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Abstract. Information flow analysis plays a vital role in obtaining quan-
titative bounds on information leakage due to external attacks. Tradi-
tionally, information flow analysis is done using paper-and-pencil based
proofs or computer simulations based on the Shannon entropy and mu-
tual information. However, these metrics sometimes provide misleading
information while dealing with some specific threat models, like when
the secret is correctly guessed in one try. Min-Entropy and Belief Min-
entropy metrics have been recently proposed to address these problems.
But the information flow analysis using these metrics is done by sim-
ulation and paper-and-pencil approaches and thus cannot ascertain ac-
curate results due to their inherent limitations. In order to overcome
these shortcomings, we formalize Min-Entropy and Belief-Min-Entropy
in higher-order logic and use them to perform information flow analysis
within the sound core of the HOL theorem prover. For illustration pur-
poses, we use our formalization to evaluate the information leakage of a
cascade of channels in HOL.

Keywords: Information Flow, Min-Entropy, Belief-Min-Entropy, Infor-
mation Theory, Vulnerability, Theorem Proving, Higher-order Logic,
HOL4.

1 Introduction

Protecting the confidentiality of sensitive information and ensuring perfect anony-
mity are increasingly becoming a dire need in many fields like tele-communication,
electronic payments, auctioning and voting. The information flow analysis [21]
allows us to obtain quantitative estimates about information leakage, by observing
the outputs and the low security inputs in a given system, and thus plays a vital
role in developing secure and anonymous systems.

Various approaches for assessing the information flow have been proposed in
the literature. The main idea behind the possibilistic approaches [1] is to use
non-deterministic behaviors to model the given system. For example, the infor-
mation flow analysis based on epistemic logic [8], which is a logic of knowledge
and belief, and on process algebra [20], which allows us to model concurrent
systems, fall under this category. The main limitation of possibilistic approaches
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is its failure to distinguish between systems of varying degrees of protection [6].
Probabilistic approaches, based on information theory and statistics, overcome
this limitation and are thus considered more reliable for assessing information
flow. The most commonly used probabilistic measures of information flow are
Shannon’s entropy [2], mutual information [3] between the sensitive input and
the observable output and relative entropy [5]. It has been recently shown that
using such measures sometimes leads to counter-intuitive results [22]. For exam-
ple, in the case of a specific threat model where the secret is correctly guessed in
one try, a random variable with high vulnerability to be guessed can have larger
Shannon entropy.

In the one-try model, the adversary is given only one chance to get the value
of the secret. The objective here is to maximize the probability of guessing the
right value of the high input in just one try and the best strategy for her is
auctionning on the element having the maximum distribution. Renyi’s entropy
metrics [19], i.e., Min-Entropy and Belief Min-Entropy, can deal with the above
mentioned threat model more effectively and are commonly used to model and
analyze the information leakage in deterministic and probabilistic systems.

Traditionally, paper-and-pencil based analysis or computer simulations have
been used for quantitative analysis of information flow. Paper-and-pencil anal-
ysis does not scale well to complex systems and is prone to human error. Com-
puter simulation, on the other hand, makes use of numerical approximations for
rounding computer arithmetics, which leads to analysis inaccuracies. In order
to enhance the accuracy of analysis results, formal methods have been recently
proposed to be used in the safety-critical analysis domain of information flow
analysis. The probabilistic model checker PRISM has been used to assist in
computing the transition probabilities and capacity of the Dining cryptogra-
phers protocol [13]. However, the state-space explosion problem of model check-
ing limits the scope of its usage in information flow analysis. For example, only
the case for three cryptographers has been analyzed in [13]. These limitations
can be overcome by using higher-order-logic theorem proving for the analysis
of information flow. The conditional mutual information has been used to for-
mally analyse the anonymity properties of the Dining Cryptographers protocol
in the higher-order-logic theorem prover HOL4 [3]. Similarly, the information
and the conditional information leakage degrees have been formalized in [17] to
assess the security and anonymity protocols within the sound core of HOL4.
However, to the best of our knowledge, no formalization of Min-Entropy and
Belief-Min-Entropy exists in higher-order logic so far. Thus, despite their enor-
mous applications in security-critical applications, the formal analysis of the
scenarios when the secret is correctly guessed in one try is not available.

