

JCHARMING: A Bug Reproduction Approach using

Crash Traces and Directed Model Checking

Mathieu Nayrolles, Abdelwahab Hamou-Lhadj

SBA Research Lab

ECE, Concordia University

Montréal, Canada

m_nayrol@encs.concordia.ca, abdelw@ece.concordia.ca

Abstract—Due to their inherent complexity, software systems

are pledged to be released with bugs. These bugs manifest

themselves on client's computers, causing crashes and undesired

behaviors. Field crashes, in particular, are challenging to

understand and fix as the information provided by the impacted

customers are often scarce and inaccurate. To address this issue,

there is a need to find ways for automatically reproducing the

crash in a lab environment in order to fully understand its root

causes. Crash reproduction is also an important step towards

developing adequate patches. In this paper, we propose a novel

crash reproduction approach, called JCHARMING (Java CrasH

Automatic Reproduction by directed Model checkING).

JCHARMING uses crash traces and model checking to identify

program statements needed to reproduce a crash. Our approach

takes advantage of the completeness provided by model checking

while ignoring unneeded system states by means of information

found in crash traces combined with static slices. We show the

effectiveness of JCHARMING by applying it to seven different

open source programs cumulating more than one million lines of

code scattered in around 7000 classes. Overall, JCHARMING

was able to reproduce 85% of the submitted bugs.

Keywords—Automatic Bug Reproduction, Dynamic Analysis,

Model Checking, Software Maintenance.

I. INTRODUCTION

Despite the efforts spent on testing and verification, there is no

guarantee that the final releases of a software system are bug-

free, resulting in crashes (field failures) and unwanted

behavior of the system. Fixing bugs that cause field crashes is

known to be an expensive task. Automated techniques that can

help identify the cause of crashes in order to reproduce them

can save costs and efforts.

Field failures are, however, challenging to reproduce because

the data provided by the end users is often scarce. A survey

conducted with developers of major open source software

systems such as Apache, Mozilla and Eclipse revealed that

one of the most valuable piece of information that can help

locate and fix the cause of a crash is the one that can help

reproduce it [1]. It is therefore important to invest in

techniques and tools for automatic bug reproduction to ease

the maintenance process and accelerate the rate of bug fixes

and patches.

Existing techniques can be divided into two categories: (a)

On-field record and in-house replay [2]–[4], and (b) In-house

crash explanation [5], [6]. The first category relies on

instrumenting the system in order to capture objects and other

system components at run-time. When a faulty behavior

occurs in the field, the stored objects as well as the entire heap

are sent to the developers along with the faulty methods to

reproduce the crash. These techniques tend to be simple to

implement and yield good results, but they suffer from two

main limitations. First, code instrumentation comes with a

non-negligible overhead on the system. The second limitation

is that the collected objects may contain sensitive information

causing customer privacy issues. The second category is

composed of tools leveraging proprietary data in order to

provide hints on potential causes. While these techniques are

efficient in improving our comprehension of the bugs, they are

not designed with the purpose of reproducing them.

In this paper, we propose an approach, called JCHARMING

(Java CrasH Automatic Reproduction by directed Model

checkING) that uses a combination of crash traces and model

checking to automatically reproduce bugs that caused field

failures. Unlike existing techniques, JCHARMING does not

require instrumentation of the code. It does not need access to

the content of the heap either. Instead, JCHARMING uses a

list of functions output when an uncaught exception in Java

occurs (i.e., the crash trace) to guide a model checking engine

to uncover the statements that caused the crash.

Model checking (also known as property checking) is a formal

technique for automatically verifying a set of properties of

finite-state systems [7]. More specifically, this technique

builds a control flow graph where each node represents one

state of the program and the set of properties that need to be

verified in each state. For real-world programs, model

checking is often computationally impracticable because of

the state explosion problem [7]. To address this challenge and

apply model checking on large programs, we direct the model

checking engine towards the crash using program slicing and

the content of the crash trace, and hence, reduce the search

space. As we will show in the case study, this directed model

checking approach is capable of achieving 85% accuracy

when applied to reproducing bugs from seven different open

source systems.

The remainder of this paper is organized as follows: In Section

II, we present related work on crash reproduction. In Section

Sofiène Tahar

ECE Department

Concordia University

Montréal, Canada

tahar@ece.concordia.ca

Alf Larsson

PLF System Management

Ericsson, R & D

Stockholm, Sweden

alf.larsson@ericsson.com

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

101

III, we provide some background information on model

checking. JCHARMING is the topic of Section IV. Section V

is dedicated to the case study, followed by threats to validity.

We conclude the paper and sketch future directions in Section

VII.

II. RELATED WORK

In his Ph.D thesis [8], Chen proposed an approach named

STAR (Stack Trace based Automatic crash Reproduction).

Using only the crash stack, STAR starts from the crash point

and goes backward towards the entry point of the program.

During the backward process, STAR computes the required

condition to reach the crash point using an SMT (Satisfiability

Modulo Theories) solver named Yices [9]. The objects that

satisfy the required conditions are generated and orchestrated

inside a JUnit test case [10]. The test is run and the resulting

crash stack is compared to the original one. If both match, the

bug is said to be reproduced. When applied to different

systems, STAR achieved 60% accuracy.

Jaygarl et al. [4] created OCAT (Object Capture based

Automated Testing). The authors’ approach starts by capturing

objects created by the program when it runs on-field in order

to provide them in an automated test process. Indeed the

coverage of automated tests is often low due to the lack of

correctly constructed objects. Also, the objects can be mutated

by means of evolutionary algorithms. These mutations target

primitive fields in order to create even more objects and

therefore improve the code coverage once more. While not

targeting the reproduction of a bug, OCAT is a well-known

approach and was used as the main mechanism for bug

reproduction.

