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Abstract. An optical resonator usually consists of mirrors or lenses
which are configured in such a way that the beam of light is con-
fined in a closed path. Resonators are fundamental components used in
many safety-critical optical and laser applications such as laser surgery,
aerospace industry and nuclear reactors. Due to the complexity and sen-
sitivity of optical resonators, their verification poses many challenges
to optical engineers. Traditionally, the stability analysis of such res-
onators, which is the most critical design requirement, has been carried
out by paper-and-pencil based proof methods and numerical computa-
tions. However, these techniques cannot provide accurate results due to
the risk of human error and the inherent incompleteness of numerical
algorithms. In this paper, we propose to use higher-order logic theorem
proving for the stability analysis of optical resonators. Based on the mul-
tivariate analysis library of HOL Light, we formalize the notion of light
ray and optical system (by defining medium interfaces, mirrors, lenses,
etc.). This allows us to derive general theorems about the behaviour of
light in such optical systems. In order to illustrate the practical effec-
tiveness of our work, we present the formal analysis of a Fabry-Pérot
resonator with fiber rod lens.

1 Introduction

In the last few decades, optical technology has revolutionized our daily life by
providing new functionalities and resolving many bottlenecks in conventional
electronic systems. The use of optics yields smaller components, high-speed com-
munication and huge information capacity. This provides the basis of miniatur-
ized complex engineering systems including digital cameras, high-speed internet
links, telescopes and satellites. Optoelectronic and laser devices based on opti-
cal resonators [15] are fundamental building-blocks for new generation, reliable,
high-speed and low-power optical systems. Typically, optical resonators are used
in lasers [19], optical bio-sensors [1], refractometry [20] and reconfigurable wave-
length division multiplexing-passive optical network (WDM-PON) systems [14].

An optical resonator usually consists of mirrors or lenses which are configured
in such a way that the beam of light is confined in a closed path as shown
in Figure 1. Optical resonators are usually designed to provide high quality-
factor and little attenuation [15]. But the most important design requirement
is the stability, which states that the beam of light remains within the optical
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resonator even after N round-trips. The stability of a resonator depends on
the properties and arrangement of its components, e.g., curvature of mirrors or
lenses, and distance between them. For stability analysis, optical resonators are
modelled using the principles of geometrical optics [15] which describes light as
rays that obey geometrical rules. The theory of geometrical optics can be applied

Ring-Mirror Spherical -Mirror Plane- Mirror 

Fig. 1. Optical Resonators

for the modeling and analysis of physical objects with dimensions greater than
the wavelength of light. It is based on a set of postulates which are used to
derive the rules for the propagation of light through an optical medium. These
postulates can be summed up as follows: Light travels in the form of rays emitted
by a source; an optical medium is characterized by its refractive index and light
rays follow Fermat’s principle of least time [15].

Optical components, such as lenses and mirrors are usually centered about an
optical axis, around which rays travel at small inclinations (angle with the optical
axis). Such rays are called paraxial rays and this assumption provides the basis of
paraxial optics which is the simplest framework of geometrical optics. The change
in the position and inclination of a paraxial ray as it travels through an optical
system can be described by the use of matrices called ray-transfer matrices [19].
This matrix formalism of geometrical optics allows for an accurate, scalable and
systematic analysis of real-world complex optical and laser systems.

The widespread use of optical resonators in safety and mission-critical appli-
cations, such as astronomy [3] and medicine (e.g., refractive index measurement
of cancer cells [20]), poses a real challenge to optical engineers for the model-
ing and verification of such resonators. Traditionally, the stability analysis of
optical resonators has been done using paper-and-pencil based proof methods
[10,15,19]. However, considering the complexity of present age optical and laser
systems, such an analysis is very difficult if not impossible, and thus quite error-
prone. Many examples of erroneous paper-and-pencil based proofs are available
in the open literature, a recent one can be found in [2] and its identification and
correction is reported in [11]. One of the most commonly used computer-based
analysis techniques for stability analysis is numerical computation of complex
ray-transfer matrices [13,21,8]. The stability analysis of optical and laser res-
onators involve complex and vector analysis along with transcendental functions
and thus numerical computations cannot provide perfectly accurate results due
to the heuristics and approximations of the underlying numerical algorithms.
Another alternative is computer algebra systems [12], which are very efficient
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for computing mathematical solutions symbolically, but are not 100% reliable
and sound due to their inability to deal with side conditions [5]. Another source
of inaccuracy in computer algebra systems is the presence of unverified huge
symbolic manipulation algorithms in their core, which are quite likely to con-
tain bugs. Thus, these traditional techniques should not be relied upon for the
analysis of optical resonators which are used in safety-critical applications (e.g.,
corneal surgery [23]), where inaccuracies in the analysis may even result in the
loss of human lives.

