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Abstract. Multi-core processors along with multi-module memories are
extensively being used in high performance computers these days. One
of the main performance evaluation metrics in such configurations is the
memory contention problem and its effect on the overall memory ac-
cess time. Usually, this problem is analyzed using simulation or numer-
ical methods. However, these methods either cannot guarantee accurate
analysis or are not scalable due to the unacceptable computation times.
As an alternative approach, this paper uses theorem proving to analyze
the memory contention problem of a multiprocessor system. For this
purpose, the paper presents the higher-order-logic formalization of the
expectation of a discrete random variable and Discrete-time Markov Re-
ward Models. These foundations are then utilized to analyze the memory
contention problem of a multi-processor system configuration with two
processors and two memory modules using the HOL theorem prover.

1 Introduction

The extensive computation requirements in complex engineering systems and
the trend to move towards smart consumer electronic devices has brought a
paradigm shift towards using multi-core processors in all sorts of embedded sys-
tems. These processors usually share information with one another by accessing
shared variables in a common memory space. In order to avoid concurrent up-
dates to these shared variables, which may lead to erroneous results, only one
processor at a time is allowed to access the memory. However, this configuration
leads to the well-known memory contention problem, which results in an overall
performance degradation as the processors may have to wait for accessing the
memory. This problem is usually alleviated by using a multi-module memory,
as depicted in Figure 1. The main idea is to divide the cache memory into sub-
modules so that the processors can simultaneously access different sub-modules
in parallel. This configuration tends to minimize the memory contention prob-
lem but cannot rectify it completely since two or more processors may want to
access the same memory sub-module as well. Thus, rigorous performance anal-
ysis is conducted to determine the optimized size of sub-modules of memory for
a given memory access rate.

Due to the random nature of time dependent memory access requests, the
above mentioned configurations are modeled as classified Discrete-time Markov
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Fig. 1. A Multiprocessor System with Multimodule Memory

Chains (DTMCs) [2]. Then performance characteristics, such as the average
number of memory accesses and the steady state probabilities of processors
waiting, can be deduced based on the properties of classified Markov chains
and Discrete-time Markov Reward Models (DMRMs) [18]. These properties are
expressed in terms of the transition probabilities of the given Markov chain and
thus provide useful insights for system optimization.

Traditionally, the above mentioned performance analysis is conducted ana-
lytically, using paper-and-pencil proof methods [19], computer simulations [5] or
numerical methods [17]. The paper-and-pencil proof methods do not scale well to
the complex multi-processor systems. Moreover, they are prone to human errors.
Computer based simulations or numerical methods are scalable but due to the
usage of computer arithmetic and pseudo random numbers and their inherent
incompleteness cannot guarantee accurate results.

The accuracy of the above mentioned performance analysis is becoming quite
important these days due to the increasing usage of multi-processor systems in
safety-critical domains like medicine and transportation. Recently, probabilistic
model checking has been used to analyze DMRMs (e.g., [4] and [8]). The typical
model checking tools are PRISM [16] and MRMC [13], which provide precise
system analysis by modeling the stochastic behaviors using probabilistic state
machines and exhaustively verifying their probabilistic properties. These tools
can be used for performance analysis of multi-processor systems as well. How-
ever, some algorithms implemented in these model checking tools are also based
on numerical methods. For example, the Power method [15], which is a well-
known iterative method, is applied to compute the steady-state probabilities (or
limiting probabilities) of Markov chains in PRISM. Thus, most of the stationary
properties analyzed in model checkers are time bounded. Moreover, probabilis-
tic model checking often utilizes unverified algorithms and optimization tech-
niques. Finally, model checking cannot be used to verify generic mathematical
expressions for statistical properties, like expectation.

In order to provide an accurate and complete approach for analyzing the mem-
ory contention problem of multi-processor systems, we propose to use higher-
order-logic theorem proving. The high expressiveness of higher-order logic allows
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us to formally express the systems that can be modeled using classified Markov
chains and DMRMs. Whereas, the soundness of theorem proving guarantees the
correctness and completeness of the analysis. In this paper, we develop the for-
malization of Discrete-time Markov Reward Models based on the formalization
of expectation and conditional expectation functions for discrete random vari-
ables along with the available formalization of Discrete-Time Markov Chains
(DTMCs) [10]. Compared to the work in [10], which is based on the formal-
ized probability theory of Hurd [7], the formalization of DTMCs in the current
paper is developed by building upon a more general probability theory devel-
oped by Mhamdi [12]. This update provides us with the flexibility to model
time-inhomogeneous DTMCs/DMRMs or several random processes (involving
DTMCs) containing distinct types of state spaces. This paper also presents the
formal verification of some classical properties of expectation and DMRMs. The
above mentioned formalizations allow us to analyze the memory contention prob-
lem of any multi-processor system. For illustration purposes, we formally analyze
a typical multi-processor system [19] using the formalization of DMRMs and the
irreducible and aperiodic Markov Chains [11].