This paper presents the formalization of Min-Entropy and Belief-Min-Entropy
in higher-order logic. Our formalization can be used to formally reason about
the threat model where the system’s vulnerability is guessed in one try by an
attacker within the sound core of the HOL4 theorem prover. In this paper,
we build upon the information theory foundations in HOL4 [17] mainly due to
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their completeness and generic nature compared to the other formalizations of
probability and information theories [4,11].

In order to illustrate the effectiveness and utilization of the proposed for-
malization, we utilize it to conduct the information flow analysis of channels in
cascade [7]. A cascade channels topology in information theory is a commonly
used linear connectivity strategy where the output of each communication node
(e.g., server, router, switcher) acts as input of the next one. This structure is ba-
sically used in banking systems to ensure restorability, usability and conformity
of such systems. Due to the safety-critical applications of communication sys-
tems, modeled as a cascade of channels, their accurate analysis for the worst case
analysis is very important. The proposed Min-Entropy formalizations enables us
to achieve this goal.

The rest of the paper is organized as follows: Section 2 provides some necessary
details about the HOL theorem prover based probabilistic analysis infrastructure
as well as notions of information theory that we build upon to analyze the
information flow. Next, we describe the higher-order-logic definitions related to
the Min-Entropy and Belief Min-Entropy theories in Section 3. We utilize these
definitions in Section 4 to formally analyze the information flow. Then, we apply
our new model in Section 5 to verify the Min-Entropy leakage of channels in
cascade. Finally, Section 6 concludes the paper.

2 Preliminaries

This section describes the HOL4 environment as well as the formalization of
probability and information theories, which we would be building upon to
formalize the Min-Entropy and Belief-Min-Entropy metrics later.

2.1 HOL Theorem Prover

The HOL system is an environment for interactive theorem proving in higher
order logic. Higher-order logic is a system of deduction with a precise semantics
and is expressive enough to be used for the specification of almost all classical
mathematics theories. In order to ensure secure theorem proving, the logic in
the HOL system is represented in the strongly-typed functional programming
language ML. An ML abstract data type is used to represent higher-order-logic
theorems and the only way to interact with the theorem prover is by execut-
ing ML procedures that operate on values of these data types. The HOL core
consists of only 5 basic axioms and 8 primitive inference rules, which are im-
plemented as ML functions. Soundness is assured as every new theorem must
be verified by applying these basic axioms and primitive inference rules or any
other previously verified theorems/inference rules. The HOL system has has been
used to formalize pure mathematics and verify industrial software and hardware
systems.

One of the advantages of HOL is that it is not limited by the size of the
state space. Large systems that cannot be verified using model checking can
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still be verified by the theorem prover. Various mathematical concepts have
been formalized and saved as HOL theories. Out of this useful library of HOL
theories, we utilized the theories of sets, positive integers, real numbers, measure,
probability and information in this paper. In fact, one of the primary motivations
of selecting the HOL theorem prover for our work was to benefit from these
built-in mathematical theories.

2.2 Probability Theory

Probability provides mathematical models for random phenomena and exper-
iments. The purpose is to describe and predict relative frequencies (averages)
of these experiments in terms of probabilities of events. The HOL4 utilizes the
measure theory to formalize probability theory [16] and some of the foundational
notions of this formalization are given below:

– (Probability Space): a measure space such that the measure of the state
space is 1

– (Independent Events): Two events A and B are independent iff p(A ∩
B) = p(A)p(B).

– (Random Variable): X : Ω → R is a random variable iff X is (F,B(R))
measurable where F denotes the set of events and B is the Borel sigma alge-
bra.

