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Abstract. The behavioral characterization of biological organisms is a
fundamental requirement for both the understanding of the physiologi-
cal properties and potential drug designs. One of the most widely used
approaches in this domain is molecular pathways, which offers a system-
atic way to represent and analyze complex biological systems. Tradition-
ally, such pathways are analyzed using paper-and-pencil based proofs and
simulations. However, these methods cannot ascertain accurate analysis,
which is a serious drawback for safety-critical applications (e.g., analy-
sis of cancer cells and cerebral malarial network). In order to overcome
these limitations, we recently proposed to formally reason about molec-
ular pathways within the sound core of a theorem prover. As a first step
towards this direction, we formally expressed three logical operators and
four inference rules of Zsyntax , which is a deduction language for molec-
ular pathways. In the current paper, we extend this formalization by
verifying a couple of behavioral properties of Zsyntax based deduction
using the HOL4 theorem prover. This verification not only ensures the
correctness of our formalization of Zsyntax but also facilitates its usage
for the formal reasoning about molecular pathways. For illustration pur-
poses, we formally analyze a molecular reaction of the glycolytic pathway
leading from D-Glucose to Fructose-1,6-bisphosphate.

1 Introduction

Molecular biology is extensively used to construct models of biological processes
in the form of networks or pathways, such as protein-protein interaction net-
works and signaling pathways. The analysis of these biological networks, usually
referred to as biological regulatory networks (BRNs) or gene regulatory networks
(GRNs) [10], is based on the principles of molecular biology to understand the
dynamics of complex living organisms. Moreover, the analysis of molecular path-
ways plays a vital role in investigating the treatment of various human infectious
diseases and future drug design targets. For example, the analysis of BRNs has
been recently used to predict treatment decisions for sepsis patients [15].
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Traditionally, the molecular biology based analysis is carried out by biolo-
gists in the form of wet-lab experiments (e.g. [7,13]). These experiments, despite
being very slow and expensive, do not ensure accurate results due to the inability
to accurately characterize the complex biological processes in an experimental
setting. Other alternatives for deducing molecular reactions include paper-and-
pencil proof methods (e.g. using Boolean modeling [28] or kinetic logic [29]) or
computer-based techniques (e.g. [30]) for analyzing molecular biology problems.
The manual proofs become quite tedious for large systems, where the calculation
of unknown parameters takes several hundred proof steps, and are thus prone
to human errors. The computer-based methods consist of graph theoretic tech-
niques [21], Petri nets [11] and model checking [3]. These approaches have shown
very promising results in many applications of molecular biology (e.g. [8,14]).
However, these methods are not generic and hence have been used to describe
some specific areas of molecular biology [4]. Moreover, the inherent state-space
explosion problem of model checking [20] limits the scope of this success only to
systems where the biological entities can acquire a small set of possible levels.

Theorem proving [12], i.e., a widely used formal methods technique, does not
suffer from the state-space explosion problem of model checking, and has also
been advocated for conducting molecular biology based analysis [31]. The main
idea behind theorem proving is to construct a computer-based mathematical
model of the given system and then verify the properties of interest using deduc-
tive reasoning. The foremost requirement for conducting the theorem proving
based analysis of any system is to formalize the mathematical or logical founda-
tions required to model and analyze that system in an appropriate logic. There
have been several attempts to formalize the foundations of molecular biology.
For example, the earliest axiomatization even dates back to 1937 [32] and other
efforts related to the formalization of biology are presented in [25,33]. Recent for-
malizations, based on K -Calculus [6] and π-Calculus [22–24], also include some
formal reasoning support for biological systems. Another interesting approach is
to model signal transduction pathways using pathway logic [27] which is based
on rewriting logic. But the understanding and utilization of these techniques is
very cumbersome for a working biologist as highlighted by Fontana in [9].

In order to develop a biologist friendly formal deduction framework for reason-
ing about molecular reactions, we propose to formalize the Zsyntax [4] language in
higher-order logic. Zsyntax is a formal language that supports modeling and log-
ical deductions about any biological process. The main strength of Zsyntax is its
biologist-centered nature as its operators and inference rules have been designed
in such a way that they are understandable by the biologists. Traditionally, logical
deductions about biological processes, expressed in Zsyntax , were done manually
based on the paper-and-pencil based approach. This limits the usage of Zsyntax
to smaller problems and also makes the deduction process error-prone due to the
human involvement. As a first step towards overcoming this limitation, we formal-
ized the logical operators and inference rules of Zsyntax in higher-order logic [2].
In the current paper, we build upon these formal definitions to verify a couple of
key behavioral properties of Zsyntax based molecular pathways using the HOL4
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theorem prover. The formal verification of these properties raises the confidence
level in our definitions of Zsyntax operators and inference rules, which have com-
plex interrelationships. Moreover, these formally verified properties can be used to
facilitate the formal reasoning about chemical reactions at the molecular level. In
order to illustrate the usefulness and effectiveness of our formalization for analyz-
ing real-world problems in molecular biology, we present the formal analysis of a
molecular reaction of the glycolytic pathway leading from D-Glucose to Fructose-
1,6-bisphosphate [4].