2 Preliminaries

In this section, we present the foundations that we build upon to formalize
expectation for discrete random variables and DMRM later.

2.1 Probability Theory

A probability space is a measure space (Ω,Σ,Pr) such that Pr(Ω) = 1 [2]. Σ
is a collection of subsets of Ω called measurable sets. In [12], a higher-order
logic theory is developed where given a probability space p, the functions space
and subsets return the corresponding Ω and Σ, respectively. Mathematically,
a random variable is a measurable function between a probability space and a
measurable space. This is formalized in HOL by a predicate random variable

X p s that returns true if X is a random variable on a probability space p and
an outcome space s.

The expectation [20] of a random variable plays an important role in describing
the characteristics of probability distributions. A conditional expectation repre-
sents the expected value of a real random variable considering a conditional
probability distribution. Mhamdi [12] formalized general definitions of expecta-
tion and conditional expectation using the Lebesgue integral. These definitions
can be used to find the expectations involving both discrete and continuous ran-
dom variables. However, it is not a straightforward task to use these definitions
to reason about the expectation of discrete random variables as the proofs of
even the basic theorems require the Radon Nikodym derivative [6] and a se-
ries of intermediate theorems. In this paper, we formalize the expectation and
conditional expectation for the discrete case to avoid these complex reasoning
problems. These definitions are then used to formalize DMRM in HOL.
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2.2 Discrete-Time Markov Chains

Given a probability space, a stochastic process {Xt : Ω → S} represents a se-
quence of random variables X , where t represents the time that can be discrete
(represented by non-negative integers) or continuous (represented by real num-
bers) [2]. The set of values taken by each Xt, commonly called states, is referred
to as the state space. The sample space Ω of the process consists of all the
possible state sequences based on a given state space S. Now, based on these
definitions, a Markov chain is a Markov process [3], with finite or countably
infinite state space Ω, that satisfies the following :

Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 = f0} = Pr{Xtn+1 = fn+1|Xtn = fn}

for 0 ≤ t0 ≤ · · · ≤ tn and f0, · · · , fn+1 in the state space. This means that the
future state is only dependent on the current state and is independent of all the
other past states. The Markov property can be formalized as follows:

Definition 1 (Markov Property).

� ∀ X p s. mc property X p s =

(∀ t. random variable (X t) p s) ∧
∀ f t n.

increasing seq t ∧ P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) �= 0 ⇒
(P({x | X tn+1 x = f (n + 1)}|

{x | X tn x = f n} ∩ ⋂
k∈ [0,n−1]{x | X tk x = f k}) =

P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n}))
where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j. The first
conjunct indicates that the Markov property is based on a random process
{Xt : Ω → S}. The quantified variable X represents a function of the ran-
dom variables associated with time t which has the type num. This ensures the
process is a discrete time random process. The random variables in this process
are the functions built on the probability space p and a measurable space s. The
conjunct P(

⋂
k∈ [0,n−1]{x | X tk x = f k}) �= 0 ensures that the correspond-

ing conditional probabilities are well-defined, where f k returns the kth element
of the state sequence.

A DTMC is usually expressed by specifying: an initial distribution p0 which
gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every state s;
and transition probabilities pij(t) which give the probability of going from i to
j for every pair of states (i, j) in the state space [14]. For states i, j and a time
t, the transition probability pij(t) is defined as Pr{Xt+1 = j|Xt = i}, which can
be easily generalized to n-step transition probability as shown in Equation (1),
and it can be formalized in Definition 2.

p
(n)
ij (t) =

⎧
⎪⎨

⎪⎩

{
0 if i �= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0

(1)
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Definition 2 (Transition Probability).

