Formal Dynamic Fault Trees Analysis

Using an Integration of Theorem Proving
and Model Checking

Yassmeen Elderhalli®), Osman Hasan, Wagar Ahmad,
and Sofiene Tahar

Electrical and Computer Engineering, Concordia University, Montréal, Canada
{y,elderh, o_hasan,waqar, tahar}@ece .concordia.ca

Abstract. Dynamic fault trees (DFTs) have emerged as an important
tool for capturing the dynamic behavior of system failure. These DFTs
are analyzed qualitatively and quantitatively using stochastic or alge-
braic methods. Model checking has been proposed to conduct the failure
analysis of systems using DFTs. However, it has not been used for DFT
qualitative analysis. Moreover, its analysis time grows exponentially with
the number of states and its reduction algorithms are usually not for-
mally verified. To overcome these limitations, we propose a methodology
to perform the formal analysis of DFTs using an integration of theorem
proving and model checking. We formalize the DF'T gates in higher-order
logic and formally verify many algebraic simplification properties using
theorem proving. Based on this, we prove the equivalence between raw
DFTs and their reduced forms to enable the formal qualitative analysis
(determine the cut sets and sequences) of DFTs with theorem proving.
We then use model checking to perform the quantitative analysis (com-
pute probabilities of failure) of the formally verified reduced DFT. We
applied our methodology on five benchmarks and the results show that
the formally verified reduced DFT was analyzed using model checking
with up to six times less states and up to 133000 times faster.

Keywords: Dynamic fault trees - Theorem proving - Model checking
HOL4 - STORM

1 Introduction

A Fault Tree (FT) [1] is a graphical representation of the causes of failure of a
system that is usually represented as the top event of the fault tree. FTs can
be categorized as Static Fault Trees (SFT) and Dynamic Fault Trees (DFT)
[1]. In an SFT, the structure function (expression) of the top event describes
the failure relationship between the basic events of the tree using FT gates, like
AND and OR, without considering the sequence of failure of these events. DFT's,
on the other hand, model the failure behavior of the system using dynamic FT
gates, like the spare gate, which can capture the dependent behavior of the basic
events along with the static gates. DFTs model a more realistic representation

© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 139-156, 2018.
https://doi.org/10.1007/978-3-319-77935-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_10&domain=pdf
http://orcid.org/0000-0003-4437-2933
http://orcid.org/0000-0003-2562-2669
http://orcid.org/0000-0003-2787-4704
http://orcid.org/0000-0002-5537-104X

140 Y. Elderhalli et al.

of systems compared to SFTs. For example, the spare DFT gate can model the
failure of car tires and their spares, which cannot be modeled using SFT gates.

Fault Tree Analysis (FTA) [1] has become an essential part of the design pro-
cess of safety-critical systems, where the causes of failure and their probabilities
should be considered at an early stage. There are two main phases for FTA, the
qualitative analysis and the quantitative analysis [2]. In the qualitative analysis,
the cut sets and cut sequences are determined, which, respectively, represent
combinations and sequences of basic events of the DFT that cause a system fail-
ure [1]. The quantitative analysis provides numeric results about the probability
of failure of the top event and the mean-time-to-failure (MTTF) among other
metrics [1]. Dynamic FTA is commonly carried out using algebraic [3] or Markov
chain based approaches [2]. In the former, an algebra similar to the Boolean alge-
bra is used to determine the structure function of the top event, which can be
simplified to determine a reduced form of the cut sets and sequences. The proba-
bilistic analysis of the DFT can then be performed based on the reduced form of
the generated structure function by considering the probability of failure of the
basic events. For the Markov chain based analysis, the FT is first converted to
its equivalent Markov chain and then the probability of failure of the top event
is determined by analyzing the generated Markov chain. The resultant Markov
chain can be very large, while dealing with complex systems, which limits the
usage of Markov chains in DFT analysis.

Traditionally, the dynamic FTA is performed using paper-and-pencil proof
methods or computer simulation. While the former is error prone, specially
for large systems, the latter provides a more scalable alternative. However, the
results of simulation cannot be termed as accurate due to the involvement of sev-
eral approximations in the underlying computation algorithms and the sampling
based nature of this method. Given the dire need of accuracy in the failure anal-
ysis of safety-critical systems, formal methods have also been recently explored
for DFT analysis. For example, the STORM probabilistic model checker [4] has
been used to analyze DFTs based on Markov chain analysis [5]. However, prob-
abilistic model checking has not been used in the formal qualitative analysis of
DFTs. Moreover, it cannot support the analysis of large systems unless a reduc-
tion algorithm is invoked, and the implementation of such reduction is usually
not formally verified. Therefore, one cannot ascertain that the analysis results
after reduction are accurate or correspond to the original system. On the other
hand, while in theory higher-order logic (HOL) theorem proving can cater for
the above shortcomings, its support for FTA has been limited to SFTs [6].