Narayanasamy et al. [2] proposed BugNet, a tool that

continuously records program execution for deterministic

replay debugging. According to the authors, the size of the

recorded data needed to reproduce a bug with high accuracy is

around 10MB. This recording is then sent to the developers

and allows the deterministic replay of a bug. The authors

argued that, with nowadays Internet bandwidth, the size of the

recording is not an issue during the transmission of the

recorded data, however, the instrumentation of the system is

problematic since it slows down considerably the execution.

Jin et al. [11] proposed BugRedux for reproducing field

failures for in-house debugging. The tool aims to synthesize

in-house executions that mimic field failures. To do so, the

authors use several types of data collected in the field such as

stack traces, crash stacks, and points of failure. The data that

successfully reproduced the field crash is sent to software

developers to fix the bug.

Based on the success of BugRedux, the authors built F3 (Fault

localization for Field Failures) [12]. F3 performs many

executions of a program on top of BugRedux in order to cover

different paths leading to the fault. It then generates many

‘pass’ and ‘fail’ paths which can lead to a better understanding

of the bug. They also use grouping, profiling and filtering, to

improve the fault localization process.

While being close to our approach, BugRedux and F3 may

require the call sequence and/or the complete execution trace

in order to achieve bug reproduction. When using only the

crash traces (referred to as call stack at crash time in their

paper), the success rate of BugRedux significantly drops to

37.5% (6/16). The call sequence and the complete execution

trace required to reach 100% of bug reproduction can only be

obtained through instrumentation and with an overhead

ranging from 1% to 1066%.

Clause et al. [13] proposed a technique for enabling and

supporting debugging of field failures. They record the

execution of the program on the client side and propose to

compress the generated data to the minimal required size to

ensure that the reproduction is feasible. This compression is

also performed on the client side. Moreover, the authors keep

traces of all accessed documents in the operating system and

also compress/reduce them to the minimal. Overall, they are

able to reproduce on-field bug using a file weighting ≈70Kb.

The minimal execution paths triggering the failure are then

sent to the developers who can replay the execution on a

sandbox, simulating the client’s environment. While efficient,

this approach suffers from severe security and privacy issues.

RECORE (REconstructing CORE dumps) is a tool proposed

by Rößler et al. [14]. It instruments Java bytecode to wrap

every method in a try and catch block while keeping a quasi-

null overhead. The tool starts from the core dump and tries

(with evolutionary algorithms) to reproduce the same dump by

executing the programs many times. The set of inputs

responsible for the failure is generated when the generated

dump matches the collected one.

ReCrash [3] is a tool that aims to make software failures

reproducible by preserving object states. It uses an in-memory

stack, which contains every argument and object clone of the

real execution in order to reproduce a crash via the automatic

generation of unit test cases. Unit test cases are used to

provide hints to the developers on the buggy code. This

approach suffers from overhead when they record everything

(between 13% to 64% in some cases). The authors also

propose an alternative in which they record only the methods

surrounding the crash. For this to work, the crash has to occur

at least once so they could use the information causing the

crash to identify the methods surrounding it when (and if) it

appears.

JRapture [15] is a capture/replay tool for observation-based

testing. The tool captures execution of Java programs to replay

it in-house. To capture the execution of a Java program, the

authors used their own version of the Java Virtual Machine

(JVM) and employ a lightweight, transparent capture process.

Using their own JVM allows one to capture any interactions

between a Java program and the system, including GUI, file,

and console inputs, and on replay, it presents each thread with

exactly the same input sequence it saw during capture.

Unfortunately, they have to make their customer use their own

JVM in order to support their approach, which limits the

generalization of the approach to mass-market software.

102

Finally, Zamfir et al. [16] proposed ESD, an execution

synthesis approach which automatically synthesizes failure

execution using only the stack trace information. However,

this stack trace is extracted from the core dump and may not

always contain the components that caused the crash.

Except for STAR, approaches targeting the reproduction of

field crashes require the instrumentation of the code or the

running platform in order to save the stack call or the objects

to successfully reproduce bugs. As we discussed earlier,

instrumentation can cause a massive overhead (1% to 1066%)

while running the system. In addition, data generated at run-

time using instrumentation may contain sensitive information.

The approach proposed in this paper takes a different path by

avoiding the instrumentation of the code and only uses stack

traces resulting from an exception. While we do not filter any

personal information that may appear in the crash trace,

JCHARMING still raises less privacy concerns than a tool

recording every call.

III. PRELIMINARIES

Model checking (also known as property checking) will, given

a system (that could be software [17] or hardware based [18]),

check if the system meets a specification Spec by testing

exhaustively all the states of the system under test (SUT),

which can be represented by a Kripke [19] structure:

𝑆𝑈𝑇 = < 𝑆, 𝑇, 𝑃 >

where S is the set of states, T ⊆ S × S represents the

transitions between the states and P is the set of properties that

each state satisfies. The SUT is said to satisfy a set of

properties p when there exists a sequence of states transition x

leading towards these properties. This can be written as:

(𝑆𝑈𝑇, 𝑥) ⊨ 𝑝

However, this only ensures that ∃𝑥 such that 𝑝 is reached at

some point in the execution of the program and not that 𝑝

holds nor that ∀𝑥 , 𝑝 is satisfiable. In this paper, SUTs are

bound to a simple specification: they must not crash under a

fair environment. In the framework of this study, we consider

a fair environment as any environment where the transitions

between the states represent the functionalities offered by the

program. For example, in a fair environment, the program

heap or other memory spaces cannot be modified. Without this

fairness constraint, all programs could be tagged as buggy

since we could, for example, destroy objects in memory while

the program continues its execution. As we are interested in

verifying the absence of unhandled exceptions in the SUT, we

aim to verify that for all possible combinations of states and

transitions there is no path leading towards a crash 𝑐. That is:

∀𝑥. (𝑆𝑈𝑇, 𝑥) ⊨ ¬𝑐

If such a path exists (i.e., ∃x such that (SUT, x) ⊨ c) then the

model checker engine will output the path x (known as the

counter-example) which can then be executed. The resulting

Java exception crash trace is compared with the original crash

trace to assess if the bug is reproduced. While being accurate

Fig1. From top to bottom, a toy-program composed of two loops, under

testing, model checking and directed model checking. The dotted lines

represent removed states for the sake of clarity

and exhaustive in finding counter-examples, model checking

suffers from the state explosion problem, which hinders its

applicability to large software systems.