Our current framework handles static reactions but it can be further extended
to study the reaction kinetics [4] due to the flexibility of Zsyntax . The main
motivation behind using higher-order-logic theorem proving in our work is to
be able to leverage upon the high expressiveness of higher-order logic and thus
reason about differential equations and probabilistic properties, which form an
integral part of reaction kinetics. However, the scope of the current paper is on
the formalization of Zsyntax based deduction calculus for molecular pathways
but this formalization can later be extended to support reaction kinetics as well
because it is done in a higher-order-logic theorem prover.

The rest of the paper is organized as follows: Section 2 provides an introduc-
tion to Zsyntax and the HOL4 theorem prover. The higher-order-logic formaliza-
tion of Zsyntax operators and inference rules using HOL4 is described in Section
3. This is followed by the descriptions of the behavioral properties of Zsyntax
along with their formal proof sketches in Section 4. The illustrative case study
on the glycolytic pathway is presented in Section 4. We conclude the paper in
Section 5 while highlighting some interesting potential applications of our work.

2 Preliminaries

2.1 Zsyntax

Zsyntax [4] exploits the analogy between biological processes and logical deduc-
tion. Some of the key features of Zsyntax are: 1) the ability to express molecular
reactions in a mathematical way; 2) heuristic nature, i.e., if the conclusion of a
reaction is known, then one can deduce the missing data from the initialization
data; 3) computer implementable semantics. Zsyntax consists of the following
three operators:
Z-Interaction: The interaction of twomolecules is expressed by the Z-Interaction
(∗) operator. In biological reactions, Z-interaction is not associative.
Z-Conjunction: The aggregate of same or different molecules (not necessarily
interacting with each other) is formed using the Z-Conjunction (&) operator.
Z-Conjunction is fully associative.
Z-Conditional: A path from A to B under the condition C is expressed using
the Z-Conditional (→) operator as: A → B if there is a C that allows it.

Zsyntax supports four inference rules, given in Table 1, that play a vital role
in deducing the outcomes of biological reactions:

Besides the regular formulas that can be derived based on the above men-
tioned operators and inference rule, Zsyntax also makes use of Empirically Valid
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Table 1. Zsyntax Inference Rules

Inference Rules Definition

Elimination of Z-conditional(→E) if C � (A → B) and (D � A) then (C&D � B)

Introduction of Z-conditional(→I) C&A � B then C � (A → B)

Elimination of Z-conjunction(&E) C � (A&B) then (C � A) and (C � B)

Introduction of Z-conjunction(&I) (C � A) and (D � B) then (C&D) � (A&B)

Formulae (EVF). These EVFs basically represent the non-logical axioms of
molecular biology and are assumed to be validated empirically in the lab.

It has been shown that any biological reaction can be mapped and their final
outcomes can be derived using the above mentioned three operators and four
inference rules [4]. For example, consider a scenario in which three molecules
A, B and C react with each other to yield another molecule Z. This can be
represented as a Zsyntax theorem as follows:

A & B & C � Z

TheZ-Conjunction operator& is used to represent the given aggregate ofmolecules
and then the inference rules from Table 1 are applied on these molecules along with
some EVFs (chemical reactions verified in laboratories) to obtain the final product
Z. For the above example, these EVFs could be:

A * B → X and X * C → Z

meaning that A will react with B to yield X and X in return will react with C
to yield the final product Z.

The main contribution of our paper is the formal verification of the Zsyntax
based deduction method based on the higher-order-logic formalization of the
above-mentioned operators and inference rules using the HOL4 theorem prover.
This work will in turn facilitate the derivation of biological reactions within the
sound core of HOL4.

2.2 HOL4 Theorem Prover

HOL4 is an interactive theorem prover developed at the University of Cambridge,
UK, for conducting proofs in higher-order logic. It utilizes the simple type theory
of Church [5] along with Hindley-Milner polymorphism [17] to implement higher-
order logic. HOL4 has been successfully used as a verification framework for
both software and hardware as well as a platform for the formalization of pure
mathematics.