In this paper, we propose to overcome the above-mentioned limitations of
formal DFT analysis by using an integration of model checking and theorem
proving. Firstly, we use theorem proving for modeling DFTs and verifying the
equivalence between the original and the reduced form of the DFT. The for-
mally verified reduced DFT can then be used for qualitative analysis (determin-
ing the cut sets and sequences) as well as for quantitative analysis using model
checking. Thus, our proposed methodology tends to provide more sound results
than sole model checking based analysis thanks to the involvement of a theorem

Formal DFTs Analysis Using an Integration of Theorem Proving 141

prover in the verification of the reduced model. Moreover, it caters for the state-
space based issues of model checking by providing it with a reduced DFT model
of a given system for the quantitative analysis. In order to illustrate the uti-
lization and effectiveness of our proposed methodology, we analyzed five DFT
benchmarks, namely: a Hypothetical Example Computer System (HECS) [2],
a Hypothetical Cardiac Assist System (HCAS) [3,7], a scaled cascaded PAND
DFT [7,8], a multiprocessor computing system [7,9] and a variant of the Active
Heat Rejection System (AHRS) [10]. The reduced DFTs and their reduced cut
sequences are formally verified using the HOL4 theorem prover [11]. We use the
STORM model checker to formally analyze the original as well as the reduced
DFT. The results show that using the verified reduced DFT for the quantitative
analysis allows us to reduce both the number of generated states by the model
checker by up to 6 times and the time required to perform the analysis up to
133000 times faster.

2 Related Work

DFT analysis has been done using various tools and techniques [1]. For exam-
ple, Markov chains have been extensively used for the modeling and analysis of
DFTs [2]. The scalability of Markov chains in analyzing large DFTs is achieved
by using a modularization approach [12], where the DFT is divided into two
parts: static and dynamic. The static subtree is analyzed using ordinary SFT
analysis methods, such as Binary Decision Diagrams (BDD) [1], and the dynamic
subtree is analyzed using Markov chains. This kind of modularization approach
is available in the Galileo tool [13]. In [7], the authors use a compositional aggre-
gation technique to develop Input-Output Interactive Markov Chains (I/O-IMC)
to analyse DFTs. This approach is implemented in the DFTCalc tool [14]. The
algebraic approach has also been extensively used in the analysis of DFTs [3],
where the top event of the DFT can be expressed and reduced in a manner
similar to the ordinary Boolean algebra. The reliability of the system expressed
algebraically can be evaluated based on the algebraic expression of the top event
[8]. The main problem with the Markov chain analysis is the large generated
state space when analyzing complex systems, which requires high resources in
terms of memory and CPU time. Moreover, simulation is usually utilized in the
analysis process, which does not provide accurate results. Although modulariza-
tion tends to overcome the large state-space problem with Markov chains, we
cannot obtain a verified reduced form of the cut sequences of the DFT. The
algebraic approach provides a framework for performing both the reduction and
the analysis of the DFT. However, the foundations of this approach have not
been formalized, which implies that the results of the analysis should not be
relied upon especially in safety-critical systems.

Formal methods can overcome the above-mentioned inaccuracy limitations
of traditional DFT analysis techniques. Probabilistic model checkers, such as
STORM [4], have been used for the analysis of DFTs. The main idea behind this
approach is to automatically convert the DFT of a given system into its corre-

142 Y. Elderhalli et al.

sponding Markovian model and then analyze the safety characteristics quanti-
tatively of the given system using the model checker [15]. The STORM model
checker accepts the DFT to be analyzed in the Galileo format [13] and generates
a failure automata of the tree. This approach allows us to verify failure proper-
ties, like probability of failure, in an automatic manner. However, the approach
suffers from scalability issues due to the inherent state-space explosion prob-
lem of model checking for large systems. Moreover, the implementation of the
reduction algorithms used in model checkers are generally not formally verified.
Finally, model checkers have only been used in the context of probabilistic anal-
ysis of DFTs and not for the qualitative analysis, as the cut sequences in the
qualitative analysis cannot be provided unless the state machine is traversed to
the fail state, which is difficult to achieve for large state machines.

Exploiting the expressiveness of higher-order logic (HOL) and the soundness
of theorem proving, Ahmad and Hasan [6,16] formalized SFTs in HOL4 and eval-
uated the probability of failure based on the Probabilistic Inclusion-Exclusion
principle. However, the main problem in theorem proving lies in the fact that it
is interactive, i.e., it needs user guidance in the proof process. Moreover, to the
best of our knowledge, no higher-order-logic formalization of DFTs is available
in the literature so far and thus it is not a straightforward task to conduct the
DFT analysis using a theorem prover as of now.

It can be noted that both model checking and HOL theorem proving exhibit
complementary characteristics, i.e., model checking is automatic but cannot deal
with large systems and does not provide qualitative analysis of DFTs, while HOL
theorem proving allows us to verify universally quantified generic mathematical
expressions but at the cost of user interventions. In this paper, we leverage upon
the complementary nature of these approaches to present an integrated method-
ology that provides the expressiveness of higher-order logic and the existing
support for automated probabilistic analysis of DFTs using model checking. The
main idea is to use theorem proving to formally verify the equivalence between
the original and the reduced DFT and then use a probabilistic model checker
to conduct a quantitative analysis on the reduced DFT. As a result, a formally
verified reduced form of the cut sequences is obtained. In addition, both the
generated state machine and the analysis time are reduced.