� ∀ X p s t n i j. Trans X p s t n i j =

if i ∈ space s ∧ j ∈ space s then

if n = 0 then

if (i = j) then 1 else 0

else P({x | X (t + n) x = j}|{x | X t x = i})
else 0

Now, the Discrete Time Markov Chain (DTMC) can be formalized as follows:

Definition 3 (DTMC).

� ∀ X p s p0 pij dtmc X p s p0 pij =

mc property X p s ∧ (∀ i. i ∈ space s ⇒ {i} ∈ subsets s) ∧
∀ i. i ∈ space s ⇒ (p0 i = P{x | X t x = i}) ∧
∀ t i j. P{x | X t x = i} �= 0 ⇒

(pij t i j = Trans X p s t 1 i j)

Most of the applications actually make use of time-homogenous DTMCs, i.e.,
DTMCs with finite state-space and time-independent transition probabilities [1].
The time-homogenous property refers to the time invariant feature of a random
process: ∀ t t′. pij(t) = pij(t

′) (in the sequel, pij(t) is simply written as pij).

Definition 4 (Time homogeneous DTMC).

� ∀ X p s p0 pij. th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧
∀ t i j.

P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒
(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j)

Using these fundamental definitions, we formally verified most of the classical
properties of DTMCs with finite state-space in HOL [11]. Some of the relevant
ones to the context of this paper are presented here.

The joint probability distribution of a DTMC is the probability of a chain of
states to occur:

Pr(Xt = S0, · · · , Xt+n = Sn) =
∏n−1

k=0 Pr(Xt+k+1 = Sk+1|Xt+k = Sk)Pr(Xt = S0)

Theorem 1 (Joint Probability Distribution).

� ∀ X p s t n S p0 pij n.

dtmc X p s p0 pij ⇒
P(
⋂n

k=0{x | X (t + k) x = EL k S}) =
∏n−1

k=0P({x | X (t + k + 1) x = EL (k + 1) S}|
{x | X (t + k) x = EL k S})P{x | X t x = EL 0 S}
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The Chapman-Kolmogorov Equation [2] p
(m+n)
ij =

∑
k∈Ω p

(m)
ik p

(n)
kj is a widely

used property of time homogeneous DTMCs. It basically gives the probability of
going from state i to j in m+n steps. Assuming the first m steps take the system
from state i to some intermediate state k and the remaining n steps then take
the system from state k to j, we can obtain the desired probability by adding
the probabilities associated with all the intermediate steps.

Theorem 2 (Chapman-Kolmogorov Equation).

� ∀ X p s i j t m n p0 pij.

th dtmc X p s p0 pij ⇒
Trans X p s t (m + n) i j =∑

k∈space s

(Trans X p s (t + m) n i k * Trans X p s t m k j)

The unconditional probabilities associated with a Markov chain are called ab-
solute probabilities, which can be computed by applying the initial distributions

and n-step transition probabilities, as p
(n)
j = Pr(Xn = j) =

∑
k∈Ω Pr(X0 =

k)Pr(Xn = j|X0 = k). Using p
(n)
i for the probability Pr(Xn = j), we verified

the following result:

Theorem 3 (Absolute Probability).

� ∀ X p s j n p0 pij.

th dtmc X p s p0 pij ⇒
P{x | X n x = j} =∑

k∈space s

P{x | X 0 x = k}P({x | X n x = j}|{x | X 0 s = k})

2.3 Aperiodic and Irreducible Markov Chain

Aperiodic and irreducible DTMCs are considered to be the most widely used
classified Markov chains in analyzing Markovian systems due to their attractive
stationary properties, i.e., their limit probability distributions are independent
of the initial distributions.

The foremost concept of classified DTMCs is the first passage time τj , or the
first hitting time, which is defined as the minimum time required to reach a state
j from the initial state i, τj = min{t > 0 : Xt = j}.
Definition 5 (First Passage Time).

� ∀ X x j. FPT X x j = MINSET {t | 0 < t ∧ (X t x = j)}
where X is a random process and x is a sample in the probability space associated
with the random variable Xt.

The conditional distribution of τj , defined as the probability of the events

starting from state i and visiting state j at time n, is expressed as f
(n)
ij =

Pr{τj = n|X0 = i}.
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Definition 6 (Probability of First Passage Events).