To show the contrast between testing and model checking, we

use the hypothetical example of Figure 1 to sketch the possible

results of each approach. This figure depicts a toy program

where from the entry point, unknown calls are made (dotted

points) and, at some points, two methods are called. These

methods, called Foo.Bar and Bar.Foo, implement a for loop

from 0 to loopCount. The only difference between these two

methods is that the Bar.Foo method throws an exception if i

becomes larger than two. Hereafter, we denote this property as

𝑐𝑖>2.

Figure 1a shows the program statements that could be covered

using testing approaches. Testing software is a demanding

task where a set of techniques is used to test the SUT

according to some input.

Fig 1c. Directed

model Checking view

Fig 1a. Testing view

Fig 1b. Model

Checking view

103

Fig 2. Overview of JCHARMING

Software testing depends on how well the tester understands

the SUT in order to write relevant test cases that are likely to

find errors in the program. Program testing is usually

insufficient because it is not exhaustive. In our case, using

testing would mean that the tester knows what to look for in

order to detect the causes of the failure. We do not assume this

knowledge in this paper.

Model checking, on the other hand, explores each and every

state of the program (Figure 1b), which makes it complete, but

impractical for real-world and large systems. To overcome the

state explosion problem of model checking, directed (or

guided) model checking has been introduced [21]. Directed

model checking use insights—generally heuristics—about the

SUT in order to reduce the number of states that need to be

examined. Figure 1c explores only the states that may lead to a

specific location, in our case, the location of the fault. The

challenge, however, is to design techniques that can guide the

model checking engine. As we will describe in the next

section, we use crash traces and program slicing to overcome

this challenge.

IV. THE JCHARMING APPROACH

Figure 2 shows an overview of JCHARMING. The first step

consists of collecting crash traces, which contain raw lines

displayed to the standard output when an uncaught exception

in Java occurs. In the second step, the crash traces are

preprocessed by removing noise (mainly calls to Java standard

library methods). The next step is to apply backward slicing

using static analysis to expand the information contained in

the crash trace while reducing the search space. The resulting

slice along with the crash trace are given as input to the model

checking engine. The model checker executes statements

along the paths from the main function to the first line of the

crash trace (i.e., the last method executed at crash time, also

called the crash location point). Once the model checker finds

inconsistencies in the program leading to a crash, we take the

crash stack generated by the model checker and compare it to

the original crash trace (after preprocessing). The last step is

to build a JUnit test, to be used by software engineers to

reproduce the bug in a deterministic way.

A. Collecting Crash Traces

The first step of JCHARMING is to collect the crash trace

caused by an uncaught exception. Crash traces are usually

included in crash reports and can therefore be automatically

retrieved using a simple regular expression.

Figure 3 shows an example of a crash trace that contains the

exception thrown when executing the program depicted in

Figure 1. The crash trace contains a call to the Bar.foo()

method—the crash location point—and calls to Java standard

library functions (in this case, GUI methods because the

program was launched using a GUI).

1.javax.activity.InvalidActivityException:loopTimes

should be < 3

2. at Foo.bar(Foo.java:10)

3. at GUI.buttonActionPerformed(GUI.java:88)

4. at GUI.access$0(GUI.java:85)

5. at GUI$1.actionPerformed(GUI.java:57)

6. caused by java.lang.IndexOutOfBoundsException : 3

7. at scam.Foo.buggy(Foo.java:17)

8. and 4 more …

Fig. 3. Java InvalidActivityException exception is thrown in the Bar.Foo

loop if the control variable is greater than 2.

As shown in Figure 3, we can see that the first line (referred to

as frame f0, subsequently the next line is called frame f1, etc.)

does not represent the real crash point but it is only the last

exception of a chain of exceptions. Indeed, the InvalidActivity

has been triggered by an IndexOutOfBoundsException in

scam.Foo.buggy. This kind of crash traces reflects several

nested try/catch blocks.

In addition, it is common in Java to have incomplete crash

traces. According to the Java documentation [22], line 8 of

Figure 3 should be interpreted as follows: “This line indicates

that the remainder of the stack trace for this exception

matches the indicated number of frames from the bottom of the

stack trace of the exception that was caused by this exception

(the "enclosing" exception). This shorthand can greatly

reduce the length of the output in the common case where a

wrapped exception is thrown from the same method as the

"causative exception" is caught.”

We are likely to find shortened traces in bug repositories as

they are what the user sees without any possibility to expand

their content.

B. Preprocessing

In the preprocessing step, we first reconstruct and reorganize

the crash trace in order to address the problem of nested

exceptions. Then, with the aim to obtain an optimal guidance

104

for our directed model checking engine, we remove frames

that are out of our control. Frames out of our controls refer

usually, but are not limited to, Java library methods and third

party libraries. In Figure 3, we can see that Java GUI and

event management components appear in the crash trace. We

assume that these methods are not the cause of the crash;

otherwise it means that there is something wrong with the on-

field JDK. If this is the case, we will not be able to reproduce

the crash. Note that removing these unneeded frames will also

reduce the search space of the model checker.

C. Building the Backward Static Slice

For large systems, a crash trace does not necessary contain all

the methods that have been executed starting from the entry

point of the program (i.e., the main function) to the crash

location point. We need to complete the content of the crash

trace by identifying all the statements that have been executed

starting from the main function until the last line of the

preprocessed crash trace. In Figure 3, this will be the function

call Bar.foo(), which happens to be also the crash location

point. To achieve this, we turn to static analysis by extracting

a backward slice from the main function of the program to the

Bar.foo() method.