3 Proposed Methodology

Our proposed methodology of the formal DFT analysis is depicted in Fig. 1.
It provides both formal DFT qualitative analysis using theorem proving and
quantitative analysis using model checking. The DFT analysis starts by having
a system description. The failure behavior of this system is then modeled as
a DFT, which can be reduced based on the algebraic approach [3]. The idea
of this algebraic approach is to deal with the events, which can represent the
basic events or outputs, according to their time of failure (d). For example,
d(X) represents the time of failure of an event X. In the algebraic approach,
temporal operators (Simultaneous (A), Before (<1) and Inclusive Before (J))

Formal DFTs Analysis Using an Integration of Theorem Proving 143

are defined to model the dynamic gates. Based on these temporal operators,
several simplification theorems exist to perform the required reduction. This
reduction process can be erroneous if it is performed manually using paper-and-
pencil. Moreover, reduction algorithms may also provide wrong results if they
are not formally verified. In order to formally check the equivalence between
the original model and the reduced one, we developed a library of formalized
dynamic gates in HOL and verified their corresponding simplification theorems
[17]. These foundations allow us to develop a formal model for any DFT using
the formal gate definitions. Based on the verified simplification theorems, we
can then verify the equivalence between the formally specified original and the
reduced DFT models using a theorem prover. The formally verified reduced DFT
can then be utilized to perform the qualitative analysis of the reduced model in
the theorem prover as well as its quantitative analysis by using a model checker.

System Description

Algebraic DFT
Formalization

Gate
Definitions

Algebraic |Simplification

Reduced DFT

Galileo Format

Formal Qualitative Model Checking

Analysis Results
(Reduced cut sets Formal Quantitative
and cut sequences) Analysis Results
(Probability of Failure)

Fig. 1. Overview of proposed methodology

The qualitative analysis represents an important and crucial step in DFT
analysis, since it allows to identify the sources of failure of the system without the
availability of any information or actual numbers about the failure probabilities
of the basic events. In SFTs, the qualitative analysis is performed by finding
the cut sets, which are the combination of events that causes system failure
without providing any information about the required sequence that will cause
the failure. The temporal behavior of dynamic gates allows representing the
failure dependencies and sequences in a system. Due to this temporal behavior
of the dynamic gates, just finding the cut sets does not capture the sequence of
failure of events that can cause the system failure. The cut sequences on the other
hand capture not only the combination of basic events but also the sequence of
events that can cause the system failure. In the proposed methodology, we utilize
a HOL theorem prover to verify a reduced expression of the structure function
of the top event, which ensures that the reduction process is correct. Using this

144 Y. Elderhalli et al.

reduced structure function, a formally verified reduced form of the cut sequences
can also be determined.

The reduced form of the structure function of the top event can now be
used in a probabilistic model checker to do the quantitative analysis of the given
system. Because of the reduced model, we get a reduction in the analysis time and
number of states. In this paper, the STORM model checker is used to perform
the probabilistic analysis of the DFT. Several input languages are supported by
this model checker including the Galileo format for DFT. Both the probability
of failure of the top event as well as the mean time to failure can be computed
using STORM. It is worth mentioning that since the analyzed model of the
DFT is a Markov Automata (MA) (in case of non-deterministic behavior) or a
Continuous Time Markov Chain (CTMC), only exponential failure distributions
are supported by the proposed methodology.

4 Formalization of Dynamic Fault Trees in HOL

In this section, we present the formal definitions of the identity elements, the
temporal operators and the dynamic gates. It is assumed that a fault is repre-
sented using an event. The occurrence of a fault indicates that the corresponding
failure event is true. It is also assumed that the events are non-repairable.

4.1 Identity Elements

Two identity elements are defined, namely the ALWAYS and the NEVER ele-
ments. The ALWAYS identity element represents an event with a failure time
equal to 0. The NEVER element represents an event that never occurs. These
two elements are defined based on their time of failure in HOL as follows:

Definition 1. ALWAYS element
F ALWAYS = (0 : extreal)

Definition 2. NEVER element
- NEVER = PosInf

where extreal is the HOL data-type for extended real numbers, which are
real numbers including positive infinity (+o00) and negative infinity (—oo). The
PosInf is a HOL symbol representing (400).

4.2 Temporal Operators

We also formalize three temporal operators in order to model the dynamic behav-
ior of the DFT: Simultaneous (A), Before (<) and Inclusive Before (<). The
Stmultaneous operator has two input events, representing basic events or sub-
trees. The time of occurrence (failure) of the output event of this operator is

Formal DFTs Analysis Using an Integration of Theorem Proving 145

equal to the time of occurrence of the first or the second input event considering
that both input events occur at the same time:

d(A), d(A) = d(B)

+oo, d(A) # d(B) M)

d(AAB) = {

For any two basic events, if the failure distribution of the random variables
associated with these basic events is continuous, then they cannot have the same
time of failure [3], and hence the result of the Simultaneous operator between
them is NEVER.

d(AAB) = NEVER (2)

where A and B are basic events with random variables that exhibit continuous
failure distributions.

The Before operator accepts two input events, which can be basic events or
two subtrees. The time of occurrence of the output event of this operator is equal
to the time of occurrence of the first input event if the first input event (from
left) occurs before the second input event (right), otherwise the output never
fails:

d(A), d(A)<d(B)

+o0o, d(A) > d(B) ®)

d(AqB){

The Inclusive Before combines the behavior of both the Simultaneous and Before
operators, i.e., if the first input event (left) occurs before or at the same time as
the second input event (right), then the output event occurs with a time equal
to the time of occurrence of the first input event:

d(4), d(A) <d(B)

Yoo, d(A) > d(B) @

d(Ang)—{

We formalize these temporal operators in HOL as follows:

Definition 3. Simultaneous Operator
F V (A:extreal) B. DSIMULT AB = if (A =B) then A else PosInf

Definition 4. Before Operator
F V (A: extreal) B. DBEFORE AB = if (A < B) then A else PosInf

Definition 5. Inclusive Before Operator
F V (A: extreal) B. D.INCLUSIVE BEFORE A B = if (A < B) then A else PosInf

where A and B represent the time of failure of the events A and B, respectively.