� ∀ X p i j n.

f X p i j n = P({x | FPT X x j = n}|{x | X 0 x = i})
Another important notion is the probability of the events starting from state

i and visiting state j at all times n, which is expressed as fij =
∑∞

n=1 f
(n)
ij . It

can be expressed in HOL as (λ n. f X p i j n) sums fij . Now fjj provides
the probability of events starting from state j and eventually returning back to
j. A state j in a DTMC is called persistent if fjj = 1.

The greatest common divisor (gcd) of a set is a frequently used mathematical
concept in defining classified states. For a state j, a period of j is any n such

that p
(n)
jj is greater than 0. We write dj = gcd {n : p

(n)
jj > 0} as the gcd of the

set of all periods.
A state i is said to be accessible from a state j (written j → i), if the n-step

transition probability of the events from state i to j is nonzero. Two states i, j
are called communicating states (written i ↔ j) if they are mutually accessible.
The formalization of these foundational notions is given in Table 1.

Table 1. Formalization of Classified States

Definition Condition HOL Formalization

Persistent State fjj = 1
� Persistent state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} �= ∅) ∧
(λ n. f X p j j n) sums 1

Periods of a State
0 < n
0 < pnjj

� Period set X p s j =

{n | Persistent state X p j ∧ 0 < n ∧
∀ t. 0 < Trans X p s t n j j}

gcd of a Set gcd A
� GCD SET A =

MAXSET {r | ∀ x. x ∈ A ⇒ divides r x}
gcd of a
Period Set

dj � Period X p s j = GCD SET (Period set X p s j)

Periodic State dj > 1
� Periodic state X p s j =

1 < Period X p s j ∧ Period set X p s j �= ∅
Aperiodic State dj = 1

� Aperiodic state X p s j =

(Period X p s j = 1) ∧ Period set X p s j �= ∅
Accessibility i → j

� Accessibility X p s i j =

∀ t. ∃ n. 0 < n ∧ 0 < Trans X p s t n i j

Communicating
State

i ↔ j
� Communicating states X p s i j =

Accessibility X p s i j ∧ Accessibility X p s j i

Now, a DTMC is considered as aperiodic if every state in its state space is an
aperiodic state; and a DTMC is said to be irreducible if every state in its state
space can be reached from any other state including itself in finite steps.

Definition 7 (Aperiodic DTMC).

� ∀ X p s p0 pij. Aperiodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∀ i. i ∈ space s ⇒ Aperiodic state X p s i
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Definition 8 (Irreducible DTMC).

� ∀ X p s p0 pij. Irreducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧
(∀ i j. i ∈ space s ∧ j ∈ space s ⇒

Communicating states X p s i j)

The above mentioned definitions are mainly used to formally specify and analyze
the dynamic features of Markovian systems within the sound environment of a
theorem prover. In this paper, we will be using them to formalize a behavior of
the multi-processor system in Section 4.

2.4 Long-Term Properties

The long-run probability distributions (limit probability distributions) are often
considered in the convergence analysis of random variables in stochastic systems.
It is not very easy to verify that the stationary behaviors of a certain state exists
in a generic non-trivial DTMC, because the computations required in such an
analysis are often tremendous. However, in aperiodic and irreducible DTMCs,
we can prove that any state in the state space possesses a convergent probability
distribution, by the following theorems.

For any state i in the finite state space S of an aperiodic DTMC, there exists

an N < ∞ such that 0 < p
(n)
ii , for all n ≥ N .

Theorem 4 (Positive Return Probability).

� ∀ X p s p0 pij i t.

Aperiodic DTMC X p s p0 pii ∧ i ∈ space s ⇒
∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i i

Applying Theorem 4, we can prove that, for any aperiodic and irreducible DTMC
with finite state space S, there exists an N , for all n ≥ N , such that the n-step

transition probability p
(n)
ij is non-zero, for all states i and j ∈ S.

Theorem 5 (Existence of Positive Transition Probabilities).

� ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ∧
i ∈ space s ∧ j ∈ space s ⇒
∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i j

Utilizing Theorems 4 and 5, the convergence of the probability distributions in
an aperiodic and irreducible DTMC can be verified as the following theorem:

Theorem 6 (Convergent Probability Distributions).