In order to ensure secure theorem proving, the logic in the HOL4 system is
represented in the strongly-typed functional programming language ML [19]. An
ML abstract data type is used to represent higher-order logic theorems and the
only way to interact with the theorem prover is by executing ML procedures
that operate on values of these data types. The HOL4 core consists of only 5
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basic axioms and 8 primitive inference rules, which are implemented as ML func-
tions. Soundness is assured as every new theorem must be verified by applying
these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules.

A HOL4 theory is a collection of valid HOL4 types, constants, axioms and the-
orems, and is usually stored as a file in computers. Users can reload a HOL4 theory
in the HOL4 system and utilize the corresponding definitions and theorems right
away. Various mathematical concepts have been formalized and saved as HOL4
theories by the HOL4 users. We utilize the HOL4 theories of Booleans, arithmetics
and lists extensively in our work. Table 2 provides the mathematical interpreta-
tions of some HOL4 symbols and functions frequently used in this paper.

Table 2. HOL4 Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or

¬ not Logical negation

:: cons Adds a new element to a list

++ append Joins two lists together

HD L head Head element of list L

TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L

LENGTH L length Length of list L

FST fst (a, b) = a First component of a pair

SND snd (a, b) = b Second component of a pair

SUC n n + 1 Successor of a num

3 Formalization of Zsyntax

We modeled the molecules as variables of arbitrary data types (α) in our formal-
ization of Zsyntax [2]. A list of molecules (α list) represents the Z-Interaction or
a molecular reaction among the elements of the list. The Z-Conjunction oper-
ator forms a collection of non-reacting molecules and can now be formalized
as a list of list of molecules (α list list). This data type allows us to apply
the Z-Conjunction operator between individual molecules (a list with a single
element) or multiple interacting molecules (a list with multiple elements). The
Z-Conditional operator is used to update the status of molecules, i.e., generate
a new set of molecules based on the available EVFs (wet-lab verified reactions).
Each EVF is modeled in our formalization as a pair (α list # α list list) where
the first element is a list of molecules (α list) indicating the reacting molecules
and the second element is a list of list of molecules (α list list) indicating the
resulting set of molecules after the reaction between the molecules of the first
element of the pair has taken place. A collection of EVFs is represented as a list
of EVFs ((α list # α list list)list) in our formalization.
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The elimination of Z-Conditional rule is the same as the elimination of impli-
cation rule (Modus Ponens) in propositional logic and thus it can be directly
handled by the HOL4 simplification and rewriting rules. Similarly, the introduc-
tion of Z-Conditional rule can also be inferred from the rules of propositional
logic and can be handled by the HOL4 system without the introduction of a
new inference rule. The elimination of the Z-Conjunction rule allows us to infer
the presence of a single molecule from an aggregate of inferred molecules. This
rule is usually applied at the end of the reaction to check if the desired molecule
has been obtained. Based on our data types, described above, this rule can be
formalized in HOL4 by returning a particular molecule from a list of molecules:

Definition 1. Elimination of Z-Conjunction Rule
� ∀ L m. z conj elim L m = if MEM m L then [m] else L

The function z conj elim has the data type (α list → α → α list). The
above function returns the given element as a single element in a list if it is a
member of the given list. Otherwise, it returns the argument list as it is.

The introduction of Z-Conjunction rule along with Z-Interaction allows us to
perform a reaction between any of the available molecules during the experiment.
Based on our data types, this rule is equivalent to the append operation of lists.

Definition 2. Introduction of Z-Conjunction and Z-Interaction
� ∀ L m n. z conj int L m n = FLAT [EL m L; EL n L]::L

The above definition has the data type (α list list → num → num →
α list list). The HOL4 functions FLAT and EL are used to flatten a list of list
to a single list and return a particular element of a list, respectively. Thus, the
function z conj int takes a list L and appends the list of two of its elements m
and n on its head.

Based on the laws of stoichiometry [4], the reacting molecules using the Z-
Conjunction operator have to be deleted from the aggregate of molecules. The
following function represents this behavior in our formalization:

Definition 3. Reactants Deletion
� ∀ L m n. z del L m n = if m > n

then del (del L m) n

else del (del L n) m

Here the function del L m deletes the element at index m of the list L and returns
the updated list as follows:

Definition 4. Element Deletion
� ∀ L. del L 0 = TL L ∧

∀ L n. del L (n + 1) = HD L::del (TL L) n

Thus, the function z del L m n deletes the mth and nth elements of the given list
L. We delete the higher indexed element before the lower one in order to make
sure that the first element deletion does not effect the index of the second element
that is required to be deleted. The above data types and definitions can be used to
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formalize any molecular pathway (which is expressible using Zsyntax ) and reason
about its correctness within the sound core of the HOL4 theorem prover.

