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Abstract. In this paper, we introduce the idea of hierarchical verifica-
tion for quantum circuits, where we use a powerful language, higher-order
logic, to reason about quantum circuits formally. We propose a formal
modeling and verification approach that captures quantum models built
hierarchically from primitive optical quantum gates. The analysis and
verification of composed circuits is done seamlessly based on dedicated
mathematical foundations formalized in the HOL Light theorem prover.
In order to demonstrate the effectiveness of the proposed infrastructure,
we present the formal analysis of the controlled-phase gate and Shor’s
factoring quantum circuits.

1 Introduction

Since it has been proved that classical machines cannot simulate quantum physics
in polynomial times [11], scientists were working to develop new computers
which employ quantum physics. Throughout their research, quantum technolo-
gies showed a good potential to provide solutions to several challenges such as
secure communication and faster computation. Quantum optics is considered as
one of the promising approaches for realizing “universal” quantum machines [6].

Despite the fact that quantum computers are not yet commercially avail-
able, their realisation requires the development of comprehensive tools for the
modeling and verification of quantum devices. Due to the inherent complexity of
quantum circuits, numerical simulations are incomplete: the computation space
increases exponentially with the size of the circuit. Nevertheless, a number of
tools have been proposed for simulation of quantum circuits. For instance, in [4]
quantum gates are described as matrices and applied to quantum states using
matrix-vector multiplication, however, a time-out is reached when simulating 15
qubits (quantum bits) circuits. Hence, we believe that there is a dire need of
comprehensive and expressive computer-aided design and verification tools for
quantum systems that cover both the mathematics and the principles of quan-
tum physics.

Higher-order-logic (HOL) theorem proving is an effective approach to ana-
lyze engineering systems, thanks to its solid mathematics. Therefore, we believe
that HOL can assist in the modeling and verification of quantum computers.
In this paper, we propose to use the HOL Light theorem prover [5] to handle
the hierarchical verification of quantum circuits thanks to its rich support for
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multivariate calculus and Hilbert spaces theories [9] which are essential to reason
about quantum optics.

Our ultimate goal is to build the necessary tools to formally model and verify
quantum circuits composed of primitive quantum gates, that are built using only
optical components, in a hierarchical fashion. The first step towards this goal is
to formally define in HOL the required mathematics, including the notions of
projection, tensor product, and tensor product projection. We then apply these
definitions to formally model and verify quantum primitive gates and circuits.
We use this approach to formally model and verify the controlled-phase (CZ)
gate circuit [6] and the Shor’s factorization circuit of number 15 [1]. The source
code of our formalization is available for download at [2].

In [8], the authors formalized the controlled-not (CNOT) gate. However, they
did not provide the bi-linearity of tensor product and other important properties
which are required to model and verify composed quantum circuits. In [12], a
quantum process calculus is used to model linear optical quantum systems. It
was applied to model the CNOT gate. The main limitation of this work is that
the beam splitters parameters are considered as real numbers, however, they
often need to be complex numbers as in the case of quantum interferometer [10].

2 Formalization of Tensor Product and Projection

For quantum optics the state of a quantum system is a probability density func-
tion which provides the probability of the number of photons inside the optical
beam, typically written as |ψ〉. The set of quantum pure states (i.e., states which
form the basis for a quantum states space) are called fock states. An optical beam
in a fock state |n〉, where n = 0, 1, 2, . . ., means that the light stream exactly
contains n photons. Given an n-beam quantum state where each |ψ〉k, k ∈ [1;n],
describes the quantum state of single mode beam k, then the joint state of the
n optical beams is |ψ〉1 ⊗ |ψ〉2 ⊗ ... ⊗ |ψ〉n (sometimes we use |ψ1, ψ2, ..., ψn〉),
where ⊗ operation is the tensor product.