4.3 Fault Tree Gates

Figure 2 shows the main FT gates [2]; dynamic gates as well as the static ones.
Although, the AND (-) and OR (+) gates, shown in Figs. 2a and b, are considered
as static operators or gates, their behavior can be represented using the time of

146 Y. Elderhalli et al.

Q Q Q Q
l
FDEP Spare
F I I I
A B A B A B T A A .
(a) AND (b) OR (c) PAND (d) FDEP (e) Spare

Fig. 2. Fault tree gates

occurrence of the input events. For example, the output event of an AND gate
occurs if and only if all its input events occur. This implies that the output of
the AND gate occurs with the occurrence of the last input event, which means
that the time of occurrence of the output event equals the maximum time of
occurrence of the input events. The OR gate is defined in a similar manner with
the only difference that the output event occurs with the occurrence of the first
input event, i.e., the minimum time of occurrence of the inputs:

d(A - B) = maz(d(A),d(B)) (5)

d(A+ B) = min(d(A),d(B)) (6)
We model the behavior of these gates in HOL as follows:

Definition 6. AND gate (operator)
F V (A:extreal) B.DAANDAB = max AB

Definition 7. OR gate (operator)
F V (A:extreal) B.DORAB = min AB

where max and min are HOL functions that return the maximum and the mini-
mum values of their arguments, respectively.

The Priority-AND (PAND) gate is a special case of the AND gate, where
the output occurs when all the input events occur in a sequence, conventionally
from left to right. For the PAND gate, shown in Fig. 2¢, the output @ occurs if
A and B occur and A occurs before or with B. The behavior of the PAND gate
can be represented using the time of failure as:

_)d(B), d(A) <d(B)
d(Q)_{—l-oo, d(A) > d(B) @

The behavior of the PAND can be expressed using the temporal operators as:

Q=B (A<B) (8)

Formal DFTs Analysis Using an Integration of Theorem Proving 147

We define the PAND gate in HOL as:

Definition 8. PAND gate
F V (A:extreal) B. PAND AB = if (A < B) then B else PosInf

We verify in HOL that the PAND exhibits the behavior given in Eq. 8:
Theorem 1. - V AB. PAND AB = D_AND B (D_INCLUSIVE_BEFORE A B)

The Functional DEPendency gate (FDEP), shown in Fig.2d, is used when
there is a failure dependency between the input events or sub-trees, i.e., the
occurrence of one input (or a sub-tree) can trigger the occurrence of other input
events (or subtrees) in the fault tree. For example, in Fig. 2d, the occurrence of
T triggers the occurrence of A. This states that A occurs in two different ways:
firstly, when A occurs by itself and secondly, when the trigger T occurs. This
implies that the time of failure of Ap (triggered A) equals the minimum time of
occurrences of T' and A:

d(Ar) = min(d(A),d(T)) 9)
We define the FDEP gate in HOL as:

Definition 9. FDEP gate
F V (A:extreal) T.FDEPAT = min AT

where T is the occurrence time of the trigger. We also verify in HOL that the
FDEP gate is equivalent to an OR gate as follows:

Theorem 2. - VAT.FDEPAT = DORAT

The spare gate, shown in Fig. 2e, represents a dynamic behavior that occurs
in many real world systems, where we usually have a main part and some spare
parts. The spare parts are utilized when the main part fails. The spare gate,
shown in Fig. 2e, has a main input (A) and a spare input (B). After the failure of
input A, the spare input B is activated. The output of the spare gate fails if both
the main input and the spare fail. The spare gate can have several spare inputs,
and the output fails after the failure of the main input and all the spares. The
spare gate has three variants depending on the failure behavior of the spare part:
hot spare gate (HSP), cold spare gate (CSP) or warm spare gate (WSP). In the
HSP, the probability of failure for the spare is the same in both the dormant and
the active states. For the CSP, the spare part cannot fail unless it is activated.
The WSP is the general case, where the spare part can fail in the dormant state
as well as in the active state, but the failure distribution of the spare in its
dormant state is different from the one in the active mode, and it is usually
attenuated by a dormancy factor. In order to be able to distinguish between the
different states of the spare input, two different variables are assigned to each
state. For example, for the spare gate, shown in Fig.2e, B will be represented
using two variables; By for the dormant state and B, for the active state.

148 Y. Elderhalli et al.

The input events of the spare gate cannot occur at the same time if they are
basic events. However, if these events are subtrees then they can occur at the
same time. For a two input warm spare gate, with A as the primary input and
B as the spare input, the output event occurs in two ways; firstly, if B fails in its
dormant state (inactive) then A fails with no spare to replace it. The second way
is when A fails first then B (the spare part) is activated and then B fails in its
active state. For the general case, when the input events can occur at the same
time (if they are subtrees or depend on a common trigger), an additional option
for the failure of the spare gate is added considering the two input events occur
at the same time. The general form of the warm spare gate can be expressed
mathematically as:

Q=A(By<A)+ B,.(A< B,) + AAB, + AABy, (10)
We formally define the WSP in HOL as:

Definition 10. Warm Spare Gate
F VAB.,aB.d.
WSP AB_.aBd =
D_OR(D_OR (D_OR (D_AND A (D_BEFORE B_dA))
(D_AND B_a (D_BEFOREAB_a))) (D_.SIMULTAB_a)) (D_SIMULT A B.d)

The time of failure of the CSP gate with primary input A and cold spare B

can be defined as:
d(B), d(A)<d(B
sy~ (1B,) <ap))
+oo, d(A) > d(B)
The above equation describes that the output event of the CSP occurs if the
primary input fails and then the spare fails while in its active state. We define
the CSP in HOL as:

Definition 11. Cold Spare Gate
F V (A:extreal) B. CSPAB = if (A < B) then B else PosInf

We formally verify in HOL that the CSP gate is a special case of WSP, where
the spare part cannot fail in its dormant state.