In the past few years, higher-order logic theorem proving [4] has been suc-
cessfully used for the precise analysis of a few continuous physical systems [18].
Developing a higher-order logic model for a physical system and analyzing this
model formally is a very challenging task since it requires expertise in both
mathematics and physics. However, it provides an effective way for identifying
critical design errors that are often ignored by traditional analysis techniques like
simulation and computer algebra systems. We believe that higher-order logic the-
orem proving offers a promising solution for conducting formal analysis of such
critical optical resonators. Most of the classical mathematical theories behind
geometrical optics, such as Euclidean spaces, multivariate analysis and complex
numbers, have been formalized in the HOL Light theorem prover [6,7]. In this
paper, we build on our formalization of geometrical optics [16] to provide a
practical framework for the stability analysis of optical resonators. In order to
illustrate the practical use of our work, we also present the formal analysis of a
newly developed Fabry-Pérot resonator with fiber rod lens [10,9]. To the best of
our knowledge, the present work is the first one of its kind.

The rest of the paper is organized as follows: Section 2 describes some funda-
mentals of geometrical optics, and its commonly used ray-transfer-matrix formal-
ism. Section 3 presents the proposed framework for the formal stability analysis
of optical resonators. Section 4 presents our HOL Light formalization of geo-
metrical optics. Then, Section 5 describes the formalization of the stability of
optical resonators. In order to demonstrate the practical effectiveness and the
utilization of the proposed framework, we present the analysis of a real-world
optical resonator i.e., Fabry-Pérot resonator with fiber rod lens in Section 6.
Finally, Section 7 concludes the paper and highlights some future directions.

2 Geometrical Optics

When a ray passes through optical components, it undergoes translation or re-
fraction. In translation, the ray simply travels in a straight line from one compo-
nent to the next and we only need to know the thickness of the translation. On
the other hand, refraction takes place at the boundary of two regions with dif-
ferent refractive indices and the ray obeys the law of refraction, i.e., the angle of
refraction relates to the angle of incidence by the relation n0 sin(φ0) = n1 sin(φ1),
called Snell’s law [15], where n0, n1 are the refractive indices of both regions
and φ0, φ1 are the angles of the incident and refracted rays, respectively, with
the normal to the surface. In order to model refraction, we thus need the normal
to the refracting surface and the refractive indices of both regions.
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In order to introduce the matrix formalism of geometrical optics, we consider
the propagation of a ray through a spherical interface with radius of curvature
R between two mediums of refractive indices n0 and n1, as shown in Figure 2.
Our goal is to express the relationship between the incident and refracted rays.
The trajectory of a ray as it passes through various optical components can be
specified by two parameters: its distance from the optical axis and its angle with
the optical axis. Here, the distances of the incident and refracted rays are r1
and r0, respectively, and r1 = r0 because the thickness of the surface is assumed
to be very small. Here, φ0 and φ1 are the angles of the incident and refracted
rays with the normal to the spherical surface, respectively. On the other hand,
θ0 and θ1 are the angles of the incident and refracted rays with the optical axis.
Applying Snell’s law at the interface, we have n0 sin(φ0) = n1 sin(φ1), which, in

Fig. 2. Spherical Interface

the context of paraxial approximation (i.e., the assumption that light travels at
small angles with respect to the normal, which is indeed the case in practice),
reduces to the form n0φ0 = n1φ1 since sin(φ) � φ if φ is small. We also have
θ0 = φ0 − ψ and θ1 = φ1 − ψ, where ψ is the angle between the surface normal
and the optical axis. Since sin(ψ) = r0

R , then ψ = r0
R by paraxial approximation.