– (Joint Probability): A probabilistic measure where the likelihood of two
events occurring together and at the same point in time is calculated. Joint
probability is the probability of event B occurring at the same time event A
occurs. Its notation is p(A ∩B) or p(A,B).

– (Conditional Probability): A probabilistic measure where an event A will
occur, given that one or more other events B have occurred. Its notation is

p(A|B) or p(A∩B)
p(B) .

– (Expected Value): E[X ] of a random variable X is its Lebesgue integral
with respect to the probability measure. The following properties of the
expected value have been verified in HOL4 [16]
1. E[X + Y ] = E[X ] + E[Y ]
2. E[aX ] = aE[X ]
3. E[a] = a
4. X ≤ Y then E[X ] ≤ E[Y ]
5. X and Y are independent then E[XY ] = E[X ]E[Y ]

– (Variance and Covariance): Variance and covariance have been formal-
ized in HOL4 using the formalization of expectation. The following properties
have been verified:
1. V ar(X) = E[X2]− E[X ]2

2. Cov(X,Y ) = E[XY ]− E[X ]E[Y ]
3. V ar(X) ≥ 0
4. ∀a ∈ R, V ar(aX) = a2V ar(X)
5. V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

The above mentioned definitions and properties have been utilized to formalize
the foundations of information theory in HOL4 [16].
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2.3 Information Theory

Information theory [14,5] is used in many fields of engineering and computer
science, such as signal processing, data compression, storing and communicating
data to quantify information. Recently, it found an enormous application in the
domains of cryptography and information flow analysis [23]. Various information
theoretic notions, such as the entropy, the mutual information, the relative en-
tropy, the conditional entropy and the Renyi’s entropy, are used to reason about
the uncertainty of a random variable.

Let X and Y denote discrete random variables, with x and y and X and Y
denoting their specific values and set of all possible values, respectively. Similarly,
the probability of X and Y being equal to x and y is denoted by p(x) and p(y),
respectively, their joint probability is denoted by p(x, y). Now, the widely used
information theoretic measures can be defined as:

– (The Shannon Entropy): It measures the uncertainty of a random variable

H(X) = −
∑

x∈X
p(x)log p(x)

– (The Conditional Entropy): It measures the amount of uncertainty of X
when Y is known

H(X |Y ) = −
∑

y∈Y
p(y)

∑

x∈X
p(x|y)log p(x|y)

– (The Mutual Information): It represents the amount of information that
has been leaked

I(X ;Y ) = I(Y ;X) = H(X)−H(X |Y )

– (The Relative Entropy or Kullback Leiber Distance): It measures
the inaccuracy or information divergence of assuming that the distribution
is q when the true distribution is p

D(p‖q) =
∑

x∈X
p(x)log

p(x)

q(x)

– (The Guessing Entropy): It measures the expected number of tries
required to guess the value of X optimally

G(X) =
∑

1≤i≤n

ip(xi)

– (The Rnyi Entropy): It is related to the difficulty of guessing the value
of X

Hα(X) = 1
1−α log (

∑

x∈X
P [X = x]α)
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The above measures are used to analyze the information flow from different
aspects. Entropy, Mutual Information and Relative Entropy, operate over the
quantity of information and the degree of uncertainty while the Guessing En-
tropy determines the number of attempts to decrypt a secret. Mhamdi [15] and
Coble [3] formalized the notions of Entropy, Conditional Entropy, Relative En-
tropy and Mutual Information in HOL4, while Hölzl [11] formalized the same
concepts in Isabelle/HOL.

3 Formalization of Min-Entropy and Belief Min-Entropy

Information theoretic measures of Min-Entropy and Belief Min-Entropy over-
come the limitations of Shannon’s entropy in evaluating the security of guessing
the secret in one try [23]. We explain these measures along with their correspond-
ing higher order-logic formalizations in this section. In the following subsections,
X , Y and B denote the random variables that model the high input (the secret),
the output (the observable) and the attacker’s belief about the system behavior
(the extra knowledge), respectively, and p and q denote probability spaces.