� ∀ X p s p0 pij i j.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
convergent (λ t. P{x | X t x = i})
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As multiprocessor systems are usually modeled as aperiodic and irreducible
DTMCs, the theorems presented above are very useful in analyzing their long-
term behaviors. However, to the best of our knowledge, the second requirement
for analyzing multiprocessor systems, i.e., the reward or cost factors for DTMCs
have not been formalized so far. Therefore, we build upon the foundations, pre-
sented in this section, to formalize the Discrete-time Markov Reward Models in
order to facilitate the performance analysis of multi-processor systems in HOL.

3 Formalization of Discrete-time Markov Reward Models

In this section, we formally define expectation and conditional expectation of a
discrete random variable and then use these results along with the formal DTMC
definition to formalize a Discrete-time Markov Reward Model (DMRM).

3.1 Expectation

The expectation (also called expected value) of a discrete random variable X is
E[X ] =

∑
i∈space sx

iPr{X = i}. Whereas, the conditional expectation of a dis-
crete randomvariableX given a condition Y isE[Y |X ] =

∑
i∈space sx

iPr{Y |X =
i}. These definitions can be formalized as:

Definition 9 (Expectation).

� ∀ X p sx. expec X p sx =
∑

i∈space sx
iP{x | X x = i}

Definition 10 (Conditional Expectation).

� ∀ X Y y p sx.

cond expec Y X y p sx =
∑

i∈space sx
iP({x | Y x = y}|{x | X x = i})

where X is a discrete random variable, which has type ’a → real, sx is a fi-
nite state space, and {x | Y x = y} is a discrete event given in the conditional
probability to calculate the expectation.

Utilizing these two formal definitions, we can verify some interesting proper-
ties of expectation that play a vital role in the performance analysis of multi-
processor systems. We can prove that the total expectation of a random variable
X is E[Y] =

∑
j∈space sx

E[Y|Xj]Pr{Xj}. Here, Xj represents a discrete event
involved in the event space (subsets sx) and j is any state in the state space
(space sx) of random variable X .

Theorem 7 (Total Expectation).

� ∀ X Y p sx sy.

random variable X p sx ∧ random variable Y p sy ∧
(∀ x. x ∈ space sx ⇒ {x} ∈ subsets sx) ∧
(∀ x. x ∈ space sy ⇒ {x} ∈ subsets sy) ∧
FINITE (space sx) ∧ FINITE (space sy) ⇒
(expec Y p sx =∑

j∈space sx
(λj. cond expec Y X j p sx * P{x | X x = j}))
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For a random process {Xt}t≥0, with sample space sx, and discrete event {Yt =
y}t≥0, in the event space (subsets sy) (for all y in the finite state space sy), the
total expectation of the steady-state of the random variable Y is: limt→∞E[Yt]
=

∑
j∈space sx

limt→∞E[Yt|Xt = j]limt→∞Pr{Xt = j}
Theorem 8 (Total Expectation of Steady-state Probabilities).

� ∀ X Y p sx sy.

(∀ t. random variable (X t) p sx) ∧
(∀ t. random variable (Y t) p sy) ∧
(∀ x. x ∈ space sx ⇒ {x} ∈ subsets sx) ∧
(∀ x. x ∈ space sy ⇒ {x} ∈ subsets sy) ∧
(∀ j. convergent (λt. P{x | X t x = j}) ∧
(∀ i. convergent (λt. cond expec (Y t) (X t) i p sx)) ∧
FINITE (space sx) ∧ FINITE (space sy) ⇒
(lim (λ t. expec (Y t) p sy) =∑

j∈space sx (lim (λ t. cond expec (Y t) (X t) j p sx) *

lim (λ t. P{x | X t x = j})))

3.2 Discrete-time Markov Reward Models

Discrete-time Markov Reward Models (DMRMs) are extended DTMCs that con-
sider the costs, or dually bonuses (rewards). In the performance analysis of some
real-world systems, DMRMs allow numerous quantitative measures of the sys-
tem, such as the elapsed time, power consumption, size of message queue, net
profit, etc.

Mathematically, a DMRM is defined on a DTMC {Xt}t≥0 with a real valued
reward function rxy, which associates a real reward (or cost) to a state x in the
state space of X for all t, t ≥ 0 by the conditional expectation of the reward (or
cost) given the state x.

Definition 11 (Discrete-time Markov Reward Model).