We can deduce that:

θ1 =

(
n0 − n1

n1R

)
r0 +

(
n0

n1

)
θ0 (1)

So, for a spherical surface, we can relate the refracted ray with the incident ray
by a matrix relationship using equation (1) as follows:

[
r1

θ1

]
=

[
1 0

n0−n1

n1R
n0

n1

][
r0

θ0

]

Thus the propagation of a ray through a spherical interface can be described
by a 2 × 2 matrix generally called, in the literature, ABCD matrix. This can
be generalized to many optical components [15] and to the case of reflection as
follows:
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[
r1

θ1

]
=

[
A B

C D

][
r0

θ0

]

If we have an optical system consisting of k optical components, then we can
trace the input ray Ri through all optical components using composition of
matrices of each optical component as follows:

Ro = (Mk.Mk−1....M1).Ri (2)

Simply, we can write Ro =MsRi where Ms =
∏1

i=kMi. Here, Ro is the output
ray and Ri is the input ray.

3 Formal Analysis Framework

The proposed framework, given in Figure 3, outlines the main idea behind the
theorem-proving-based stability analysis of optical resonators. The grey shaded
boxes in this figure show the key contributions of the paper that serve as the
fundamental requirements for conducting formal stability analysis in a theorem
prover. Like any system analysis tools, the inputs to this framework are the
description of the optical resonator and geometric constraints, such as radius
of curvature of mirrors and distance between different optical components. The
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Fig. 3. Proposed Stability Analysis Framework for Optical Resonators

first step in conducting stability analysis of optical resonators using a theorem
prover is to construct a formal model of the given resonator in higher-order logic.
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For this purpose, the foremost requirement is the ability to formalize the under-
lying concepts of geometrical optics which includes the modeling of optical com-
ponents and of the ray behaviour when it interacts with optical components. The
second step in the proposed framework is to use the formalization of geometrical
optics to formally derive the matrix formalism for geometrical components. This
step requires the vector theory, which is already available as a part of multi-
variate analysis in HOL Light theorem prover. The third step to conduct formal
stability analysis of optical resonators is to develop a library of frequently used
optical components such as lenses, mirrors or crystals. Since such components
are the basic blocks of optical systems, this library helps to formalize optical res-
onators. The next step is to formally define the stability of an optical resonator
and verify some generalized stability theorems which are heavily dependent on
matrix algebra within the HOL Light theorem prover. On top of that, one can
finally state and prove the stability of an optical resonator in the theorem prover.
The corresponding proof provides the output of the framework.

4 Formalization of Geometrical Optics

In order to fulfil the first requirement of the proposed stability analysis frame-
work, we present the formalization of geometrical optics in this section. The
formalization is two-fold: first, we model the geometry and physical parameters
of an optical system; second, we model the physical behavior of a ray when it
goes through an optical interface. Afterwards, we will be able to derive the ray-
transfer matrices of the optical components, as explained in Section 2. We first
define a type to describe optical systems:

Definition 1 (Optical Interface and System).
define type "optical interface = plane | spherical real"

define type "interface kind = transmitted | reflected"

new type abbrev("free space",‘:real # real‘)

new type abbrev("optical system",‘:(free space # optical interface #

interface kind) list # free space‘)

An optical system is a list of free spaces and interfaces between them. A free space
is represented by one real number for its refractive index and one for its width.
Optical interfaces are characterized both by their shape (plane or spherical, as
shown in Figure 4) and by the behavior of the ray when it goes through it (trans-
mitted or reflected), thus yielding the two above types ‘:optical interface‘

and ‘:interface kind‘. A spherical interface takes a real number representing
its radius of curvature. A term of type ‘:free space # optical interface #

interface kind‘ is called an optical component. Note that this data type can
easily be extended to many other optical components if needed.

A value of type ‘:free space‘ does represent a real space only if the refractive
index is greater than zero. In addition, in order to have a fixed order in the
representation of an optical system, we impose that the distance of an optical
interface relative to the previous interface is greater or equal to zero. We also need



374 U. Siddique, V. Aravantinos, and S. Tahar

(a) Ray in Free Space (b) Plane Interface (transmitted) (c) Plane Interface (reflected) (d)  Spherical Interface (reflected)  

Fig. 4. Behavior of Ray at Different Interfaces

to assert the validity of a value of type optical interface by ensuring that the
radius of curvature of spherical interfaces is never equal to zero. These constraints
are all packaged in a predicate is valid optical system os which is true if
and only if all the optical components of os satisfy the above requirements (the
definition of this predicate is straightforward, see [16] for details).