3.1 Formalization of Min-Entropy

The Min Entropy H∞ of a random variable X is a special case from the Rényi
Entropy when α = ∞.

Definition 1 (The Min-Entropy).
The Min-Entropy of a random variable X is given by

H∞(X) = −log max
x∈X

p(x)

This can be formalized in HOL4 as follows:


 ∀ X p.

min entropy X p =

- log (extreal max set (IMAGE

(λx. distribution p X {x}) (IMAGE X (p space p))))

In this definition, the function extreal max set returns the maximum of a given
set, IMAGE f s returns the image of a given set s by a function f and p space

p is the state space of the Ω of the probability space p.

It can be observed from the above definition that the Min-Entropy measure
is primarily the negative logarithm of the vulnerability, or in other words, the
worst-case probability that an adversary A can guess the secret correctly in one
try:

H∞(X) = −log(V (X)) = −log(max
x∈X

P [X = x]).

The Min-Entropy measures the initial uncertainty only and the remaining
uncertainty can be quantified by the conditional Min-Entropy.
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Definition 2 (The Conditional Min-Entropy).
Observing the output Y , the probability of guessing the secret X is

H∞(X |Y ) = −log(
∑

y∈Y
max
x∈X

P [Y = y]P [X = x|Y = y])

This can be formalized in HOL4 as follows:


 ∀ X Y p.

conditional min entropy p X Y =

- log
∑

Y (Ω)

(λy. extreal max set

(IMAGE (λx. distribution p Y{y}*
conditional distribution p X Y ({x},{y})) (X(Ω))))

In the above definition, we utilized the conditional distribution p X Y

that refers to P (X |Y ). This quantity relates two behaviors, i.e., the input X and
the output Y , and this makes the Conditional Min-Entropy a good measure to
map the remaining uncertainty, which is nothing but the probability of guessing
the secret input having the observable.

3.2 Formalization of Belief Min-Entropy

The Belief Min-Entropy allows us to deal with the attacker’s extra knowledge
or beliefs about the system behavior. This measure is actually a refinement of
the Min-Entropy since it takes into account another parameter, i.e., belief, that
is expected to increase the reliability of the analysis.

Let pρ and pβ denote the distributions related to the system behavior and
the adversary’s belief, respectively. Given an additional information B = b,
the adversary chooses a value having the maximal conditional probability ac-
cording to her belief, that is a value x′ ∈ Γb, such that Γb = argmaxx∈X
pβ(x|b), and argmaxx∈X pβ(a|b) returns the elements from A having the max-
imal conditional-distribution. In case of more than one value of A with the
maximal conditional probability, the attacker uniformly and randomly picks a
single element from Γb.

Definition 3 (The Belief Min-Entropy).
Let X be the input random variable and B the adversarys extra knowledge about
X. Then the Belief Min-Entropy of X, denoted H∞(X : B), is defined as

H∞(X : B) = −log(
∑

b∈B

1

|Γb| p(b)
∑

x∈X
p(x|b))

In order to formalize the Belief Min-Entropy in HOL4, we first define the
belief vulnerability, which can be extended to obtain the Belief Min-Entropy by
applying the converse logarithm.
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 ∀ p1 p2 X B.

belief vulnerability p1 p2 X B =

SIGMA (λb. 1
|belief set p1 p2X B b| *

(distribution p1 B {b}) *

(SIGMA (λx. conditional distribution p1 X B ({x},{b}))
(belief set p1 p2 X B b)))

(B(Ω1))

where the function belief set p1 p2 X B b models Γb in HOL4 and Ω1 refers
to p space p1. Now, in order to model the Belief Min-Entropy, we need to define
the relationship between the attacker’s belief and the observable output. The
belief b is compatible with the observation y, if there exists an input x ∈ Γb veri-
fying pρ(y|x) > 0 and in this case, the attacker is able to choose the appropriate
values for guessing the secret.Γb,y denotes the set of the possibilities that the
adversary can choose and is defined as follows:

Γb,y =

{
argmax

x∈X
pβ(x|b, y) if b and y are compatible

argmax
x∈X

pβ(x|y) otherwise
(1)

The above definition is formalized as the HOL4 function
belief conditionned set, which we will use later to model the remain-
ing uncertainty that will be a function of the conditional belief vulnerability.