2.1 Formalization of Tensor Product

Given the quantum state |ψ〉1 . . . |ψ〉n of n optical beams, the function that
describes the joint probability of the n beams is then the point-wise multi-
plication of all the states, which refers to the optical states tensor product.
Hence, we define the tensor product for an n-beam quantum state as follows:
λ y1 . . . yn. (|ψ〉1 ⊗ . . . ⊗ |ψ〉n)(y1 . . . yn) = |ψ〉1y1 ∗ . . . ∗ |ψ〉nyn. We therefore
define the tensor product for n beams in HOL, recursively, as:

Definition 1 (Tensor Product)
� tensor 0 mode = (λy. 1) ∧
tensor n + 1 mode = (λy. ((tensor n mode) y) ∗ (mode$(n + 1) y$(n + 1)))
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where the symbol $ denotes the vector indexing operator (a$i ⇔ a(i)). mode is
a vector of size n that contains n modes. The basic case of zero mode n = 0 is a
trivial case; it is a constant function (i.e., y → 1) and it guarantees a terminating
definition. Next, we prove that this tensor satisfies the bi-linearity property:

Theorem 1 (Tensor: Bi-Linearity)
� 0 < k ≤ n + 1 ∧ mode$k = a1 % x1 + a2 % x2 ⇒
tensor n + 1 mode = a1 % tensor n + 1 (λi. if i = k then x1 else mode$i)

+ a2 % tensor n + 1 (λi. if i = k then x2 else mode$i)

where the symbol % denotes the scalar multiplication. Note that the number of
modes is n + 1 as this property does not hold for 0 where tensor is the constant
function. The two assumptions 0 < k ≤ n + 1 and mode$k = a1 % x1 + a2 % x2
ensure that the element k is part of the tensor and is a combination of two
vectors. The proof is based on using induction where the base case is trivial and
in the inductive step we use the lemma k ≤ n + 2 ⇔ (k ≤ n + 1 ∨ k = n + 2) then
using the induction hypothesis for the first and the definition of tensor for the
second.

An important property for the manipulation of the tensor product is when
we have a tensor constructed out of two elementary tensors. In this case, this
property states that a tensor v1 ⊗ ...⊗vm ⊗u1 ⊗ ...⊗un = (v1 ⊗ ...⊗vm)⊗ (u1 ⊗
... ⊗ un).

Theorem 2 (Tensor: Multiplication)
� tensor m + n mode =

(λy. ((tensor m mode) y) ∗ (tensor n (λi. mode$(i + m))) (λi. y$(i + m)))

A typical usage of this theorem is to separate elementary tensors for the sake
of conducting quantum transformations independently from each other. Then
using the same theorem, we can return back to the initial tensor.

2.2 Formalization of Linear Projection

In linear algebra, a projection is a linear transformation p from a vector space to
itself that maintains the idempotent property; p2 = p. In the quantum context,
for a pure state |ψ〉, the projection is defined as p = |ψ〉 〈ψ| which is a self-
adjoint and linear transformation. In particular, for a quantum circuit design,
the expected circuit output is the projection of all possible outputs over the
appropriate fock states. For example, let us consider the state |φ〉 = 1

3 |n〉 +
1
3 |n − 1〉 + 1

3 |n + 1〉 and the projection pn = |n〉 〈n|. The result of the projection
of |φ〉 is pn(|φ〉) = |n〉 〈n|( 13 |n〉 + 1

3 |n − 1〉 + 1
3 |n + 1〉) = 1

3 |n〉, because the fock
states form an orthonormal basis. Therefore, we define the projection on fock
states as follows:
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Definition 2 (Linear Projection)
� ∀ x. (proj |n〉sm) x = 〈nsm|x〉 % |n〉sm
where proj |n〉sm is the projection over the fock state and accepts as parameter x.
We have proven the three requirements for this projection which are linearity,
idempotent and self-adjoint properties. Next we show the first two properties:

Theorem 3 (Projection: Linearity)
� is sm sm ⇒ ∀ x y a.

(proj |n〉sm) (a1%x + a2%y) = a1%(proj |n〉sm) x + a2%(proj |n〉sm) y

where the assumption is sm sm is used to maintain the requirement that the
optical mode sm is indeed the single mode used.