We can now formalize the physical behaviour of a ray when it passes through
an optical system. We only model the points where a ray hits an optical interface
(instead of all the points constituting the ray). So it is sufficient to just provide
the distance of the hitting point to the optical axis and the angle taken by the ray
at that point. Consequently, we should have a list of such pairs (distance, angle)
for every component of a system. In addition, the same information should be
provided for the source of the ray. For the sake of simplicity, we define a type for
a pair (distance, angle) as ray at point. This yields the following definition:

Definition 2 (Ray).
new type abbrev ("ray at point", ‘:real # real‘)

new type abbrev ("ray", ‘:ray at point # ray at point #

(ray at point # ray at point) list‘)

The first ray at point is the pair (distance, angle) for the source of the ray,
the second one is the one after the first free space, and the list of ray at point

represents the same information for all hitting points of an optical system. It
is not necessarily the case that every value of type ray constitutes a valid ray,
we thus constrain this type by using a predicate is valid ray in system ray

sys which asserts that the value ray indeed represents a ray travelling in the
system sys [16]. For example, Figure 4 provides a couple of situations which are
formalized by is valid ray in system ray sys.

Now, as explained in Section 2, the behavior of a ray through an optical system
can be conveniently expressed by matrices. In our formalism, the matrix corre-
sponding to an optical system os is given by the function system composition

os. For the sake of conciseness, we do not provide the detailed definition of this
function, which can be found in [16]. We then obtain the following essential
result:

Theorem 1 (Ray-Transfer-Matrix for Optical System).
� ∀ sys ray. is valid optical system sys ∧
is valid ray in system ray sys =⇒
let (y0,θ0),(y1,θ1),rs = ray in
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let yn,θn = last ray at point ray in[
yn
θn

]
= system composition sys *

[
y0
θ0

]

where the function last ray at point returns the last ray at point in system.
This concludes our formalization of geometrical optics and the verification of

the generalized ray-transfer-matrix relationship (Theorem 1) of optical systems.
The formal verification of the above important theorem reassures the correctness
of our formal definitions related to optical systems. Now, we present the formal-
ization of stability of an optical resonator and the verification of the generalized
stability theorem in the following section.

5 Formalization of the Stability of Optical Resonators

Optical resonators are particular type of optical systems which are broadly
classified as stable or unstable. One of the most interesting features of opti-
cal resonators is their diverse applications, e.g., stable resonators are used in
the measurement of the refractive index of cancer cells [20], whereas unstable
resonators are used in the laser oscillators for high energy applications [19]. Sta-
bility analysis identifies geometric constraints of the optical components which
ensure that light remains inside the resonator (see Figure 5 (a)). In order to
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Fig. 5. (a) Types of Optical Resonators (b) ABCD Matrix After N Round-Trips

determine whether a given optical resonator is stable, we need to analyze the
ray behaviour after many round trips. To model N round trips of light in the
resonator, engineers usually “unfold” N times the resonator description, and
compute the corresponding ray-transfer matrix. From the results presented in
the previous section, it follows that it is equivalent to take the ray-transfer matrix
corresponding to one round-trip and then raise it to the N th power, as shown in
Figure 5 (b). For an optical resonator to be stable, the distance of the ray from
the optical axis and its orientation should remain bounded whatever the value
of N . This is formalized as follows:

Definition 3 (Resonator Stability).
� ∀ M. stable optical system M ⇔ (∀ X. ∃ Y. ∀ N.

abs((M mat pow N) * X)$1 ≤ Y$1 ∧ abs((M mat pow N) * X)$2 ≤ Y$2)
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where X and Y are 2-dimensional vectors and M is a 2 × 2 matrix (intended to
be the round-trip matrix of the resonator). The function mat pow denotes the
matrix power function and V$i denotes the ith component of a vector V.