Definition 4 (The Conditional Belief Vulnerability).

V (X |Y : B) =
∑

y∈Y

∑

b∈B
pρ(y, b)

1

|Γb,y|
∑

x∈Γb p(x|y,b)

The above definition can be formalized in HOL4 as follows:


 ∀ p1 p2 X B Y. conditional belief vulnerability p1 p2 X B Y =∑

y

∑

b

joint distribution p1 B Y ({b},{y}) * 1
|Γb,y| *

∑

x∈Γb,y

belief conditional distribution p1 X Y B ({x},{y},{b})

Now, we can apply the converse logarithm to get the conditional Belief Min-
Entropy.

H∞(X |Y : B) = −log(V (X |Y : B))

Based on the previous measures, we define the information leakage that de-
termines how much information has been leaked from the input to the output.

information leakage = initial uncertainty - remaining uncertainty

Next, we will use the definitions, presented in this section, to formally rea-
son about their classical properties, which in turn allow us to conduct formal
information flow analysis with the HOL4 theorem prover.
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4 Formal Analysis of Information Flow

The main focus of this paper is on the analysis of the threat model of guessing
the critical information in one try, which is usually considered as the worst case
scenario and cannot be handled by the Shannon entropy as we mentioned earlier.
In this section, we formally verify that the definitions, presented in the previous
section, can handle this particular model.

In regards to information flow analysis, Min-Entropy allows us to measure un-
certainties. The following theorem provides a lower bound to the initial
uncertainty.

Theorem 1 (Lower Bound of the Min-Entropy).


 ∀ X p b. FINITE (Ω) ∧ Ω �= Ø ∧ random variable X p Borel ∧
(∀x. x ∈ X(Ω) ⇒ (distribution p X {x}) ≤ 1

2b
)) ∧

(∀x. x ∈ Ω ⇒ {x} ∈ events p) ∧
X(Ω) ∈ subsets Borel) ⇒
b ≤ (min entropy X p)

where Ω = p space p. If this initial uncertainty is uniformly distributed over
the input set X , then the initial uncertainty is equal to |X |:
Theorem 2 (Initial Uncertainty for Uniform Distribution).


 ∀p X. FINITE (Ω) ∧
random variable X p Borel ∧
∀x. x ∈ X(Ω) ⇒ distribution p X {x} = 1 / |X(Ω)|

⇒ min entropy X p = log |X(Ω)|

The first assumption, in the above theorems, is required because the maximum
of a set is well-defined for finite sets only.

Another useful aspect related to information leakage is the remaining uncer-
tainty that represents the model of the aposteriori behavior. If a program is
deterministic and the initial distribution is uniformly distributed, then its in-
formation leakage depends on the output set only. This result can be formally
verified as the following theorem:

Theorem 3 (Information Leakage of Deterministic Program).


 ∀ X Y p c. (∀x. x ∈ X(Ω) ⇒ distribution p X {x} = 1
|X(Ω)|) ∧

deterministic cond Y c ⇒
information leakage p X Y = log (|Y(Ω)|)

where the assumptions model the determinism condition and the uniform distri-
bution. Next, we analyze the information flow considering the attacker’s belief.
For this purpose, we include another random variable B that models the ad-
versary’s extra knowledge about the high input. Under the condition of a total
inaccurate belief, the following theorem holds:
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Theorem 4 (Initial Uncertainty of Total Inaccurate Belief).