A backward slice contains all possible branches that may lead

to a point 𝑛 from a point 𝑚 as well as the definition of the

variables that control these branches [23]. In other words, the

slice of a program point 𝑛 is the program subset that may

influence the reachability of point 𝑛 starting from point 𝑚 .

The backward slice containing the branches and the definition

of the variables leading to 𝑛 from 𝑚 is noted as 𝑏𝑠𝑙𝑖𝑐𝑒[𝑚 ←𝑛].

We perform a static backward slice between each frame to

compensate for possible missing information in the crash

trace. More formally, the final static backward slice is

represented as follows:

𝑏𝑠𝑙𝑖𝑐𝑒[𝑒𝑛𝑡𝑟𝑦 ←𝑓0] = 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓1 ←𝑓0] ∪ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓2 ←𝑓1] ∪ …

∪ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑛 ←𝑓𝑛−1] ∪ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑒𝑛𝑡𝑟𝑦 ←𝑓𝑛]

Note that the union of the slices computed between each pair

of frames must be a subset of the final slice between 𝑓0 and the

𝑒𝑛𝑡𝑟𝑦 point of the program. More formally:

⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖] ⊆

𝑒𝑛𝑡𝑟𝑦

𝑖=0

 𝑏𝑠𝑙𝑖𝑐𝑒[𝑒𝑛𝑡𝑟𝑦 ←𝑓0]

Indeed, in Figure 4, the set of states allowing to reach 𝑓0 from

𝑓2 is greater than the set of states to reach 𝑓1 from 𝑓2 plus set

of states to reach 𝑓0 from 𝑓1. In this hypothetical example and

assuming that 𝑧2 is a prerequisite to 𝑓2 then

𝑏𝑠𝑙𝑖𝑐𝑒[𝑒𝑛𝑡𝑟𝑦 ←𝑓0] = {𝑓0, 𝑓1, 𝑓2, 𝑧0, 𝑧1, 𝑧2, 𝑧3} while

⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]
𝑛
𝑖=0 = {𝑓0, 𝑓1, 𝑓2, 𝑧2}.

In the worst case scenerio where there exists one and only one

transition between each frame, which is very unlikely for real

and complex systems, then 𝑏𝑠𝑙𝑖𝑐𝑒[𝑒𝑛𝑡𝑟𝑦 ←𝑓0] and

⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]
𝑛
𝑖=0 yield the same set of states with a

comparable computational cost since the number of branches

to explore will be the same in both cases.

The algorithm presented in Figure 5 is a high level

representation of how we compute the backward slice between

each frame. The algorithm takes as input the pre-processed

call trace, the byte code of the SUT, and the entry point. From

line 1 to line 5, we initialize the different variables used by the

algorithm. The main loop of the algorithm begins at line 6 and

ends at line 15. In this loop, we compute the static slice

between the current frame and the next one. If the computed

static slice is not empty then we update the final backward

slice with the newly computed slice.

Fig 4. Hypothetical example representing 𝒃𝒔𝒍𝒊𝒄𝒆[𝒆𝒏𝒕𝒓𝒚 ←𝒇𝟎] Vs.

⋃ 𝒃𝒔𝒍𝒊𝒄𝒆[𝒇𝒊+𝟏 ←𝒇𝒊]
𝒏
𝒊=𝟎 .

If the computed slice is empty, it means that the frame 𝑖 + 1

was corrupted then we try with the frame 𝑖 + 2, and so forth.

At the end of the algorithm, we compute the slice between the

last frame and the entry point of the program, and update the

final slice. In the rare cases where the final slice is empty (this

may happen in situations where the content of the crash trace

is seriously corrupted) then JCHARMING would simply

proceed with non-directed model checking.

In order to compute the backward slice, we implement the

algorithm in Figure 5 as an add-on to the T. J. Watson

Libraries for Analysis (WALA) [24] which provides static

analysis capabilities for Java Bytecode and JavaScript. This

tool was part of a research project at IBM and donated to the

community in 2006. WALA offers a very comprehensive API

to perform static backward slicing on Java Bytecode from a

specific point to another.

At first sight, it may appear that static slicing alone can be

used to reproduce the bug since it contains all the functions

that lead to the first user-defined method of the crash trace.

The problem is that a static slice may also contain many other

parts of the program that are not relevant to the failure. A

quick solution to this is to prune out the content of the

resulting static slice by eliminating the unwanted statements.

This can be achieved by defining specific inputs. The result

will be a dynamic slice. This assumes that we know in

advance which input we need to provide to the program in

order to reach the crash, which defeats the purpose of bug

reproduction in the first place.

105

Fig. 5 High level algorithm computing the union of the slices

Using backward slicing, the search space of the model checker

that processes the example of Figure 1 is given by the

following expression:

∃𝑥.

(

 ⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]

𝑒𝑛𝑡𝑟𝑦

𝑖

⊂ 𝑆𝑈𝑇,

 𝑥. ⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]

𝑒𝑛𝑡𝑟𝑦

𝑖

 ⊂ 𝑥. 𝑆𝑈𝑇
)

 ⊨ 𝑐𝑖>2

That is, there exists a sequence of states transitions 𝑥 that

satisfies 𝑐𝑖>2 where both the transitions and the states are

elements of ⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]
𝑒𝑛𝑡𝑟𝑦
𝑖 . Obviously, 𝑐𝑖>2 also

needs to be included for the final static slice to be usable by

the model checking engine. Consequently, the only frame that

need to be untouched for the backward static slice to be

meaningful is 𝑓0.