Proving that a given resonator satisfies the abstract condition of Definition 3
does not seem trivial at first. However, if the determinant of M is 1 (It means that
the refractive index is the same at the input and output of the system. This is
generally the case for optical systems encountered in practice), optics engineers
have known for a long time that having −1 < M11+M22

2 < 1 is sufficient to ensure
that the stability condition holds. The obvious advantage of this criterion is that
it is immediate to check. In order to prove this result, we can use Sylvester’s
Theorem [22,24], which states that for a matrix M=

[
A B
C D

]
such that | M |= 1

and −1 < A+D
2 < 1, the following holds:

[
A B

C D

]N

=
1

sin(θ)

[
A sin[N(θ)]− sin[(N − 1)θ] B sin[N(θ)]

C sin[N(θ)] D sin[N(θ)]− sin[(N − 1)θ]

]

where θ = cos−1[ (A+D)
2 ]. This theorem ensures that stability holds under the

considered assumptions: Indeed, N only occurs under a sine in the resulting
matrix; since the sine itself is comprised between −1 and 1, it follows that the
components of the matrix are obviously bounded, hence the stability. We for-
malize Sylvester’s theorem as follows:

Theorem 2 (Sylvesters Theorem).

� ∀ N A B C D.

∣∣∣∣A B
C D

∣∣∣∣ = 1 ∧ −1 < (A+D)
2

∧ (A+D)
2

< 1 =⇒
let θ = acs( (A+D)

2
) in[

A B

C D

]N

= 1
sin(θ)

[
A ∗ sin[N(θ)]− sin[(N− 1)θ] B ∗ sin[N(θ)]

C ∗ sin[N(θ)] D ∗ sin[N(θ)]− sin[(N− 1)θ]

]

We prove Theorem 2 by induction on N and using the fundamental proper-
ties of trigonometric functions, matrices and determinants. Now, we derive the
generalized stability theorem for any ABCD matrix as follows:

Theorem 3 (Generalized Stability Theorem).

� ∀ A B C D.

∣∣∣∣A B
C D

∣∣∣∣ = 1 ∧ −1 < (A+D)
2

∧ (A+D)
2

< 1 =⇒

stable optical system

[
A B
C D

]

The formal verification of Theorem 3 requires the formal definition of stability
(Definition 3) and Sylvester’s theorem along with some fundamental properties of
vectors. It is important to note that our stability theorem is quite general and can
be applied to any ABCD matrix which satisfies the required assumptions. This
completes our formalization of stability and we present its practical effectiveness
by analyzing Fabry Pérot resonator in the next section.
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6 Application: Stability Analysis of Fabry Pérot
Resonator

Nowadays, optical systems are becoming more and more popular due to their
huge potential of application. In order to bring this technology to the market,
a lot of research has been done toward the integration of low cost, low power
and portable building blocks in optical systems. One of the most important such
building blocks is the Fabry Pérot (FP) resonator [15]. Originally, this resonator
was used as a high resolution interferometer in astrophysical applications. Re-
cently, the Fabry Pérot resonator has been realized as a microelectromechanical
(MEMS) tuned optical filter for applications in reconfigurable Wavelength Divi-
sion Multiplexing [14]. The other important applications are in the measurement
of refractive index of cancer cells [20] and optical bio-sensing devices [1].

Due to diverse applications of the FP resonators, different architectures have
been proposed in the open literature. The main limitation of traditional designs
is the instability of the resonators which prevents their use in many practical
applications (e.g., refractometry for cancer cells). Recently, a state-of-the-art FP
core architecture has been proposed which overcomes the limitations of existing
FP resonators [10,9]. In the new design, cylindrical mirrors are combined with
a fiber rod lens (FRL) inside the cavity, to focus the beam of light in both
transverse planes as shown in Figure 6 (a). The fiber rod lens is used as light
pipe which allows the transmission of light from one end to the other with
relatively small leakage. Building a stable FP resonator requires the geometric
constraints to be determined in terms of the radius of curvature of mirrors R
and the free space propagation distance (dfree space) using the stability analysis.