 ∀A B sp ev p1 p2. FINITE (p space (sp,ev,p2)) ∧
FINITE (p space (sp,ev,p1)) ∧
∀a b. (a,b) ∈ totally inaccurate belief set sp ev p1 p2 A B ⇒
belief min entropy sp ev p1 p2 A B = +∞

According to the above theorem, when the attacker has no information about
the secret input, the initial vulnerability of the system tends to zero. The proof
of this result is based on the Bayes’ rule and our definition of the Belief Min-
Entropy.

The following theorem verifies that the conditional Min-Entropy is always less
then or equal to the Belief Min-Entropy:

Theorem 5 (Min-Entropy and Belief Min-Entropy).


 ∀X B sp ev p1 p2.

∀x b. (b ∈ B(Ω1)) ∧
(belief set (sp,ev,p1) (sp,ev,p2) X B b �= ø) ∧
(x ∈ (belief set (sp,ev,p1) (sp,ev,p2) X B b)) ∧

conditional distribution (sp,ev,p1) B X ({b},{x}) ≤ 1
|B(Ω1)| ⇒

min entropy A (sp,ev,p1) ≤ belief min entropy sp ev p1 p2 X B

The interpretation of the previous result is that the vulnerability of a system is
greater in the presence of the extra knowledge. Similarly, the following theorem
provides the belief initial uncertainty in the deterministic case.

Theorem 6 (Deterministic Belief Initial Uncertainty).


 ∀X B sp ev p1 p2 c.

∀x b. x ∈ belief set (sp,ev,p1) (sp,ev,p2) X B b ∧
b ∈ B(Ω1) ∧

∀x. (x ∈ belief set (sp,ev,p1) (sp,ev,p2) X B b) ⇒
distribution (sp,ev,p1) X {x} = 1

|X(Ω1)| ∧
events (sp,ev,p1) = POW (Ω1) ∧
deterministic cond B c ⇒
log

|X(Ω1)|
|B(Ω1)| ≤ belief min entropy sp ev p1 p2 A B

Next, just like in the case of Min-Entropy, we verify that the remaining belief
uncertainty is lower bounded by conditional Min-Entropy joint to the adversary’s
belief, i.e. H∞(A|O,B) ≤ H∞(A|O : B), which can be expressed as the following
HOL4 theorem:

Theorem 7 (Lower Bound for Belief Remaining Uncertainty).


 ∀X B Y p1 p2. FINITE (Ω) ∧ random variable X p1 Borel ∧
random variable B p1 Borel ∧ random variable Y p1 Borel ∧
∀x. x ∈ (Ω) ⇒ {x} ∈ events p1

⇒ conditional joint min entropy p1 X B Y ≤
conditional belief min entropy p1 p2 X B Y
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Thus, the belief remaining uncertainty under the deterministic conditions is

bounded by log( |A|
|O|.|B|). Now we can formally verify the following result in HOL4.

Theorem 8 (Deterministic Remaining Belief Uncertainty).


 ∀X Y B p q c c’. FINITE Ω ∧ Ω �= Ø ∧
∀x b y. x ∈ belief conditionned set p q X B Y b y ∧
∀b. b ∈ B(Ω) ∧ ∀y. y ∈ Y(Ω) ∧
∀x. x ∈ Ω ⇒ {x} ∈ events p ∧
∀x. x ∈ x(Ω) ⇒ distribution p X {x} = 1

|X(Ω)| ∧
deterministic cond Y c ∧ deterministic cond B c’ ⇒

log (
|X(Ω)|

|Y (Ω)|.|B(Ω)|) ≤ conditional belief min entropy p q X B Y

where belief conditionned set p q X B Y b y = Γb,y denotes the set of pos-
sible adversarys choices according to her belief and low observation.