Our main objective is to develop a framework that accepts a list of initial
molecules and possible EVFs and allows the user to formally deduce the final
outcomes of the corresponding biological experiment. In this regard, we first
develop a function that compares a particular combination of molecules with all
the EVFs and upon finding a match introduces the newly formed molecule in
the initial list and deletes the consumed instances.

Definition 5. EVF Matching
� ∀ L E m n.

z EVF L E 0 m n =

if FST (EL 0 E) = HD L

then (T,z del (TL L ++ SND (EL 0 E)) m n

else (F,TL L) ∧
∀ L E p m n.

z EVF L E (p + 1) m n =

if FST (EL (p + 1) E) = HD L

then (T,z del (TL ++ SND (EL (p + 1) E)) m n

else z EVF L E p m n

The data type of the function z EVF is: (α list list → (α list#α list list) list
→ num → num → num → bool # α list list). The function LENGTH
returns the length of a list. The function z EVF takes a list of molecules L and
recursively checks its head, or the top most element, against all elements of
the EVF list E. If there is no match, then the function returns a pair with its
first element being false (F), indicating that no match occurred, and the second
element equals the tail of the input list L. Otherwise, if a match is found then
the function replaces the head of list L with the second element of the EVF pair
and deletes the matched elements from the initial list as these elements have
already been consumed. This modified list is then returned along with a true (T)
value, which acts as a flag to indicate an element replacement.

Next, in order to deduce the final outcome of the experiment, we have to call
the function z EVF recursively by placing all the possible combinations of the
given molecules at the head of list L one by one.

Definition 6. Recursive Function for calling z EVF
� ∀ L E m n. z deduction recur L E m n 0 = (T,L) ∧

∀ L E m n q. z deduction recur L E m n (q + 1) =

if FST (z recur2 L E m n) ⇔ T

then z deduction recur (SND (z recur2 L E m n)) E

(LENGTH (SND (z recur2 L E m n)) - 1)

(LENGTH (SND (z recur2 L E m n)) - 1) q

else (T,SND (z recur2 L E (LENGTH L - 1) (LENGTH L - 1)))

The data type of function z deduction recur is (α list list → (α list #α
list list) list → num → num → num → bool # α list list). It accepts
the list of molecules L and the list of EVFs E along with their corresponding
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indices m and n, respectively, and a recursion variable q. It returns a pair with
the first element being a Boolean flag, which becomes true when there are no
more remaining reactions, and the second element being the list of molecules rep-
resenting the post-reaction state. The function z decuction recur recursively
calls the function z EVF for all possible molecule combinations using the function
z recur2, which in turn uses the function z recur1 for this purpose. The argu-
ments m and n of functions z recur1 and z recur2 are initialized with LENGTH
L and the sole purpose of these functions is to exhaust all possible combinations
of the variables m and n for the function z conj int, given in Definition 5. The
formalization of the above mentioned functions and more details about their
behavior can be obtained from [1,2].

In order to model a complete experiment for a given list of molecules, the
variable of recursion in the function z deduction recur should be assigned a
value that is greater than the total number of EVFs so that the application
of none of the EVF is missed. Similarly, the variables m and n of the function
z deduction recur should be assigned the values of (LENGTH L - 1) to ensure
that all combinations of the list L are checked against the elements of the list of
EVFs. Thus, the final deduction function for Zsyntax can be expressed in HOL4
as follows:

Definition 7. Final Deduction Function for Zsyntax
� ∀ L E. z deduction L E =

SND (z deduction recur L E (LENGTH L - 1) (LENGTH L - 1) LENGTH E)

The data type of function z deduction is (α list list → (α list # α list list)
list → α list list). It accepts the initial list of molecules and the list of valid
EVFs and returns a list of final outcomes of the experiment under the given
conditions, by calling the function z decuction recur.

The formal definitions, presented in this section, allow us to recursively check
all the possible combinations of the initial molecules against the first elements of
given EVFs. In case of a match, the corresponding EVF is applied by replacing
the reacting molecules with their outcome in the molecule list and the process
restarts again to find other possible matches from the new list of molecules.
This process terminates when no more molecules are found to be reacting with
each other and at this point we will have the list of post-reaction molecules. The
desired result can then be obtained from these molecules using the elimination of
Z-Conjunction rule, given in Definition 1. The main benefit of the development,
presented in this section, is that it facilitates automated reasoning about the
molecular biological experiments within the sound core of a theorem prover.