� ∀ X Y p sx sy p0 pij rxy. dmrm X Y p sx sy p0 pij =

dtmc X p sx p0 pij ∧ (∀ t. random variable (Y t) p sy) ∧
(∀ y. y ∈ space sy ⇒ {y} ∈ subsets sy) ∧
(∀ x t. P{x | Y t x = y} �= 0 ⇒

(rxy t x = cond expec (Y t) (X t) x p sy))

where the quantified variable X refers to the random variables involved in the
underlying DTMC, Y indicates the random reward, p is the probability space, sx
refers to the state space of the DTMC, sy represents the measurable state space
of random variable Y, p0 and pij are the initial distribution and transition prob-
ability of the DTMC, and rxy denotes the reward function. The first conjunct
in this definition ensures that the underlying stochastic process is a DTMC,
the second and third conjuncts constrain the expected values are discrete ran-
dom variables (Y t) and the last condition gives the conditional expectation
distributions by the reward function.



Formal Analysis of Memory Contention in a Multiprocessor System 205

It is important to note that this definition provides a general DMRM, in
which the state space can be finite or infinite, the underlying DTMC can be
time-homogeneous or time-inhomogeneous, and the reward is a function of time
(this feature facilitates the modeling of the impulse reward in some systems [4]).

Very often, the underlying DTMC in a DMRM is considered as a time-
homogeneous DTMC with a finite state space and the rewards or costs are con-
sidered as constants for the corresponding states. We formalize this frequently
used DMRM as follows:

Definition 12 (DMRM with Time-homogeneous Property).

� ∀ X Y p sx sy p0 pij rxy. th dmrm X Y p sx sy p0 pij rxy =

dmrm X Y p sx sy p0 pij rxy ∧ FINITE (space sy) ∧
(∀ x t t’. rxy t x = rxy t’ x) ∧
(∀ t i j.

P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒
pij X p s (t + 1) 1 i j = pij X p s t 1 i j)

where the first conjunct states that this model is a DMRM, the second condition
constrains that the reward space is a finite space, the third one ensures the
rewards are constant for every state x in the state space of the random variable
(X t) and the last conjunct refers to the time-homogeneity of the transition
probabilities of the underlying DTMC.

If the underlying DTMC of a DMRM is an aperiodic DTMC, then the condi-
tional expectations are convergent. This property can be verified as follows:

Theorem 9 (Convergent Property).

� ∀ X Y p sx sy p0 pij rxy i.

th dmrm X Y p sx sy p0 pij rxy ∧ APERIODIC MC X p sx p0 pij ⇒
convergent (λt. cond expec (Y t) (X t) i p sy)

The expected cumulated reward over a long period is always of interest as the
cumulative property verified in the following theorem, which can be used to
obtain the expected steady-state reward.

Theorem 10 (Cumulative Property).

� ∀ X Y p sx sy p0 pij rxy i.

th dmrm X Y p sx sy p0 pij rxy ∧ APERIODIC MC X p sx p0 pij ∧
i ∈ space sx ⇒
(lim (λt. cond expec (Y t) (X t) i p sy) = lim (λt. rxy t i))

The expected steady-state reward can be achieved by applying the following
theorem:

Theorem 11 (Expected Steady-state Reward).

� ∀ X Y p sx sy p0 pij rxy i.

th dmrm X Y p sx sy p0 pij rxy ∧ APERIODIC MC X p sx p0 pij ∧
i ∈ space sx ⇒
(lim (λ t. expec (X t) p sx) =∑

y∈space sy
lim (λ t. rxy t i) lim (λ t. P{x | (Y t) x = y}))
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The HOL script of these formalizations is available in [9] and the verified theo-
rems are used in the next section to analyze the memory contention problem of
a particular multi-processor system.

4 Application

In this section, we present a formal performance analysis of a multiprocessor
system by reasoning about the expectation of memory access requests.