Theorem 4 (Projection: Idempotent)
� is sm sm ⇒ ∀x. (proj |n〉sm) ((proj |n〉sm) x) = (proj |n〉sm) x

2.3 Formalization of Tensor Product Projection

In some realization of quantum optics, the gates are implemented using ancillas
which are extra qubits that are used for detecting the correct output [7]. During
the design process of a quantum circuit, the ancilla is measured after it leaves the
circuit. The correct output is known whenever the detector registers the expected
ancilla. In our formalization, we implement the process of detecting the expected
ancillas in the outputs of a quantum circuit as the tensor product projection
of the outputs. We combine the tensor product and linear projection together
to obtain the tensor product projection. By doing this, we will eliminate the
undesirable outputs and keep only the “correct” output. In addition, we will have
the projected state multiplied by a scalar value which is the success probability
of the circuit. We define the projection of multi-mode states as follows:

Definition 3 (Tensor Projection)
� is tensor proj m proj ⇔ ∀ mode1 mode2 n.

is linear cop (m proj (tensor n mode1)) ∧
m proj (tensor n mode1) (tensor n mode2) =

tensor n (λi. ((proj mode1$i) mode2$i))

where is linear cop op ensures that the operator op is indeed a linear operator.
Using this definition, we prove a crucial property in the analysis of quantum
circuits, which states that (p1 ⊗ ... ⊗ pn)(u1 ⊗ ... ⊗ un) = p1(u1) ⊗ ... ⊗ pn(un):

Theorem 5 (Tensor Projection: Multiplication)
� is tensor proj m proj ∧ 1 ≤ n ⇒
(m proj tensor m + n mode1) tensor m + n mode2 =
(λy. ((m proj tensor m mode1) tensor m mode2) y ∗
(m proj tensor n (λi. mode1$(i + m)) tensor n (λi. mode2$(i + m))) (λi. y$(i + m)))
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This property is very useful when projecting a multi-mode state which is applied
to parallel quantum gates as the case for the controlled-phase gate. Using the
tensor product lemma v1 ⊗ ...⊗0⊗ ...⊗ vn = 0, we prove the following property:

Theorem 6 (Tensor Projection: Fock States)
� is tensor proj m proj ∧ 0 < k ∧ mode1$k = |m1〉sm ∧ mode2$k = |m2〉sm ∧
m1 �= m2 ∧ is sm sm ∧ k ≤ n + 1 ⇒
(m proj tensor n + 1 mode1) tensor n + 1 mode2 = 0

This theorem is very important for the measurement of photons as it indicates
that for two multi-mode states, where in the first state, the single mode k con-
tains the fock state |m1〉 and in the second state, the single mode k contains
the fock state |m2〉. If m1 and m2 are different, then the projection of the first
multi-mode state over the other is zero. By this, we have covered the required
mathematics for dealing with the verification and analysis of quantum circuits.

3 Hierarchical Verification: Applications

In this section, we will demonstrate the idea of hierarchical verification of quan-
tum circuits based on the formalization of primitive gates, reported in [3], by
formally verifying the controlled-phase (CZ) gate and Shor’s factoring of number
15 circuits.

3.1 Verification of CZ Gate

A CZ gate is constructed using two non-linear sign (NS) gates [3] and two beam
splitters, as shown in Fig. 1. The CZ gate transforms the input |x, y〉 to the output
eiπx.y|x, y〉, x, y ∈ {0, 1}. The success probability of measuring the ancilla state
|1, 0〉 in both NS gates is 1

16 [3]. We define the CZ gate as follows:

Fig. 1. Controlled-phase gate circuit

Definition 4 (CZ Gate)
� is cz (a, j, ten) ⇔ (∀ b c d q k l m p.
ns gate(d, m, p, q, ten) ∧ ns gate(b, l, k, c, ten) ∧
beam splitter( 1√
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Hierarchical Verification of Quantum Circuits 349

Note that we rename the input and output ports for the second NS gate in order
to match the order of the modes in the definition of NS, instead of |b$4, b$5, b$6〉
and |c$4, c$5, c$6〉 we have |d$1, d$2, d$3〉 and |q$1, q$2, q$3〉, respectively. We
formally verified the CZ operations and its success probability for the four pos-
sible combinations of inputs, among which we provide here one of them.