Theorem 3. + V A B_a B.d.
ALL_DISTINCT [A; B,a] A COLD_SPARE B.d = (WSP ABaBd = CSPA B,a)

where the predicate ALL_DISTINCT ensures that A and B_a are not equal,
implying that they cannot fail at the same time, and COLD_SPARE B_d makes
sure that the spare B is a cold spare, i.e., it cannot fail in its dormant mode
(B_d).

The failure distribution of the spare part in the HSP remains the same in
both states, i.e., the dormant and the active states. The output of the HSP fails
when both the primary and the spare inputs fail, and the sequence of failures

Formal DFTs Analysis Using an Integration of Theorem Proving 149

does not matter, as the spare part has only one failure distribution. The HSP
can be expressed mathematically as:

d(Q) = max(d(A),d(B)) (12)

where A is the primary input and B is the spare. It is formally defined in HOL
as:

Definition 12. Hot Spare Gate
F V (A:extreal) B.HSPAB = max A B

We formally verify in HOL that if both the dormant and the active states of the
spare are equal, then the WSP is equivalent to the HSP:

Theorem 4. - VAB.aB.d. (B.a = Bd) = (WSPAB.aB.d = HSP AB.a)

It is important to mention that more than one spare gate can share the same
spare input. In this case, there is a possibility that one of the primary inputs is
replaced by the spare, while the other input does not have a spare in case it fails.
The outputs of the spare gates, shown in Fig. 3, are expressed mathematically
as follows (assuming that A, B and C' are basic events):

il a

Spare Spare

C

Fig. 3. Spare gates with shared spare

Q1 =A(Cyg<A)+C,.(AC,)+A(B<A) (13)
Q2 = B.(C4<AB) + Co.(B<C,) + B.(A< B) (14)

The last term in Eq. 13 (A.(B < A)) indicates that if B occurs before A, then
the spare part C' is used by the second spare gate. This implies that no spare is
available for the first spare gate, which causes the failure of the output of the
first spare gate if A occurs. We formalize the output @ of the first spare gate
in HOL as:

Definition 13. Shared Spare
F VABCacCd.
shared_spare AB C.a C.d =
D_OR (D_OR (D_AND A (D_BEFORE C_d A)) (D_AND C_a (D_BEFORE A C_a)))
(D_AND A (D_BEFORE B 4)))

150 Y. Elderhalli et al.

4.4 Formal Verification of the Simplification Theorems

As with classical Boolean algebra, many simplification theorems also exist for
DFT operators, which can be used to simplify the structure function of the
DFT [3]. We formally verified over 80 simplification theorems for the operators,
defined in the previous subsection, including commutativity, associativity and
idempotence of the AND, OR and Simultaneous operators, in addition to more
complex theorems that include a combination of temporal operators. The verifi-
cation process of these theorems was mainly based on the properties of extended
real numbers, since the DFT operators are defined based on the time of failure of
the events, defined using the extreal data-type in HOL. During the verification
process, most sub-goals were automatically verified using tactics that utilize the-
orems from the extreal HOL theory. Some of these formally verified theorems
are listed in Table 1. The complete list of formally verified theorems and more
details about their verification can be found in [18].

Table 1. Some formally verified simplification theorems

DFT Algebra Theorems

HOL Theorems

A+B=B+A

YV AB. DORAB=DORBA

A.B=B.A YV A B. DAND A B =DAND B A
A+A=A VY A. DORA A=A
A.NEVER=NEVER - V A. DAND A NEVER = NEVER
AAB=BAA -V A B. D.SIMULT A B = D_.SIMULT B A

(A<B).(B4A)=NEVER

F V A B. DAND (D_BEFORE A B)
(D_BEFORE B A) = NEVER

A<(B+C)=(A<dB).(AC)

FV ABC. DBEFORE A (D_OR B C) =
D_AND (D_BEFORE A B) (D_BEFORE A C)

(A<IB).(BLA)=AAB

F V A B. D_AND (D_INCLUSIVE_BEFORE A B)
(D_INCLUSIVE BEFORE B A) = D_SIMULT A B

(AB)+(AAB)=A<B

FV A B. DOR (D_INCLUSIVE BEFORE A B)
(D_SIMULT A B) = D_INCLUSIVE BEFORE A B

VvV A B. DOR (D_.OR (D_BEFORE A B)

(AB)+(AAB)+(A.(BQA)=A | (p STMULT A B)) (D.AND A D_BEFORE B A)) = A

Figure 4 shows an example of a simple DFT [8]. This DFT consists of two cas-
caded PAND gates with three basic events; A, B and C. The temporal operators
can be used to express the behavior of the PAND gate as follows [8]:

Q=C(BC).(A<(C.(BLC)) (15)

Using this expression, we cannot determine the required sequence of failure for
the basic events that will cause the system failure, since the basic events are
repeated in the expression. Using the algebraic simplification theorems, this
structure function can be reduced to [8]:

QR=C(B<C).(A<C) (16)

Formal DFTs Analysis Using an Integration of Theorem Proving 151

Laj

Fig. 4. Simple DFT example

We verified this reduction using HOL4, which implies that this reduction process
is correct and the new reduced DFT expression reflects the behavior of the
original DFT.