4.1 Memory Contention Problem

Consider a multi-processor system with two memory modules and two proces-
sors. This system can be modeled as a Discrete-time Markov Reward Model
(DMRM) [19], depicted in Figure 2, by assuming that access time of any mem-
ory module is a constant and all the memory modules are synchronized. The
states of the system are denoted by the pair (i, j), where i represents the num-
ber of the processors waiting for the memory module 1 and j refers to the amount
of the processors waiting for the memory module 2. Due to the fact that memory
access time is always longer than any other data transaction of the processor, it
is reasonable to assume that 0 ≤ i, 0 ≤ j, and i + j = 2 in every memory cycle.
Thus, the states set {(1, 1), (0, 2), (2, 0)} provides all the possible states of the
given system. Also, qk (k = 1, 2) represents the probabilities that a processor
requests a direct memory access. If both processors are accessing two different
memory modules (in this case, the system stays in state (1, 1)) and will complete
the task by the end of this memory cycle, then the expectation of the number
of memory requests completed in this memory cycle is 2. If there are two re-
quests to access memory module 1 in a memory cycle, then only one request can
be completed in this memory cycle. We can obtain the same expectation when
memory module 2 is requested to be accessed. We denote the random variable Y
as the number of requests completed in every memory cycle in the steady state
and the request state space is the set {0, 1, 2}. The conditional expectations of
Y can be mathematically described as:

E[Y|system in state (1,1)] = 2;
E[Y|system in state (2,0)] = 1; (2)
E[Y|system in state (0,2)] = 1.

(1,1) 
(0,2) 

 

(0,2) 

Fig. 2. The State Diagram for the Memory Interference Problem
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In order to analyze the performance of such a system, we are interested in
learning the steady probabilities of the states, in which the memory modules
are efficiently used, and the expected number of memory requests satisfied in
each memory cycle in the steady state.

4.2 Formalization of Memory Contention Problem

To formally analyze the properties of this system, we first describe this mul-
tiprocessor system in HOL. As shown in Figure 2, this kind of system can be
described as a DMRM with an aperiodic and irreducible DTMC [19]. First of
all, we define the state space for the requests as a general function in HOL:

Definition 13 (Request State Space).

� ∀ n. request n = {(r:real) | r ∈ [0, n]}
� ∀ n. request space n = (request n, POW (request n))

where variable n refers to the number of memory modules in the system and
POW (request n) is the sigma algebra of the request set. In the case of the two-
processor system, at most two requests can be created in a memory cycle, thus,
n = 2.

Now, the system state space and the transition probabilities can be formally
expressed as the functions presented in Definition 14 and the conditional ex-
pected value is described as a function in Definition 15 using higher-order logic.

Definition 14 (State Space & Transition Probabilities).

� sys state = {(0, 2); (2, 0); (1, 1)}
� sys space = (sys state, POW sys state)

� ∀ q1 q2 t i j. Lt q1 q2 t i j = case (i, j) of

((1, 1), (1, 1)) → 2q1q2 | ((0, 2), (1, 1)) → q1 |
((2, 0), (1, 1)) → q2 | ((1, 1), (0, 2)) → q22 |
((0, 2), (0, 2)) → q2 | ((2, 0), (2, 0)) → q1 |
((1, 1), (2, 0)) → q21 | ( , ) → 0

where sys space is a pair, in which the first element is a set sys state and the
second element is the sigma algebra of sys state, the function Lt returns the
transition probabilities.

Definition 15 (Conditional Expected Requests).

� ∀ t i j. rewards t (i, j) =

if (i, j) = (1, 1) then 2 else

if (i, j) = (2, 0) then 1 else

if (i, j) = (0, 2) then 1 else 0

where the function rewards corresponds to Equation (2).
These functions can now be used to model the multiprocessor system of

Figure 2 as follows:
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Definition 16 (Multiprocessor Model).

� ∀ X Y p q1 q2 p0. opera sys model X Y p q1 q2 p0 =

th dmrm X Y p sys space (request space 2) p0 (Lt q1 q2) rewards ∧
Aperiodic DTMC X p sys space p0 (Lt q1 q2) ∧
Irreducible DTMC X p sys space p0 (Lt q1 q2) ∧
0 < q1 ∧ 0 < q2 ∧ q1 < 1 ∧ q2 < 1 ∧ (q1 + q2 = 1)

where variable X indicates the system state (the pair containing the number of
requests for each memory module) at discrete time points, variable Y refers to
the requests, which is a random variable, p denotes the probability space, q1 and
q2 are the parameters in the transition probabilities described previously, and
function p0 represents a general initial distribution, the request state space is
request space and the system state space is sys space, which are defined in
Definition 13 and 14, respectively.

Note that, the definitions presented above provide the flexibility on modifying
the argument, i.e., n in Definition 13, or the functions in Definitions 14 and 15
in case of describing more complex systems.

