts the state variable and γ ∈ N

denotes the time delay. fi refers to a generalized If-formula

If(P, x, y) : B×K×K that satisfies the following two axioms:

If (true, x, y) = x

If (false, x, y) = y

In the proposed methodology, we first perform transient

simulation of the obtained E-SRE analog circuit model for

specific environment constraints, namely the initial values

of the voltage and current state variables and the simula-

tion parameters (such as the total simulation time and the

simulation step size). Thereafter, a dynamics regeneration

method is adopted for a state-space verification of the circuit

dynamics. In the state-space domain, the circuit state variables

are displayed against each other, i.e., it leaves time as an

implicit dimension not explicitly graphed. The subset of this

state-space domain towards which the circuit tends to evolve

regardless of the initial conditions is called an attractor. This

attractor A is used to predict the chaotic behavior of an Analog

and Mixed Signal (AMS) circuit in order to consider them in

the surrogates generation later. The non-uniform embedded

window [11] and the false nearest neighbor method [12] are

used to establish optimal embedding parameters (de, τ ) for

the attractor reconstruction. A surrogate generation method,

originally proposed in [9], is carried out to generate artificial

circuit outputs called surrogates. They are extracted from

the circuit output so they are free from any chaotic process

(i.e., noisy) while preserving some features of the circuit

output. To do so, it constructs another circuit attractor An

that exhibits noisy trajectories. The method selects an initial

condition randomly from the reconstructed attractor A. It

then repeatedly chooses new points for the noisy attractor

An with a probability commensurate with a certain noise

radius ρ from a near neighbor zj ∈ A. Next, we elucidate

the property of interest (P) that the circuit should comply

with. The property to be verified is phrased as follows: “Is the
observed random like behavior of the circuit emerging from
noise or chaos?”. Hence, we define a null hypothesis, denoted

by H0, which assumes that the circuit exhibits stochastic noise

and an alternative hypothesis H1 that assumes the circuits

to be purely deterministic, i.e., chaotic. To verify the above-

mentioned hypotheses, the generated surrogates are considered

as the null model against which the real circuit output is

verified. Hence, chaotic and stochastic circuit dynamics lead

to distinct trends of their generated surrogates produced while

being verified.

Lempel-Ziv Complexity Test Statistic

The Lempel-Ziv Complexity (LZC) method, first defined

in [13], is a nonparametric measure of complexity in the

sense of Kolmogorov. It is able to capture randomness, i.e.,

the degree of redundancy (or patterns) that are similar in a

signal without making any assumption about its distribution.

Unlike the Gaussian Kernel Algorithm (GKA) proposed in

[9], this measure has the advantage of handling stochastic

circuit behavior that does not follow a Gaussian distribution.

It objectively and quantitatively estimates system complexity

through the change process of inherent system structure.

Consider a signal X = (x1, x2, ..., xN ) of length N that takes

its values in an alphabet A of finite size α = |A|:

Si =

{
0 if xi < Td

1 if xi ≥ Td

The upper limit of the complexity counter is given by:

c(N) <
N

(1− εN ) logα(N)
(2)

where α is the number of alphabets in the circuit output under

verification (it is independent of the length of the output under

verification N ) and εN is given by the following equation:

εN = 2
1 + logα(logα(αN))

logα(N)
(3)

The normalized LZC CLZ is defined as follows:

CLZ(N) =
c(N)

b(N)
(4)

where b(N) is given by the following equation:

b(N) =
N

logα(N)
(5)

Ziv [14] proved that if x is the infinite length output from an

ergodic source with entropy rate h, then

lim sup
n−→∞

CLZ(n) = h (6)
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III. APPLICATIONS

In this section, we report the results of the application of our

methodology on a Σ−Δ modulator and a Lorentz circuit. All

computation and circuit models were performed in a MATLAB

environment and were run on a 64-bit Windows 7 server with

2.8 GHz processor and 24 GB memory. The type of hypothesis

testing used is the one-tailed test with the level of significance

α = 5%.

A. First-order Σ−Δ Modulator

The circuit diagram of a first-order Σ − Δ modulator is

shown in Figure 2. It consists of a negative feedback loop

with 1-bit quantizer and a discrete time integrator.

Fig. 2. First-order Σ−Δ modulator

The behavior of the circuit can be described by the following

E-SRE:

Un = if (Un−1 ≥ 0, αUn−1+Xn−1−1, αUn−1+Xn−1+1))

where Xn and α stand for the input signal and the modulator

gain, respectively. The nonlinearity being introduced by the

quantizer block Q gives rise to a chaotic behavior if the

gain α is in the range ]1, 2]. However, if α ≤ 1, instead

of chaos, the circuit exhibits a normal operation (i.e., the

quantized output will be approximately equal to the input

signal) [15]. We performed the verification of this circuit

under two cases: (1) Chaotic regime with α = 1.14; (2)

Noisy regime by introducing non Gaussian flicker noise to

a non-chaotic output for α = 0.5. Figure 3 illustrates both

behaviors as a function of time for a 1.5 KHz sine wave

input. The top panel (a) represents the quantized output for

a gain α = 0.5 (ideal regime). The panel (b) represents the

quantized output of the same input signal for an α = 1.14
(chaotic regime). The third panel (c) of the same figure shows

the noisy regime for the same input. It can be remarked that

a noisy quantized signal with a non chaotic gain (Figure 3(b))

reveals a similar behavior to the chaotic circuit (Figure 3(c)).