As a direct application of the framework developed in the previous sections,
we present the stability analysis of FP resonator with fiber rod lens as described
above. It is important to note that the design shown in Figure 6 (a), has a 3-
dimensional structure. We can still apply the ray-transfer-matrix approach to
analyze the stability by dividing the given architecture into two planes, i.e., XZ
and YZ planes. Now, the stability problem becomes a couple of planar problems
which are still valid since the ray focusing behaviours in both directions (XZ
and YZ) are decoupled. This is merely a consequence of the decomposition of
Euclidean space vectors into a basis. This can be seen in Figure 6 (b) and (c),
where the resonator is divided into two cross-sections. In the following, we focus
only on the analysis of the XZ plane, since the analysis in the YZ plane is fairly
similar (the complete analysis can be found in the source code [17]).

In the XZ cross-section (Figure 6 (b)), the focusing is done by the curved
mirrors. The fiber rod lens acts as a refracting slab with width df and refractive
index nf . The first step in the stability analysis, as described in our proposed
framework is to construct a formal model of the given resonator in higher-order
logic. A ray that makes a round-trip in the cavity undergoes (from left to right)
first reflection in a curved mirror of radius R, propagation through free space
of length dx and refractive index 1, refraction from free space to fiber rod lens,
propagation within fiber rod lens of length df and refractive index nf , refraction
from fiber rod lens to free space and again the propagation through free space
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Fig. 6. Fabry Pérot (FP) Resonator with fiber rod lens (a) 3-Dimensional Resonator
Design (b) Cross-Section view in the XZ Plane (c) Cross-Section view in the YZ Plane

of length dx. Of course, the “return-trip” is symmetric. We formally model this
system as follows:

Definition 4 (Formal Model of FP Resonator in XZ Plane ).
� ∀ R dx nf df. FP XZ R dx df nf =

([(1,0),spherical R,reflected;(1,dx),plane,transmitted;

(nf,df),plane,transmitted],1,dx)

Here, the pair (1,0) represents free space with refractive index 1 and null width.
FP XZ is a higher-order logic function which takes the parameters, radius of cur-
vature of mirror (R), free space length (dx), length of fiber rod lens (df) and re-
fractive index (nf). It returns an optical system (Definition 1) which corresponds
to the formalization of a cavity with the corresponding input parameters. Next,
we formally verify that the formal model of the cavity is valid under realistic
geometric constraints, such as the fact that the refractive index (nf) and lengths
of free space propagation (dx and df) should be greater than 0.

Theorem 4 (Validity of FP resonator in XZ Plane).
� ∀ R dx df nf. R �= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf =⇒

is valid optical system (FP XZ R dx df nf)

Next, we formally verify the equivalent matrix relationship of FP resonator in
XZ plane using the formal definition of system composition.

Theorem 5 (Equivalent Matrix for FP resonator in XZ Plane).
� ∀ R dx df nf. R �= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf =⇒
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system composition (FP XZ R dx df nf) =[
1− 2 ∗ (df + 2 ∗ dx ∗ nf)

nf ∗ R
2 ∗ dx + df

nf

− 2
R

1

]

The verification of this theorem mainly involves the matrix algebra and some
arithmetic reasoning. The following result is then easy to prove by making use
of the results already obtained in our framework:

Theorem 6 (Ray-Transfer-Matrix Model in XZ plane).
� ∀ R dx df nf. R �= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf =⇒
(∀ ray.is valid ray in system ray (FP XZ R dx df nf)

=⇒ (let (y0,θ0),(y1,theta1),rs = ray in

(yn,θn) = last single ray ray in

vector [yn;θn] = system composition (FP XZ R dx df nf) *

vector [y0;θ0]))

where last single ray is a function that takes a ray as input and returns the
last pair (distance from the optical axis y and the orientation θ) of that ray.

To this point, we have formally developed the model of the FP resonator in
the XZ plane and also verified important properties such as the validity of the
model and the ray-transfer-matrix relationship. Now, we are in a position to
formally verify the stability of the FP resonator in the XZ plane, which is the
final step.

Theorem 7 (Stability in XZ plane).
� ∀ R dx df nf. R �= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf

0 <
2∗dx+ df

nf

R
∧ 2∗dx+ df

nf

R
< 2 =⇒ stable optical system

(system composition (FP XZ R dx df nf))

The first four assumptions just ensure the validity of the model description. The
two following ones provide the intended stability criteria. The formal verification
of Theorem 7 requires Theorem 5 and Theorem 3 along with some fundamental
properties of matrices and arithmetic reasoning.