Theorem 7 (CZ Gate: Input: |1, 1〉)
� let constraints = is tensor proj m proj ∧ is tensor ten ∧
is cz (a, j, ten) in

let |2, 1, 0, 0, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |2〉c$1 elseif i = 2 then

|1〉c$2 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |0, 1, 0, 2, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 2 then |1〉c$2 elseif i = 4 then

|2〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉cq = tensor 8 (λi. if i = 1 then |1〉c$1 elseif i = 2 then

|1〉c$2 elseif i = 4 then |1〉q$1 elseif i = 5 then |1〉q$2 else |0〉c$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉ab = tensor 8 (λi. if i = 1 then |1〉a$1 elseif i = 2 then

|1〉b$2 elseif i = 4 then |1〉a$4 elseif i = 5 then |1〉b$5 else |0〉b$3) in

let |1, 1, 0, 1, 1, 0, 0, 0〉cj = tensor 8 (λi. if i = 1 then |1〉j$1 elseif i = 2 then

|1〉c$2 elseif i = 4 then |1〉j$4 elseif i = 5 then |1〉c$5 else |0〉c$3) in

constraints ⇒ (m proj |2, 1, 0, 1, 0, 0, 0, 0〉cq + m proj |0, 1, 0, 1, 2, 0, 0, 0〉cq +

m proj |1, 1, 0, 1, 1, 0, 0, 0〉cq) (|1, 1, 0, 1, 1, 0, 0, 0〉ab) = − 1
4

% |1, 1, 0, 1, 1, 0, 0, 0〉cj

Note that the output of the CZ gate has been projected over three different
states. This is because that we have two photons at the input (|1, 1〉) which
results in three possibilities at the input of the two parallel NS gates: (1) two
photons go through the first NS gate; (2) two photons go through the second
NS gate; and (3) one photon goes through the first NS gate and the other goes
through the second NS gate. The verification of the CZ gate has been done
using Theorem 6 in order to subdivide the main tensor product projection to
two tensor product projections, where each is fed to an NS gate. This completes
the analysis of the CZ for the input “11”. The analysis for the inputs “01”, “00”,
and “10” follows the same pattern. The actual physical implementations of the
CZ gate have 8 input modes. However, the CZ is a 2-qubits gate, where each
logical qubit is represented by two optical modes and the rest of the modes are
ancillas. Therefore in order to facilitate the use of this gate in complex quantum
circuits, we developed an input/output behavioral description:

Definition 5 (CZ Behavioral Description)
Input : |1, 1〉L ≡ (m proj |2, 1, 0, 1, 0, 0, 0, 0〉cq + m proj |0, 1, 0, 1, 2, 0, 0, 0〉cq +
m proj |1, 1, 0, 1, 1, 0, 0, 0〉cq) |1, 1, 0, 1, 1, 0, 0, 0〉ab
Output : |1, 1, 0, 1, 1, 0, 0, 0〉cj ≡ |1, 1〉L

3.2 Verification of Shor’s Factorization

Shor’s integer factorization is a quantum algorithm to compute the two primes
factor of a given integer much faster than classical algorithms. Our objective
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here is to show the formal modeling and verification of a compiled version of
Shor’s factoring of number 15 [1] using the previously presented formalization.
The task of the underlying circuit is to find the minimum integer r that satisfies
ar mode N = 1, where N = 15 and a is a randomly chosen co-prime integer to
N , in our case a = 2. r is called the order of a modulo N , from which we compute
the desired prime factors; (a

r
2 − 1) and (a

r
2 + 1). The circuit is composed of six

Hadamard [3] and two CZ gates, as shown in Fig. 2, and has 4 inputs/outputs.
Inputs are initialized to the state; |ψ〉in = |0, 0, 1, 0〉x1f1f2x2. From the computed
output, |ψ〉out = |., ., ., .〉ẋ1ḟ1ḟ2ẋ2, we extract the variable z = |., ., 0〉ẋ1ẋ2, then
we obtain r = az mod 15. Accordingly, we formally define the structure of the
circuit and verify its operation as follows:

Definition 6 (Shor Circuit)
� shor (x1, x2, f1, f2, f̈1, f̈2, j1, j2, ten) ⇔ (∀ b d. j2$2 = ẍ2 ∧
is hadamard(x1, b$2, ten) ∧ is hadamard(f1, b$1, ten) ∧ is cz(d, j2, ten) ∧
is hadamard(x2, d$2, ten) ∧ is hadamard(f2, d$2, ten) ∧ is cz(b, j1, ten) ∧
j1$2 = ẍ1 ∧ is hadamard(j1$1, f̈1, ten) ∧ is hadamard(j2$1, f̈2, ten))

Fig. 2. Shor’s factoring of 15 circuit

Theorem 8 (Shor’ Factoring of 15)
� let constraints = is tensor proj m proj ∧ is tensor ten ∧
shor (x1, x2, f1, f2, f̈1, f̈2, j1, j2, ten) in
let |0, 0, 1, 0〉f1x1f2x2 = tensor 4 (λi. if i = 1 then |0〉f1 elseif i = 2 then |0〉x1
elseif i = 3 then |1〉f2 else |0〉x2) in
let |0, 0, 0, 1〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |0〉f̈1 elseif i = 2 then |0〉ẍ1
elseif i = 3 then |0〉f̈2 else |1〉ẍ2) in
let |0, 0, 1, 0〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |0〉f̈1 elseif i = 2 then |0〉ẍ1
elseif i = 3 then |1〉f̈2 else |0〉ẍ2) in
let |1, 1, 0, 1〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |1〉f̈1 elseif i = 2 then |1〉ẍ1
elseif i = 3 then|0〉f̈2 else |1〉ẍ2) in
let |1, 1, 1, 0〉f̈1ẍ1f̈2ẍ2 = tensor 4 (λi. if i = 1 then |1〉f̈1 elseif i = 2 then |1〉ẍ1
elseif i = 3 then |1〉f̈2 else |0〉ẍ2) in
constraints ⇒ |0, 0, 1, 0〉f1x1f2x2 = 1

32
% (|1, 1, 1, 0〉f̈1ẍ1f̈2ẍ2 + |1, 1, 0, 1〉f̈1ẍ1f̈2ẍ2

+ |0, 0, 1, 0〉f̈1ẍ1f̈2ẍ2 + |0, 0, 0, 1〉f̈1ẍ1f̈2ẍ2)
Here the circuit outputs two categories of solutions; (1) |000〉 or |100〉 which are
expected failures of the algorithm [1]; (2) |010〉 or |110〉 ≡ z = 2 or z = 6 which
give r = 4 from which we obtain the 5 and 3 prime numbers. The verification
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of the compiled Shor’s circuit has been done using Theorem 3 to subdivide the
tensor to four tensors, and apply Hadamard transformation on each elementary
tensor.

4 Conclusion and Discussion

In this paper, we reported a novel application of formal methods to enable
the hierarchical modeling and verification of quantum circuits. We presented
the higher-order logic formalization of mathematical foundations such as ten-
sor product, linear projection, and tensor product projection. Then we showed
how they can be applied for the hierarchical modeling and analysis of composed
quantum circuits using the CZ gate and Shor’s 15 factoring circuits.

One of the important outcomes of this work is the efficiency that the tensor
projection brought to our formalization: if we tackled the NS gate without the
projection (such as in [8,12]), we will have 10 possible outputs (with only one
correct output) which dramatically affects the CZ analysis that contains two
parallel NS gates which in turn produce 10∗10 = 100 possible outputs. Moreover,
it gets worse when it comes to the Shor’s circuit where we have two CZ gates and
at the level of inputs of each gate we have four possible inputs, which means at
the output of these gates we have (4 ∗ 100) ∗ (4 ∗ 100) = 16.104 possible outputs.
Thanks to the projection properties, such as projection linearity and projection
of two orthogonal tensor products, we were able to reduce the possible outputs
to consider only the correct ones. This is very important for scalability reasons,
especially for larger circuits which contain many quantum gates. We believe this
to be a significant feature of our formalization compared to before mentioned
related works, e.g., [8,12]. The reported mathematical foundation can be used
to reduce the complexity in the implementation of design verification tools for
quantum optics circuits analysis.

In future work, we plan to apply the formalization developed in this paper
to perform a formal synthesis of quantum circuits and to apply our methods on
other quantum systems, such as Grover’s algorithm.
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