The proof of the above theorem is primarily based on the Min-Entropy prop-
erties under deterministic conditions. Finally, Theorems 6 and 8 can be used to
reason about the belief information leakage for deterministic programs.

log|Y| ≤ IL∞(X ; (Y : B))

From the above result, we conclude that the belief behavior helps the adversary
in choosing more reliable initial knowledge based on the observations. The above
mentioned properties have been verified before [9] but the main novelty of our
work was to re-verify these results using an interactive theorem prover. Based on
the soundness of theorem proving, the formally verified theorems are guaranteed
to be accurate and contain all the required assumptions. Moreover, these formally
verified results can be built upon to reason about information flow analysis of
various applications within the sound core of a theorem prover. For illustration
purposes, the information leakage of cascade of channels is formally analyzed
in the next section. These added advantages have been attained at the cost
of human effort in formalizing and interactively verifying the above mentioned
results. The proof script [10] is composed of 3400 lines of code and took about
1000 man-hours of development time.

5 Application: Channels in Cascade

A channel [7] is a triplet (A,B, CAB), where A is a finite set of the critical
inputs, B is the observable output and CAB is the channel matrix representing
the transitional probabilities from the input to the output of the channel. The
channels are frequently connected in a cascade manner such that the outputs of
the previous stage act as the input to the next one. In cascaded channels, the
final output is produced in n steps, where n represents the number of cascaded
channels.

The major goal of this section is to formally reason about the information
flow of channels in cascade and analyze the information leakage in such systems.
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We will first formalize the notions of channels and cascade of channels in higher-
order logic. These definitions, along with our formally verified results of the
previous section, will then be used to formally reason about the measure of
quantity of information and the information leakage of a two cascaded channel
model.

5.1 Formalization of Channels and Cascade of Channels

A channel can be formalized in HOL4 using the following function:

Definition 5 (Channel).


 ∀X Y p f. channel p X Y f =

random variable X p Borel ∧
random variable Y p Borel ∧
∀x y. x ∈ X(Ω) ∧
y ∈ Y(Ω) ∧
f(x,y) = conditional distribution p Y X ({y},{x})

The predicate channel accepts a probability space p, the random variables
X and Y representing the finite sets of the critical inputs and the observable
outputs, respectively, and a function f that models the channel matrix CAB in
terms of the conditional probabilities of obtaining the output b such that the
input is a.

Now the behavior of a cascade of two channels, i.e., (X ,Z, CXZ) and (Z,Y, CZY),
is equivalent to the channel (X ,Y, CXZ ∗ CZY) [7]. This definition of a cascade of
two channels can be formalized in HOL4 as follows:

Definition 6 (Cascade Channel).


 ∀X Z Y p f g. cascade channel p X Z Y f g =

channel p X Z f ∧
channel p Z Y g ∧
∀x y. joint distribution p X Y ({x},{y}) =∑

z joint distribution p X Z ({x}, {z}) *

conditional distribution p Y Z ({y}, {z})

5.2 Information Flow Analysis of Channels in Cascade

In order to analyze the information flow for the worst case scenario, i.e., when A
recovers the critical information in one guess, we model the apriori distribution
as a function of the maximum input distribution and the aposteriori behavior is
expressed as a function of the maximum over X of the distribution of guessing
a while observing b.

leakage = Min-Entropy(X) - conditional Min-Entropy(X|Y)
IL∞(X,Y ) = H∞(X)−H∞(X |Y )
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Now, the leakage in a cascade of channels can be evaluated using Min-Entropy
and the corresponding proof goal can be expressed in HOL4 as follows:

Theorem 9 (Information Leakage of Channels in Cascade).

Let (X ,Y, CXY) be the cascade of (X ,Z, CXZ) and (Z,Y, CZY). Then we have
IL∞(X ,Y) ≤ IL∞(X ,Z) This theorem can be expressed in HOL4 as


 ∀ p X Z Y f g.

cascade channel p X Z Y f g ∧
FINITE (Ω) ∧
Ω �= ∅ ∧
events p = POW (Ω) ∧
∀x. 0 < distribution p Y {x} ∧
∀x. 0 < distribution p Z {x} ∧
(∀x. x ∈ Ω ⇒ {x} ∈ events p) ⇒
information leakage p X Y ≤ information leakage p X Z

Using some arithmetic simplification, the proof goal can be simplified to the level
of vulnerabilities:

V∞(X |Y ) ≤ V∞(X |Z)

Now, using the property of cascade (third conjunct in Definition 6 ), we obtain

p(A = a|B = b) =
∑

c p(A = a, C = c) ∗ p(B = b|C = c)
≤ ∑

c maxa p(A = a, C = c) ∗ p(B = b|C = c)

Next, we simplify the above subgoal by using the properties of summation along
with the fact that the sum of the conditional distributions over the first state
space of any random variable is equal to 1.