F VABC.
ALL_DISTINCT [A; B; C] =
(PAND A (PANDBC) =
D_AND C (D_AND (D_BEFORE A C) (D_BEFORE B C)))

From this reduced expression, we can identify that two different sequences
can cause the system failure; [A, B, C] or [B, A, C].

Q=C.(A<C).(B<A) + C.(B<C).(A<B) (17)

This reduced form of the structure function is verified in HOL to be equal to the
top event of the original tree as:

F VABC.
ALL_DISTINCT [A; B; C] =
(PAND A (PANDBC) =
D_OR(D_AND C (D_AND (D_-BEFORE A C) (D_BEFORE B 4)))
(D-AND C (D-AND (D_BEFORE B C) (D_BEFORE A B))))

Since we have formally verified that the structure function is composed of the
above-mentioned two sequences, we can conclude that the system will fail if any
of these sequences occurs. In order to prevent or reduce the probability of failure
of the top event, we should prevent the occurrence of these sequences, i.e., we
should prevent the failure of A and B before C. This means that using the first
part of our proposed methodology, we have been able to obtain a verified reduced
form of the top event as well as a verified reduced form of the cut sequences.

5 Experimental Results

In order to illustrate the effectiveness of our proposed methodology, we conducted
the formal DFT analysis of five benchmarks. The first benchmark, depicted in
Fig. 5, is a scaled version of the original cascaded PAND DFT [7,8] with repeated

152 Y. Elderhalli et al.

**E@E@E@@Q@?

Fig. 5. Scaled cascaded PAND DFT

events. It has two similar subtrees with different basic events and a top event
that fails whenever one of these subtrees fails. The second DFT is a modified
and abstracted version of the Active Heat Rejection System (AHRS) [10], which
consists of two thermal rejection units A and B. The failure of any of these
two units leads to the failure of the whole system. Each main input (A or B)
has two spare parts, and the unit fails with the failure of the main input and
the spare inputs. All the inputs are functionally dependent on the power supply.
The third benchmark represents a Multiprocessor Computer System (MCS) [7,9]
with two redundant computers, having a processor, a disk and a memory unit.
Each disk has its own spare and the two memory units share the same spare.
The two processors are functionally dependent on the power supply. The fourth
benchmark is a Hypotheical Example Computer System (HECS) [2] consisting
of two processors with a cold spare, five memory units, which are functionally
dependent on two memory interface units and two system buses. The failure of
the system also depends on the application subsystem, which in turn depends
on the software, the hardware and the human operator. The last benchmark
is a Hypothetical Cardiac Assist System (HCAS) [3,7], which consists of two
bumps with a shared spare, two motors and a CPU with a spare. Both CPUs
are functionally dependent on a trigger, which represents the crossbar switch and
the system supervisor. In the sequel, we describe the formal analysis of the first
benchmark. Details of the rest of the benchmarks as well as the HOL4 scripts
and STORM models are available at [17,18].

Formal DFTs Analysis Using an Integration of Theorem Proving 153

5.1 Formal Verification of the Reduced Cascaded PAND DFT

The first step in the proposed methodology is to create a formal model for both
the original DFT and the reduced one. Then, the equivalence property between
them is formally verified in HOL. This is followed by determining the cut sets and
sequences. The top event (Q1) of the system, shown in Fig.5, is reduced using
the simplification theorems and this reduction is verified in HOL as follows [18]:

Theorem 5. - V A; By C; Dy Ey Wy Gy Hy Iy Jy Ky Ly Ny Oy Py Ay By Co Dy Eo

W2 Go Hy I Jo Ky Ly Np O Pyp. ALL_DISTINCT [As;By; Cy;Dy; Exi Wi Ga; Hy;

I1;J1;Kq; 015 Ny; 015 P15 Ag; Bo; Co; Do Egj; Waj Goj Hoj I Jo; Koj Lo Noj Og; Pg] =
(Q1=(I1+J1+K1+L1) . (A1 <9(I1+J1+K1+L1)) . ((B1.C1.D1.E1 . W1 .Gy . Hy) <(I1+J1+K1+L1))
+(I2+J2+Ko+L2) . (A2<1(I2+J2+Ka+L2)) . ((B2.C2.D2.E2.W2.G2 . Ho) <1(I2+J2+K2+L2)))

The predicate ALL_DISTINCT ensures that the basic events cannot occur at the
same time. This condition was found to be a prerequisite for the above-mentioned
consequence. We can observe from the above theorem that the basic events (N7,
01, Py, Na, Oz, P5) have no effect on the failure of the top event since they
are eliminated in the reduction. Considering the cut sets and sequences, the top
event can fail in two cases. The first case corresponds to the first product in
the structure function, which implies that the output event occurs if any one of
the basic events (I, J1, K71, L1) occurs and A; occurs before all of them and
the inputs (By, C1, Dy, E1, Wy, Gy, Hy) occur before the inputs (I, Jy, K7,
Ly). The second case represents the second product of the second subtree, which
is similar to the first product but with different basic events. Since the Galileo
format (which is used to model a DFT in STORM) supports only DFT gates
and not operators, it is required that the reduced form is represented using DFT
gates only. This representation is verified in HOL as follows:

Theorem 6. - V A; By Ci Dy Ex Wy Gy Hy Iy Jy Ky Ly Ny O3 Py Ay By G Dy Eo
Wy Gy Hy Ip Jo Ko Ly Ny Oy Py. ALL DISTINCT [As;By; Cy;Dy; Eq; Wy Gy Hy
I4;J1;Kq;L1;N1;01;Py; Ag; Bo; Co; Doj Egj Woj Goj Hpj Inj Jo; Koj Lipj Noj Og; Pz] =

(Q1= PAND A; (I1+J1+Ki+L1). PAND (B1.C1.D1.E1.W1.Gyp.Hy) (I1+J1+Ki+L1)+
PAND A2(12+J2+K2+L2) . PAND (BQ.CQ .D2.Eo.Wa.Go .HQ) (I2+J2+K2+L2)

5.2 Quantitative Analysis Results Using STORM

The quantitative analysis for the five benchmarks was conducted using STORM
on a Linux machine with i7 2.4 GHZ quad core CPU and 4 GB of RAM. The
efficiency of the proposed methodology is highlighted by analyzing the original
DFTs and the reduced ones. In addition, the probability of failure for each DFT
is evaluated for different time bounds, e.g. the probability of failure after 100
working time units. A summary of the analysis results are given in Table2. It
can be noticed that the number of states is reduced as well as the total analy-
sis time. For the first benchmark, the analysis time is reduced due to the huge

154 Y. Elderhalli et al.

reduction in the number of states. As mentioned earlier, many basic events are
eliminated using the algebraic reduction theorems, which in turn reduced the
total analysis time as well as the number of states. The reduction in the analy-
sis time is also evident in the rest of the benchmarks, as given in Table 2. This
is mainly because of two reasons, firstly, the number of states is reduced, and
secondly, the original DFT is modeled as a Markov Automata (MA) as there is
a non-deterministic behavior, while the reduced DFT is modeled as a Contin-
uous Time Markov Chain (CTMC). This implies that in the reduced DFT the
non-deterministic behavior caused by the failure dependency does not exist any
more, as the reduction process depends on the time of failure of the gates, which
allows solving the previously unresolved problems. We used STORM command
(firstdep) to resolve the non-deterministic behavior in the original DFT to gen-
erate a CTMC instead of a MA. The results in Table 3 show that the number
of states for the reduced DFTs is generally less than that of the original DFT
with resolved dependencies, except for the HECS DFT, which requires further
investigation. This emphasizes on the importance of the proposed methodology
not only in providing a formal qualitative analysis but also in reducing the quan-
titative analysis cost in terms of time and memory, i.e., number of states. We
believe that the proposed methodology can be implemented with any theorem
prover that supports extended real data-type and with any probabilistic model
checker that supports DFT analysis. In addition, we believe that applying this
methodology to any DFT will reduce the analysis time as well as the number
of states specially if the DFT has a non-deterministic behavior. This method-
ology can be enhanced if the model checker supports the temporal operators in
addition to the supported FT gates. This means that we can use the result of
the reduction directly without rewriting it in terms of F'T gates. Moreover, the
transformation process of the verified reduced DFT expression from the theorem
prover script to its corresponding Galileo format can be automated to facilitate
the overall analysis.

Table 2. STORM analysis results (before and after reduction)

DFT Time Before Reduction After Reduction
Bound #States Analysis Probability #States Analysis Probability
Time(sec) of Failure Time(sec) of Failure
CPAND 1000 148226 (CTMC) 7.488 1.464103531e-4 66050 (CTMC) 3.032 1.464103348e-4
ARHS 10 74 (MA) 169.81 0.00995049462 10 (CTMC) 0.067 0.009950461197
! 100 74 (MA) * o 0 (CTMC) 0.067 0.0954423939
MCS 10 9 (MA) 139.7 0.01196434683 29 (CTMC) 0.061 0.01196434516
! 100 89 (MA) * *k 29 (CTMC) 0.060 0.1166464887
HECS 10 1051 (MA) 16359.83 0.01710278909 505 (CMTC) 0.123 0.01710276373
o 100 1051 (MA) * Hx 505 (CMTC) 0.123 0.1762782397
HCAS 10 181 (MA) 275.31 2.000104327e-5 37 (CTMC) 0.070 2.99929683e-5
100 181 (MA) * Hok 37 (CTMC) 0.071 0.000300083976

*The analysis did not finish within 4 h.
** No probabilities are recorded (analysis did not finish).