D. Directed Model Checking

The model checking engine we use in this paper is called JPF

(Java PathFinder) [17], which is an extensible JVM for Java

bytecode verification. This tool was first created as a front-end

for the SPIN model checker [20] in 1999 before being open-

sourced in 2005. JPF is organized around five simple

operations: (i) generate states, (ii) forward, (iii) backtrack,

(iv) restore state and (v) check. In the forward operation, the

model checking engine generates the next state 𝑠𝑡+1 . If

𝑠𝑡+1 has successors then it is saved in a backtrack table to be

restored later. The backtrack operation consists of restoring

the last state in the backtrack table. The restore operation

allows restoring any state and can be used to restore the entire

program as it was the last time we choose between two

branches. After each, forward, backtrack and restore state

operation the check properties operation is triggered.

In order to direct JPF, we have to modify the ‘generate states’

and the ‘forward’ steps. The generate states is populated with

the states in ⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]
𝑒𝑛𝑡𝑟𝑦
𝑖 ⊂ 𝑆𝑈𝑇 and we adjust the

forward step to explore a state if the target state 𝑠𝑖+1 and the

transition 𝑥 to pass from the current state 𝑠𝑖 to 𝑠𝑖+1 are in

⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]
𝑒𝑛𝑡𝑟𝑦
𝑖 ⊂ 𝑆𝑈𝑇 and

𝑥.⋃ 𝑏𝑠𝑙𝑖𝑐𝑒[𝑓𝑖+1 ←𝑓𝑖]
𝑒𝑛𝑡𝑟𝑦
𝑖 ⊂ 𝑥. 𝑆𝑈𝑇, respectively.

E. Validation

To validate the result of directed model checking, we modify

the ‘check properties’ step that checks if the current sequence

of states transitions 𝑥 satisfies a set a property. If the current

states transitions 𝑥 can throw an exception, we execute 𝑥 and

compare the exception thrown to the original crash trace (after

preprocessing). If the two exceptions match, we conclude that

the conditions needed to trigger the failure have been met and

the bug is reproduced.

However, as argued by Kim et al. in [26], the same failure can

be reached from different paths of the program. Although the

states executed to reach the defect are not exactly the same,

they might be useful to enhance the understanding of the bug

by software developers, and speed up the deployment of a fix.

Therefore, in this paper, we consider a defect to be partially

reproduced if the crash trace generated from the model

checker matches the original crash trace by a factor of t, where

t is a threshold specified by the user. t is the percentage of

identical frames between both crash traces.

F. Generating Test Cases for Bug Reproduction

To help software developers reproduce the crash in a lab

environment we automatically produce the JUnit test cases

necessary to run the SUT to cause the exercise of the bug.

To build a test suite that reproduces a defect, we need to create

a set of objects used as arguments for the methods that will

enable us to travel from the entry point of the program to the

defect location. JPF has the ability to keep track of what

happens during model checking in the form of traces

containing the visited states and the value of the variables. We

leverage this capability to create the required objects and call

the methods leading to the failure location. Although we can

track back the internal state of objects at a specific time using

JPF, it can be too computationally taxing to recreate only the

objects needed to generate the bug. To overcome this, we use

serialization techniques [27]. We take advantage of features

offered by the XStream [28] library which enables the

serialization and deserialization of any Java object — even

objects that do not implement the Java Serializable interface.

We use the serialization when the model checker engine

performs too many operations modifying the property of a

given object. In such case, we serialize the last state of the

object.

106

V. CASE STUDIES

In this section, we show the effectiveness of JCHARMING to

reproduce bugs in seven open source systems1. The aim of the

case study is to answer the following question: Can we use

crash traces and directed model checking to reproduce on-

field bugs in a reasonable amount of time?

A. Targeted Systems

Table I shows the systems and their characteristics in terms of

Kilo Line of Code (KLoC) and Number of Classes (NoC).

Apache Ant [29] is a popular command-line tool to build

make files. While it is mainly known for Java applications,

Apache Ant also allows building C and C++ applications. We

choose to analyze Apache Ant because it has been used by

other researchers in similar studies.

ArgoUML [30] is one of the major players in the open source

UML modeling tools. It has many years of bug management

and, similar to Apache Ant, it has been extensively used as a

test subject in many studies.

Dnsjava [31] is a tool for the implementation of the DNS

mechanisms in Java. This tool can be used for queries, zone

transfers, and dynamic updates. It is not as large as the other

two, but it still makes an interesting case subject because it has

been well maintained for the past decade. Also, this tool is

used in many other popular tools such as Aspirin, Muffin and

Scarab.

JfreeChart [32] is a well-known library that enables the

creation of professional charts. Similar to dnsjava, it has been

maintained over a very long period of time —JfreeChart was

created in 2005— and it is a relatively large application.

Apache Log4j [33] is a logging library for Java. This is not a

very large library, but it is extensively used by thousands of

programs. As other Apache projects, this tool is well

maintained by a strong open source community and allows

developers to submit bugs. The bugs which are in the bug

report system of Log4j are, generally speaking, well

documented and almost every bug contains a related crash

trace and, therefore, it is a tool of interest to us.

MCT [34] stands for Mission Control technologies and was

developed by the NASA Ames Research Center (the creators

of JPF) for use in spaceflight mission operation. This tool

benefits from two years of history and targets a very critical

domain, Spacial Mission Control. Therefore, this tool has to

be particularly and carefully tested and, consequently, the

remaining bugs should be hard to discover and reproduce.

PDFBox [35] is another tool supported by the Apache

Software Foundation since 2009 and was created in 2008.

PDFBox allows the creation of new PDF documents and the

manipulation of existing documents.

1The bug reports used in this study and the result of the model checker are

made available for download from research.mathieu-

nayrolles.com/jcharming/

TABLE I. LIST OF TARGET SYSTEMS IN TERMS OF KILO LINE OF CODE (KLOC),
NUMBER OF CLASSES (NOC) AND BUG #ID.