Similarly, we can model and verify the validity of the FP resonator in YZ
plane by performing the above mentioned steps. For the sake of conciseness, we
only present the stability theorem in YZ plane as follows:

Theorem 8 (Stability in YZ plane).
� ∀ dy df nf. 0 < dy ∧ 0 < df ∧ 0 < nf

0 < 1 − 2
nf

+ (4 ∗ dy

df
) ∗ (1− 1

nf
) ∧ 1 − 2

nf
+ (4 ∗ dy

df
) ∗ (1− 1

nf
) < 1

=⇒ stable optical system (system composition (FP YZ dy df nf))

The first three assumptions just ensure the validity of the model description.
The two following ones provide the intended stability criteria.

It is important to note that for the FP resonator with fiber rod lens, we have
two sets of stability constraints, i.e., in the XZ plane ( Theorem 7) and in the
YZ plane (Theorem 8). Consequently, the resonator can be stable in one plane
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and unstable in the other. Therefore, in practice, the criteria of Theorem 7 and
8 should both be satisfied.

This completes our formal stability analysis of the FP resonator with fiber rod
lens, which clearly demonstrates the effectiveness of the proposed theorem prov-
ing based stability analysis framework. The above formal analysis allowed us to
find some discrepancy in the paper-and-pencil based proof approach presented in
[10]. Particularly, the order of matrix multiplication in Equations (16) and (24)
in [10] should be reversed, so as to obtain correct stability constraints. Due to the
formal nature of the model and inherent soundness of higher-order logic theorem
proving, we have been able to verify the stability of Fabry Pérot (FP) resonator
with fiber rod lens with an unrivaled accuracy. This improved accuracy comes at
the cost of the time and effort spent, while formalizing the underlying theory of
geometrical optics and resonator stability. But, the availability of such a formal-
ized infrastructure significantly reduces the time required to analyze the Fabry
Pérot (FP) resonator with fiber rod lens. Moreover, we automatized parts of the
verification task by introducing new tactics, e.g., VALID OPTICAL SYSTEM TAC,
which automatically verifies the validity of a given optical system. We also for-
mally analyzed a couple of other important resonator architectures such as FP
resonator with curved mirrors and Z-shaped resonator. Our HOL Light develop-
ments of geometrical optics, Fabry Pérot (FP) resonators and Z-shaped resonator
are available for download [17] and thus can be used by other researchers and
optical engineers working in industry to conduct the formal stability analysis of
their optical resonators.

7 Conclusion

In this paper, we report a novel application of formal methods in the stabil-
ity analysis of optical resonators which is mainly based on geometrical optics.
We provided a brief introduction of the current state-of-the-art and highlighted
their limitations. Next, we presented an overview of geometrical optics followed
by some highlights of our higher-order logic formalization. In order to show the
practical effectiveness of our proposed framework, we presented the formal sta-
bility analysis of Fabry Pérot (FP) resonator with fiber rod lens. Note that this
application is not a simple toy example but an advanced system which has been
published only recently. In fact, we were able to identify some discrepancy in the
paper-and-pencil based stability analysis presented in [10]. Catching this problem
in paper-and-pencil based proofs clearly indicates the usefulness of using higher-
order-logic theorem proving for the stability analysis of optical resonators. To
the best of our knowledge, this is the first time that formal approach has been
applied for the stability analysis of optical resonators.

The rigor of formal verification allows to go beyond what is traditionally done
by optics engineers. For instance, during our formalization, we have identified
that the paraxial approximation is not taken into account rigorously in tradi-
tional techniques. However, theorem proving provides the required mathemati-
cal background to tackle this precisely. This is one of our essential future work.
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We also plan to automatize the verification of optical resonators’ stability by
developing dedicated conversions and tactics that would compute automatically
the required matrix products and check that the resulting matrices indeed satisfy
the conditions given by Sylvester’s theorem. In the future, we also plan to extend
this work in order to obtain an extensive library of verified optical components,
along with the formalization of Gaussian beams, which would allow the formal
analysis of resonator modes [19]. We also plan to package our HOL Light for-
malization in a GUI, so that it can be used by non-formal methods community
in industry for the analysis of practical resonators and in academia for teaching
and research purposes.
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