4.3 Performance Analysis of Memory Contention

As the underlying DTMC in the model described in Definition 16 is an aperiodic
and irreducible DTMC, we can directly apply Theorem 6 to prove that for all
states in the system state space, the probability distributions are convergent in
the long-term as the following theorem.

Theorem 12 (Convergence of the State Distribution).

� ∀ X Y p q1 q2 p0 i.

opera sys model X Y p q1 q2 p0 ∧ i ∈ space sys space ⇒
convergent (λ t. P{x | X t x = i})

Applying Theorems 2, 3, 5 and 6, we obtain the steady-state probabilities
(the limit of the probability mass functions for all states in the state space):

Theorem 13 (Steady Probabilities).

� ∀ X Y p q1 q2 p0.

opera sys model X Y p q1 q2 p0 ⇒
limt→∞ P{x | X t x = (2, 0)} =

q31
1−2q1q2

∧
limt→∞ P{x | X t x = (0, 2)} =

q32
1−2q1q2

∧
limt→∞ P{x | X t x = (1, 1)} = q1q2

1−2q1q2

Utilizing the formalizations of expectation presented in Section 3.1, we can
prove the expectation of the number of memory requests completed per memory
cycle in the steady state in the following theorem:
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Theorem 14 (Expected Steady-state Rewards).

� ∀ X Y p q1 q2 p0. opera sys model X Y p q1 q2 p0 ⇒
limt→∞ (λ t. expec (Y t) p request space) = 1−q1q2

1−2q1q2

Theorems 13 and 14 can be used for optimizing the system design. For exam-
ple, we can obtain the maximum value of the expectation of completed requests
from Theorem 14 and find out the conditions to achieve the best efficiency (q1 =
q2 = 1 / 2). Similarly, when q1 = 0.97 and q2 = 0.03, we can obtain the steady-
state probability limt→∞ P{x | X t x = (0, 2)} = 2.8669e−5 by applying Theorem
13, however, classical simulators, such as Matlab, compute limt→∞ P{x | X t x
= (0, 2)} = 0 due to the underlying algorithms for accelerating the convergent
speed and the round-off error in the intermediate steps. Moreover, the algorithms
can never provide a positive transition probability matrix, which exists accord-
ing to Theorem 5, because of the round-off errors or the slow convergent speed.
Our approach can overcome all these problems and provide accurate results.

Our general definition of DMRMs offers the flexibility of describing the states
as arbitrary types, such as the pairs in this application, instead of the abstract
non-negative integers. On the other hand, this application illustrates an ap-
proach to formally analyze the distributed systems using theorem proving. It is
important to note that the system can be more complex (i.e., the number of the
processors and memory modules can be very large), and we can analyze it by
defining new functions, such as sys space, request space, Lt and rewards.

The proof script for modeling and verifying the properties of the memory
contention in a multiprocessor (two processors and two memory modules) is
about 700 lines long and is available in [9]. The ability to formally verify theorems
involving DMRMs and the short script clearly indicates the usefulness of the
formalization, presented in the previous sections in this paper, as without them
the reasoning could not have been done in such a straightforward way.

5 Conclusion

This paper presents a method to formally analyze the performance of multi-
processor systems based on the formalization of Discrete-time Markov Reward
Models (DMRMs) using higher-order logic. Due to the inherent soundness of the-
orem proving, our work guarantees to provide accurate results, which is a very
useful feature while analyzing stationary behaviors and long-term expectation
on certain key measures for a system associated with safety or mission-critical
systems. In order to illustrate the usefulness of the proposed approach, we for-
mally analyzed the memory contention problem in a system with two processors
and two memory modules, which is modeled as a DMRM with the underlying
aperiodic and irreducible DTMC, using the formalizations of DTMCs. Our re-
sults exactly matched the results obtained using paper-and-pencil analysis in
[19], which ascertains the precise nature of the proposed approach.

As DMRMs have been widely applied in performance and reliability analysis,
especially in predicting the reliability for fault-tolerant systems and software,
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the presented work opens the door to a new and promising research direction
on formally analyzing the Discrete-time Markov Reward Models. We plan to
apply the formalization presented in this paper to formally analyze some real-
world systems modeled as DMRMs. Also, we plan to extend our work to the
Continuous-time Markov Reward Models (CMRMs) and Markov Decision Pro-
cess (MDP), which will enable us to formally analyze software reliability and
hardware performance of a wider range of systems.
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