SUT KLOC NoC Bug #ID

Ant 265 1233 38622, 41422

ArgoUML 58 1922 2603, 2558, 311, 1786

dnsjava 33 182 38

jfreechart 310 990 434, 664, 916

Log4j 70 363
11570, 40212, 41186, 45335,

46271, 47912, 47957

MCT 203 1267 440ed48

pdfbox 201 957 1412, 1359

B. Bug Selection and Crash Traces

In this paper, we have selected the reproduced bugs randomly

in order to avoid the introduction of any bias. We selected a

random number of bugs ranging from 1 to 10 for each SUT

containing the word “exception” and where the description of

the bug contains a match to the following regular expression:

^.+Exception[^\n]++(\s+at .++)+.

This regular expression is designed to find the pattern of a

Java exception.

C. Results

Table II shows the results of JCHARMING in terms of Bug

#ID, reproduction status, and execution time (in minutes) of

directed model checking (DMC) and Model Checking (MC).

The experiments have been conducted on a Linux machine (8

GB of RAM and using Java 1.7.0_51).

 The result is noted as “Yes” if the bug has been fully

reproduced, meaning that the crash trace generated by the

model checker is identical to the crash trace collected

during the failure of the system.

 The result is “Partial” if the similarity between the crash

trace generated by the model checker and the original

crash trace is above t=80%. Given an 80% similarity

threshold, we consider partial reproduction as successful.

A different threshold could be used.

 Finally, the result of the approach is reported as “No” if

either the similarity is below t < 80% or the model

checker failed to crash the system given the input we

provided.

As we can see in Table II, we were able to reproduce 17 bugs

out of 20 bugs either completely or partially (85% success

ratio). The average time to reproduce a bug is 16 minutes.

This result demonstrates the effectiveness of our approach,

more particularly, the use of backward slicing to create a

manageable search space that guides adequately the model

checking engine. We also believe that our approach is usable

in practice since it is also time efficient.

107

Among the 20 different bugs we have tested, we will describe

one bug (chosen randomly) for each category (successfully

reproduced, partially reproduced, and not reproduced) for

further analysis.

1) Successfully reproduced

The first bug we describe in this discussion is the bug #311

belonging to ArgoUML. This bug was submitted in an earlier

version of ArgoUML. This bug is very simple to manually

reproduce thanks to the extensive description provided by the

reporter, which reads:

 “I open my first project (Untitled Model by default). I choose

to draw a Class Diagram. I add a class to the diagram. The

class name appears in the left browser panel. I can select the

class by clicking on its name. I add an instance variable to the

class. The attribute name appears in the left browser panel. I

can't select the attribute by clicking on its name. Exception

occurred during event dispatching:”

The reporter also attached the following crash trace that we

used as input for JCHARMING:

1. java.lang.NullPointerException:

2. at

3. uci.uml.ui.props.PropPanelAttribute

.setTargetInternal (PropPanelAttribute.java)

4. at uci.uml.ui.props.PropPanel.

setTarget(PropPanel.java)

5. at uci.uml.ui.TabProps.setTarget(TabProps.java)

6. at uci.uml.ui.DetailsPane.setTarget

(DetailsPane.java)

7. at uci.uml.ui.ProjectBrowser.select

(ProjectBrowser.java)

8. at uci.uml.ui.NavigatorPane.mySingleClick

(NavigatorPane.java)

9. at uci.uml.ui.NavigatorPane$Navigator

MouseListener.mouse Clicked(NavigatorPane.java)

10.at java.awt.AWTEventMulticaster.mouseClicked

(AWTEventMulticaster.java:211)

11. at java.awt.AWTEventMulticaster.mouseClicked

(AWTEvent Multicast er.java:210)

12.at java.awt.Component.processMouseEvent

(Component.java:3168)

[…]

19. java.awt.LightweightDispatcher

.retargetMouseEvent (Container.java:2068)

22. at java.awt.Container

.dispatchEventImp l(Container.java:1046)

23. at java.awt.Window

.dispatchEventImpl (Window.java:749)

24. at java.awt.Component

.dispatchEvent (Component.java:2312)

25. at java.awt.EventQueue

.dispatchEvent (EventQueue.java:301)

28. at java.awt.EventDispatchThread.pumpEvents

(EventDispatch Thread.java:90)

29. at java.awt.EventDispatchThread.run(EventDispatch

Thread.java:82)
)

The cause of this bug is that the reference to the attribute of

the class was lost after being displayed on the left panel of

ArgoUML and therefore, selecting it through a mouse click

throws a null pointer exception. In the subsequent version,

ArgoUML developers added a TargetManager to keep the

reference of such object in the program.

TABLE II. EFFECTIVENESS OF JCHARMING USING DIRECTED MODEL

CHECKING (DMC) AND MODEL CHECKING (MC) IN MINUTES. (–) MEANS

THAT THE EXECUTION WAS STOPPED BECAUSE IT WAS TAKING TOO LONG

WITHOUT APPARENT RESULT.

SUT Bug #ID Reprod.
Time

 DMC

Time

 MC

Ant
38622 Yes 25.4 -

41422 No - -

ArgoUML

2558 Partial 10.6 -

2603 Partial 9.4 -

311 Yes 11.3 -

1786 Partial 9.9 -

Dns

java
38 Yes 4 23

jFreeChart

434 Yes 27.3 -

664 Partial 31.2 -

916 Yes 26.4 -

Log4j

11570 Yes 12.1 -

40212 Yes 15.8 -

41186 Partial 16.7 -

45335 No - -

46271 Yes 13.9 -

47912 Yes 12.3 -

47957 No - -

MCT 440ed48 Yes 18.6 -

PDFBox
1412 Partial 19.7 -

1359 No - -

Using the crash trace, JCHARMING's preprocessing step

removed the lines between lines 11 and 29 because they

belong to the Java standard library and we do not want neither

the static slice nor the model checking engine to verify the

Java standard library but only the SUT. Then, the third step

performs the static analysis following the process described in

Section IV.C. The fourth step performs the model checking on

the static slice to produce the same crash trace. More

specifically, the model checker identifies that the method

setTargetInternal(Object o) could receive a null object that

will result in a Null pointer exception.