The results of the application of our verification methodology

to the first-order Σ −Δ modulator are recapitulated in Table

I. In the chaotic regime, both the Gaussian Kernel Algorithm

(GKA) [9] and LZC methods rejected the null hypothesis

H0 of noisy circuit behavior. Nevertheless, only the proposed

LZC method successfully discriminated the noisy behavior

emanating from flicker noise. Indeed, the null hypothesis H0 is

found consistent with the noisy assumption whereas GKA test

statistic falls short to do so. Consequently, our methodology

Fig. 3. The input sine wave and the quantized output of the Σ−Δ modulator
in different regimes

TABLE I
RESULTS OF VERIFYING Σ−Δ MODULATOR

GKA method [9] Proposed LZC test
Chaotic Regime Reject H0 Reject H0

Noisy Regime Reject H0 Accept H0

outperforms the method proposed in [9] in detecting non

Gaussian noisy behavior.

B. Lorentz based Circuit

The circuit depicted in Figure 4 reproduces the Lorentz sys-

tem of equations. It is composed of six operational amplifiers,

and four AD633 multipliers which implement the nonlinearity

of the circuit [16]. The Lorentz circuit is governed by the

following E-SREs:

X(n+ 1) = if (true,X(n) + δtk(
1

R2C1
Y (n)− 1

R1C1
X(n)

+
1

10R3C1
Y (n)Z(n)), 0)

Y (n+ 1) = if (true, Y (n) + δtk
R13

R12
(

1

R5C2
X(n)− 1

10R6C2

X(n)Z(n)− 1

R4C2
Y (n)− R15

R14R7C2
W (n)), 1)

Z(n+ 1) = if (true, Z(n) + δtk(
1

10R9C3
X(n)Y (n) (7)

− 1

R8C3
Z(n)), 1)

W (n+ 1) = if (true,W (n) + δtk(
1

10R11C4
X(n)Z(n)

+
R15

R10R14C4
W (n)), 1)

where k represents a time rescale factor (kτ = t; k = 100).

The circuit was simulated for the following values of pa-

rameters: R1 = R2 = 2.5KΩ, R3 = R6 = R9 = 200Ω,

R4 = 100KΩ, R5 = 1KΩ, R7 = 25KΩ, R8 = 33.2KΩ,

R10 = 66.9KΩ, R11 = 1.6KΩ, R12 = R13 = 5.6KΩ,

R14 = R15 = 560Ω, and C1 = C2 = C3 = C4 = 100nF.

Depending on the chaos control parameter c = 1
R5C2

, the
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Fig. 4. Lorentz based chaotic circuit

circuit displays a rich variety of chaotic and hyperchaotic

behavior. For instance, the circuit operates in hyperchaotic

regime for c = 90 and in chaotic regime for c = 275. The

time domain transient behavior of the Lorentz system circuit

outputs X and Y for c = 90 (i.e., hyperchaotic regime) is

depicted in Figure 5.

Fig. 5. Transient behavior of the Lorentz circuit X and Y outputs in
hyperchaotic regime

It can be remarked that these outputs reveal a similar behavior

to stochastic random noise. This demonstrates the need to

assess the real source of random-like behavior observed in

nonlinear circuits during the design process. Figure 6 shows

the attractors of the Lorentz circuit during the chaotic regime

(panel (a)) and the hyperchaotic regime (panel (b)). It can be

noticed that the attractor structure of the hyperchaotic circuit

behavior is more complex than the chaotic one. LZC measures

acquired from the Lorentz circuit output X (dashed line) and

100 surrogates (dotted line) are shown in Figure 7 for chaotic

behavior and in Figure 8 for hyperchaotic behavior. A good

qualitative agreement between the results of our methodology

and the analytical theory [16] is demonstrated; Indeed, the

complexity of the original output (dashed line) is very different

from its corresponding surrogates (dotted line) in the chaotic

and hyperchaotic cases. This violates the hypothesis that the

apparently random output is generated from a noisy circuit

and hence indicates the deterministic structure of the circuit.

Fig. 6. Lorentz circuit attractors for chaotic (a) and hyperchaotic (b) regimes

Therefore, the proposed methodology was able to successfully

distinguish the hyperchaos from stochastic behavior.

Fig. 7. Verification results for chaotic regime

Fig. 8. Verification results for hyperchaotic regime

IV. CONCLUSION

This paper proposed a methodology based on the Lempel-

Ziv Complexity measure to study aberrant analog circuit

behavior due to chaos. The non-parametric Lempel-Ziv Com-

plexity measure used as a test statistic offers a valuable means

to predict actual circuit behavior (noisy vs chaotic). Con-

versely to other techniques, our approach is able to uncover

noisy behavior even with non-Gaussian distribution and for

hyperchaotic regimes. Experimental results on a first-order

Σ − Δ modulator and a Lorentz based circuit demonstrate

the efficiency of the proposed approach. The comparison of

our results with the Gaussian Kernel test statistic shows that

the latter is inappropriate for non-Gaussian noise type circuits.

As a futur work, we plan to study other chaos measures like

correlation dimensions on more complex analog circuits.
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