Formal DFTs Analysis Using an Integration of Theorem Proving 155

Table 3. STORM analysis results with resolved dependencies

DFT Time Dependency resolved in STORM Algebraic Reduction
Bound — #States Analysis Probability #States Analysis Probility
Time(sec) of Failure Time(sec) of Failure
ARTIS 10 10(CTMC) 0.068 0.009960461197 10 (CTMC) 0.067 0.009950461197
) 100 10 (CTMC) 0.1 0.09544239393 10 (CTMC) 0.067 0.0954423939
MCS 10 45 (CMTC) 0.064 0.01196434516 29 (CTMC) 0.061 0.01196434516
o 100 45(CMTC) 0.064 0.1166464887 29 (CTMC) 0.060 0.1166464887
HECS 10 379 (CTMC) 0.118 0.01710276373 505 (CMTC) 0.123 0.01710276373
: 100 379 (CTMC) 0.121 0.1762782397 505 (CMTC) 0.123 0.1762782397
10 73 (CTMC) 0.076 1.999530855¢e-5 37 (CTMC) 0.070 2.99929683e-5
HCAS 100 73 (CTMC) 0.076 0.0002001091927 37 (CTMC) 0.071 0.000300083976
N 100000 73 (CTMC) 0.077 0.2772192934* 37 (CTMC) 0.074 0.3460009685*

*The reported probability for the reduced DFT is closer to the probability
reported in [3] for the same input failure distribution.

6 Conclusion

In this paper, we proposed a formal dynamic fault tree analysis methodology
integrating theorem proving and model checking approaches. We first formal-
ized the dynamic fault tree gates and operators in HOL theorem proving based
on the time of failure of each gate. Using this formalization and the extreal
library in HOL4, we also proved over 80 simplification theorems that can be
used to verify the reduction of any DFT. We used these theorems to verify the
equivalence of the raw and reduced DFTs using theorem proving. In addition,
we provided a formally verified qualitative analysis of the structure function in
the form of reduced cut sets and sequences, which, to the best of our knowl-
edge, is another novel contribution. The quantitative analysis of the reduced
structure function is performed using the STORM model checker. This ensures
that the model checking results correspond to the original DFT, since we use
the formally verified reduced DFT model for the quantitative analysis. Both the
qualitative and quantitative analyses were conducted on five benchmark DFTs,
providing formally verified reduced cut sets and sequences, as well as the corre-
sponding probabilities of failure. In addition, the model checking results indicate
that using the reduced DFT in the analysis has a positive impact on its cost in
terms of both time and number of states. As a future work, we plan to provide
the quantitative analysis of DFTs within HOL, which will allow us to have a
complete framework for formal DFT analyses using theorem proving.

References

1. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15—-16, 29-62 (2015)

2. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications. NASA Office of Safety and Mis-
sion Assurance (2002)

156

10.
11.
12.

13.

14.

15.

16.

17.

18.

Y. Elderhalli et al.

Merle, G.: Algebraic Modelling of Dynamic Fault Trees, Contribution to Qualita-
tive and Quantitative Analysis. Ph.D. thesis, ENS, France (2010)

Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592-600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inf. 14, 370-379 (2017). https://doi.org/
10.1109/T11.2017.2710316

Ahmad, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS (LNAI), vol. 9150, pp. 39-54. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-20615-8_3

Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441-456.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8_31
Merle, G., Roussel, J.M., Lesage, J.J., Bobbio, A.: Probabilistic algebraic analysis
of fault trees with priority dynamic gates and repeated events. IEEE Trans. Reliab.
59(1), 250-261 (2010)

Malhotra, M., Trivedi, K.S.: Dependability modeling using petri-nets. IEEE Trans.
Reliab. 44(3), 428-440 (1995)

Boudali, H., Dugan, J.: A new Bayesian network approach to solve dynamic fault
trees. In: IEEE Reliability and Maintainability Symposium, pp. 451-456 (2005)
HOL4 (2017). hol.sourceforge.net

Pullum, L., Dugan, J.: Fault tree models for the analysis of complex computer-
based systems. In: IEEE Reliability and Maintainability Symposium, pp. 200-207
(1996)

Galileo. www.cse.msu.edu/~cse870/Materials/Fault Tolerant /manual-galileo.htm
Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCALC: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaaniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293-301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2_27

Ghadhab, M., Junges, S., Katoen, J.-P., Kuntz, M., Volk, M.: Model-based safety
analysis for vehicle guidance systems. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 3-19. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66266-4_1

Ahmad, W., Hasan, O.: Formalization of fault trees in higher-order logic: a deep
embedding approach. In: Franzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016.
LNCS, vol. 9984, pp. 264-279. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47677-3_17

Elderhalli, Y.: DFT Formal Analysis: HOL4 Script and Storm Benchmarks (2017).
http://hvg.ece.concordia.ca/Publications/ TECH_REP /DFT_TR17

Elderhalli, Y., Hasan, O., Ahmad, W., Tahar, S.: Dynamic Fault Trees Analysis
using an Integration of Theorem Proving and Model Checking. Technical report,
Concordia University, Canada (2017). https://arxiv.org/abs/1712.02872

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-540-75596-8_31
https://sourceforge.net/
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-319-66266-4_1
https://doi.org/10.1007/978-3-319-47677-3_17
https://doi.org/10.1007/978-3-319-47677-3_17
http://hvg.ece.concordia.ca/Publications/TECH_REP/DFT_TR17
https://arxiv.org/abs/1712.02872

	Formal Dynamic Fault Trees Analysis Using an Integration of Theorem Proving and Model Checking
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Formalization of Dynamic Fault Trees in HOL
	4.1 Identity Elements
	4.2 Temporal Operators
	4.3 Fault Tree Gates
	4.4 Formal Verification of the Simplification Theorems

	5 Experimental Results
	5.1 Formal Verification of the Reduced Cascaded PAND DFT
	5.2 Quantitative Analysis Results Using STORM

	6 Conclusion
	References