2) Partially reproduced

As an example of a partially reproduced bug, we explore the

bug #664 of the Jfreechart program. The description provided

by the reporter is: “In ChartPanel.mouseMoved there's a line

of code which creates a new ChartMouseEvent using as first

parameter the object returned by getChart(). For getChart() is

legal to return null if the chart is null, but ChartMouseEvent's

constructor calls the parent constructor which throws an

IllegalArgumentException if the object passed in is null.”

The reporter provided the crash trace containing 42 lines and

the replaced an unknown number of lines by the following

statement “<deleted entry>”. While JCHARMING

108

successfully reproduced a crash yielding almost the same trace

as the original trace, the “<deleted entry>” statement — which

was surrounded by calls to the standard java library — was not

suppressed and stayed in the crash trace. That is,

JCHARMING produced only the 6 (out of 7) first lines and

reached 83% similarity, and thus a partial reproduction.

1. java.lang.IllegalArgumentException: null source

2. at java.util.EventObject.<init>(

EventObject.java:38)

3. at

4 org.jfree.chart.ChartMouseEvent.<init>

(ChartMouseEvent.java:83)

5. at org.jfree.chart.ChartPanel

.mouseMoved(ChartPanel.java:1692)

6. <deleted entry>

In all bugs that were partially reproduced, we found that the

differences between the crash trace generated from the model

checker and the original crash trace (after preprocessing)

consists of few lines only.

3) Not Reproduced

To conclude the discussion on the case study, we present a

case where JCHARMING was unable to reproduce the failure.

For the bug #47957 belonging to Log4j and reported in late

2009 the reporter wrote:

 “Configure SyslogAppender with a Layout class that does not

exist; it throws a NullPointerException. Following is the

exception trace:” and attached the following crash trace:

1. 10052009 01:36:46 ERROR [Default: 1]

struts.CPExceptionHandler.execute

RID[(null;25KbxlK0voima4h00ZLBQFC;236Al8E60000045C3A

7D74272C4B4A61)]

2. Wrapping Exception in ModuleException

3. java.lang.NullPointerException

4. at org.apache.log4j.net.SyslogAppender

.append(SyslogAppender.java:250)

5. at org.apache.log4j.AppenderSkeleton

.doAppend(AppenderSkeleton.java:230)

6. at org.apache.log4j.helper.AppenderAttachableImpl

.appendLoopOnAppenders(AppenderAttachableImpl

.java:65)

7. at org.apache.log4j.Category.callAppenders

(Category.java:203)

8. at org.apache.log4j.Category

.forcedLog(Category.java:388)

9. at org.apache.log4j.Category.info

(Category.java:663)

The first three lines are not produced by the standard

execution of the SUT but by an ExceptionHandler belonging

to Struts [38]. Struts is an open source MVC (Model View

Controller) framework for building Java Web Application.

JCHARMING examined the source code of Log4J for the

crash location struts.CPExceptionHandle r.execute and did not

find it since this method belongs to the source base of Struts

— which uses log4j as a logging mechanism. As a result, the

backward slice was not produced, and we failed to perform the

next steps. It is noteworthy that the bug is marked as duplicate

of the bug #46271 which contains a proper crash trace. We

believe that JCHARMING could have successfully

reproduced the crash, if it was applied to the original bug.

VI. THREATS TO VALIDITY

The selection of SUTs is one of the common threats to validity

for approaches aiming to improve the understanding of

program's behavior. It is possible that the selected programs

share common properties that we are not aware of and

therefore, invalidate our results. However, the SUTs analyzed

by JCHARMING are the same as the ones used in similar

studies. Moreover, the SUTs vary in terms of purpose, size

and history.

Another threat to validity lies in the way we have selected the

bugs used in this study. We selected the bugs randomly to

avoid any bias. One may argue that a better approach would

be to select bugs based on complexity or other criteria

(severity, etc.). We believe that a complex bug (if complexity

can at all be measured) may perhaps have an impact on the

running time of the approach, but we are not convinced that

the accuracy of our approach depends on the complexity or the

type of bugs we use. Instead, it depends on the quality of the

produced crash trace.

In addition, we see a threat to validity that stems from the fact

that we only used open source systems. The results may not be

generalizable to industrial systems. The last author of the

paper expressed an interest to apply these techniques to

Ericsson systems. We intend to undertake these studies in

future work.

Field failures can also occur due to the running environment

on which the program is executed. For instance, the failure

may have been caused by the reception of a network packet or

the opening of a given file located on the hard drive of the

users. The resulting failures will hardly be reproducible by

JCHARMING.

Finally, the programs we used in this study are all based on

the Java programming language and JCHARMING leverages

the crash traces produced by the JVM to reproduce bugs. This

can limit the generalization of the results. However, similar to

Java, .Net, Python and Ruby languages also produce crash

traces. Therefore, JCHARMING could be applied to other

object-oriented languages.

In conclusion, internal and external validity have both been

minimized by choosing a relatively large set of different

systems and using input data that can be found in other

programming languages.

VII. CONCLUSION AND FUTURE WORK

We presented JCHARMING (Java CrasH Automatic

Reproduction by directed Model checking), an automatic bug

reproduction technique that combines crash traces and

directed model checking. JCHARMING takes advantage of

the completeness provided by model checking while ignoring

unwanted states by using the content of crash traces

augmented with a backward slice. When applied to twenty

109

bugs from six open source systems, JCHARMING was able to

reproduce fully or partially 85% of the bugs.

To build on this work, we need to experiment with additional

(and more complex) bugs with the dual aim to (a) improve and

fine tune the approach, and (b) assess the scalability of our

approach when applied to even larger (and proprietary)

systems. Finally, we want to test the performance of

JCHARMING on bugs due to multi-threading.