V(A | B) ≤
∑

c

max
a

p(A=a , C=c)

The above subgoal can now be verified based on arithmetic simplification. This
concludes the proof of Theorem 9, which consists of about 850 lines of HOL
code.

5.3 Discussion

Due to the formal nature of the model and the soundness of the mechanical the-
orem prover, the analysis is guaranteed to be free of approximation and precision
errors and thus the results obtained are mathematically precise and confirmed
the results of paper-and-pencil based analysis approaches. This precision of anal-
ysis is a novelty that, to the best of our knowledge, has not been achieved by
any other existing computer-based probabilistic analysis approaches. In the Def-
inition 6 of the cascade channel behavior, the transition functions, f and g, are
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general functions that provide generic results. In model checking approach pa-
rameters and functions should be specified. Furthermore the result verified in
Theorem 9 can be extended to the Min-Entropy analysis of information leak-
age of n channels in cascade using induction techniques. We can prove that the
Min-Entropy leakage of n channels in cascade will not exceed the leakage of the
first channel. The main key to verify this property is the definition of the cas-
cade condition. Mathematically, we can express the connection of n channels as
follows
Let X0 be the random variable modeling the input of the system and Xn the
one modeling the output, thus

∀ i. (0 ≤ i ≤ n) ⇒ P(X0,Xi) =
∑

Xi−1

P(X0,Xi−1) * P(Xi|Xi−1)

Based on what we defined previously and what already existed, this condition
can be formalized in HOL4 as


 ∀X p f n. n cascade channel p X n f =

∀i. (1≤i≤n) ⇒ channel p (X (i-1)) (X i) (f i) ∧
∀x y i. joint distribution p (X 0) (X i) (x,y) =∑

z

joint distribution p (X 0) (X (i-1)) (x,z) *

conditional distribution p (X (i-1)) (X i) (z,y)

The ability to express and verify generic properties, quantified for all values
of the variables, is the main strength of theorem proving as can be seen from
the above definition and the property related to the information leakage of n
channels in cascade. This property is an ongoing task, once verified, can hold for
any number of cascade of channels and can be specialized to obtain expression
and values for particular scenarios. Probabilistic model checking, which is the
other main stream formal method, cannot provide such generic results due to
the inherent state-space explosion problem.

6 Conclusion

This paper presents a formalization of vulnerability, belief-vulnerability, Min-
Entropy and Belief Min-Entropy in higher-order logic. These metrics provide
more reliable information flow analysis compared to the traditional definitions
of quantitative information flow based on Shanon entropy for some corner cases.
One such threat model being the case when an adversary can guess the secret
input value in one try, given the observable output. The proposed formalization
can be built upon to conduct the information flow analysis within the sound
core of a theorem prover and thus the analysis is guaranteed to be free of ap-
proximation and precision errors. For illustration purposes, we performed the
information flow analysis of a cascade of two channels using the HOL4 theorem
prover and the analysis results were found to be generic and accurate.
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The proposed higher-order-logic formalization can be used in analyzing many
other applications. We are particularly aiming to apply it for the formal infor-
mation flow analysis of the Crowds protocol [18] and Freenets [12]. Moreover,
our work can be extended to analyze information flow in a reverse way, i.e. start-
ing from a specific leakage bound we evaluate the input set with respect to the
output set. This formalization can be used to formally ensure a specific level of
security of critical information.
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