REFERENCES

[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?,” in Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of

software engineering - SIGSOFT ’08/FSE-16, 2008, p. 308.

[2] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging,” in

Proceedings of the 32nd annual international symposium on Computer

Architecture, 2005, vol. 33, no. 2, pp. 284–295.

[3] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures

reproducible by preserving object states,” in Proceedings of the 22nd

European conference on Object-Oriented Programming, 2008, pp.
542–565.

[4] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “OCAT: Object Capture

based Automated Testing,” in Proceedings of the 19th international
symposium on Software testing and analysis, 2010, pp. 159–170.

[5] R. Manevich, M. Sridharan, and S. Adams, “PSE: explaining program

failures via postmortem static analysis,” in ACM SIGSOFT Software
Engineering Notes, 2004, vol. 29, no. 6, p. 63.

[6] S. Chandra, S. J. Fink, and M. Sridharan, “Snugglebug: a powerful

approach to weakest preconditions,” in ACM Sigplan Notices, 2009,
vol. 44, no. 6, pp. 363–374.

[7] C. Baier and J. Katoen, Principles of Model Checking. MIT press

Cambridge, 2008.

[8] N. Chen, “Star: stack trace based automatic crash reproduction,” 2013.

[9] B. Dutertre and L. De Moura, “The Yices SMT solver,” 2006.

[10] E. Gamma, K. Beck, and J. Report, “JUnit: A Cook’s Tour,” Java
Repository, vol. 4, no. 5, pp. 27–38, 1999.

[11] W. Jin and A. Orso, “BugRedux: Reproducing field failures for in-

house debugging,” in 34th International Conference on Software
Engineering (ICSE), 2012, pp. 474–484.

[12] W. Jin and A. Orso, “F3: fault localization for field failures,” in

Proceedings of the International Symposium on Software Testing and
Analysis - ISSTA 2013, 2013, pp. 213–223.

[13] J. Clause and A. Orso, “A Technique for Enabling and Supporting

Debugging of Field Failures,” in Proceedings of the 29th international
conference on Software Engineering, 2007, pp. 261–270.

[14] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea,

“Reconstructing Core Dumps,” in Proceedings of the 6th International
Conference on Software Testing, Verification and Validation, ser.

ICST, 2013, pp. 114-123.

[15] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jRapture: A

Capture/Replay Tool for Observation-Based Testing,” in Proceedings

of the International Symposium on Software Testing and Analysis.,

2000, no. August, pp. 158–167.

[16] C. Zamfir and G. Candea, “Execution Synthesis: A Technique for

Automated Software Debugging,” in Proceeding of EuroSys ’10
Proceedings of the 5th European conference on Computer systems,

2010, pp. 321–334.

[17] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
Checking Programs,” in Automated Software Engineering, 2003, vol.

10, no. 2, pp. 203–232.

[18] T. Kropf, Introduction to formal hardware verification. Springer, 1999.

[19] S. A. Kripke, “Semantical Considerations on Modal Logic,” Acta

Philos. Fenn., vol. 16, no. 1963, pp. 83–94, 1963.

[20] G. J. Holzmann, “The model checker SPIN,” IEEE Transaction in.
Software Engineering., vol. 23, no. 5, pp. 279–295, 1997.

[21] N. Rungta and E. G. Mercer, “Guided model checking for programs

with polymorphism,” in Proceedings of the ACM SIGPLAN Workshop
on Partial evaluation and program manipulation, 2009, p. 21.

[22] Oracle, “Throwable (Java Plateform SE6),” 2011. [Online]. Available:

http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html.

[23] A. De Lucia, “Program slicing: Methods and applications,” in

International Working Conference on Source Code Analysis and

Manipulation, 2001, p. 144.

[24] IBM, “T. J. Watson Libraries for Analysis (WALA),” 2006. .

[25] NASA, “Choice Generator,” 2007. [Online]. Available:

http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/choicegenerator.

[26] S. Kim, T. Zimmermann, and N. Nagappan, “Crash Graphs: An

Aggregated View of Multiple Crashes to Improve Crash Triage,” in
Proceedings of the International Conference on Dependable Systems

and Networks (DSN), 2013, pp. 486–493.

[27] L. Opyrchal and A. Prakash, “Efficient Object Serialization in Java
Lukasz Opyrchal and Atul Prakash,” in Proceedings. 19th IEEE

International Conference on Distributed Computing Systems, 1999, pp.

96–101.

[28] Xstream, “Xstream,” 2011. [Online]. Available:

http://xstream.codehaus.org/.

[29] Apache Software Foundation, “Apache Ant,” 2007. [Online].
Available: http://ant.apache.org/.

[30] CollabNet, “Tigris.org: Open Source Software Engineering,” 2002.

[Online]. Available: http://www.tigris.org/.

[31] B. Wellington, “dnsjava,” 2013. [Online]. Available:

http://www.dnsjava.org/.

[32] Object Refinery Limited, “JFreeChart,” 2005. [Online]. Available:
http://jfree.org/jfreechart/.

[33] The Apache Software Foundation, “Log4j 2 Guide - Apache Log4j 2,”

1999. [Online]. Available: http://logging.apache.org/log4j/2.x/.

[34] NASA, “Open Mission Control Technologies,” 2009. [Online].

Available: https://sites.google.com/site/openmct/.

[35] Apache Software Foundation, “Apache PDFBox | A Java PDF
Library,” 2014. [Online]. Available: http://pdfbox.apache.org/.

[36] RedHat, “JBoss Developer,” 2005. [Online]. Available:

http://www.jboss.org/.

[37] C. Weiß, T. Zimmermann, and A. Zeller, “How Long will it Take to

Fix This Bug ?,” in Proceedings of the Fourth International Workshop

on Mining Software Repositories, 2007, p. 1.

[38] Apache Software Foundation, “Apache Struts Project,” 2000. [Online].

Available: http://struts.apache.org/.

110