4 Formal Verification of Zsyntax Properties

In order to ensure the correctness and soundness of our definitions, we use them
to verify a couple of properties representing the most important characteristics
of molecular reactions. The first property deals with the case when there is no
combination of reacting molecules in the list of molecules and in this case we
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verify that after the Zsyntax based experiment execution both the pre and post-
experiment lists of molecules are the same. The second property captures the
behavior of the scenario when the given list of molecules contains only one set
of reacting molecules and in this case we verify that after the Zsyntax based
experiment execution the post-experiment list of molecules contains the product
of the reacting molecules minus its reactants along with the remaining molecules
provided initially. We represent these scenarios as formally specified properties
in higher-order logic using our formal definitions, given in the previous section.
These properties are then formally verified in HOL4.

4.1 Scenario 1: No Reaction

We verify the following theorem for the first scenario:

Theorem 1
� ∀ E L.

∼(NULL E) ∧ ∼(NULL L) ∧
(∀ a m n. MEM a E ∧ m < LENGTH L ∧ n < LENGTH L

⇒ ∼MEM (FST a) [HD (z conj int L m n)])

⇒ z deduction L E = L

The variables E and L represent the lists of EVFs and molecules, respectively.
The first two assumptions ensure that both of these lists have to be non-empty,
which are the pre-conditions for a molecular reaction to take place. The next
conjunct in the assumption list of Theorem 1 represents the formalization of the
no-reaction-possibility condition as according to this condition no first element
of any pair in the list of EVFs E is a member of the head of the list formed
by the function z conj int, which picks the elements corresponding to the two
given indices (that range over the complete length of the list of molecules L) and
appends them as a flattened single element on the given list L. This constraint
is quantified for all variables a, m and n and thus ensures that no combination of
molecules in the list L matches any one of the first elements of the EVF list E.
Thus, under this constraint, no reaction can take place for the given lists L and
E. The conclusion of Theorem 1 represents the scenario that the output of our
formalization of Zsyntax based reaction would not make any change in the given
molecule list L and thus verifies that under the no-reaction-possibility condition
our formalization also did not update the molecule list.

The verification of this theorem is interactively done by ensuring the no-
update scenario for all molecule manipulation functions, i.e., z EVF, z recur1,
z recur2 and z deduction recur, under the no-reaction-possibility condition
[1]. For example, the corresponding theorem for z EVF function is as follows:

Theorem 2
� ∀ E L m n P.

∼(NULL E) ∧ ∼(NULL L) ∧ m < LENGTH L ∧ n < LENGTH L ∧
P < LENGTH E ∧ (∀ a. MEM a E ⇒ ∼MEM (FST a) [HD L])

⇒ z EVF L E P m n = (F,TL L)
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The assumptions of above theorem ensure that both lists L and E are not
empty and the arguments of the function z EVF are bounded by the LENGTH of L
and E. The last conjunct in the assumption list models the no-reaction-possibility
condition in the context of the function z EVF. The conclusion of the theorem
states that no update takes place under the given conditions by ensuring that the
function z EVF returns a pair with the first element being F (False), representing
no match, and the second element being equal to TL L, which is actually equal
to the original list L since an element was appended on head of L by the parent
function.

4.2 Scenario 2: Single Reaction

The second scenario complements the first scenario and caters for the case when
a reaction is possible and we verify that the molecules list is indeed updated
based on the outcomes of that reaction. In order to be able to track the reaction
and the corresponding update, we limit ourselves to only one reaction in this
scenario but since we verify a generic theorem (universally quantified) for all
possibilities our result can be extended to cater for multiple reactions as well.
The theorem corresponding to this scenario 2 is as follows:

Theorem 3
� ∀ E L z m’ n’.

∼NULL E ∧ ∼NULL (SND (EL z E)) ∧ 1 < LENGTH L ∧
m’ 
= n’ ∧ m’ < LENGTH L ∧ n’ < LENGTH L ∧ z < LENGTH E ∧
ALL DISTINCT (L ++ SND (EL z E)) ∧
(∀ a b. a 
= b ⇒ FST (EL a E) 
= FST (EL b E)) ∧
(∀ K m n. m < LENGTH K ∧ n < LENGTH K ∧
(∀ j. MEM j K ⇒ MEM j L ∨ ∃ q. MEM q E ∧ MEM j (SND q)) ⇒

if (EL m K = EL m’ L) ∧ (EL n K = EL n’ L)

then HD (z conj int K m n) = FST (EL z E)

else ∀ a. MEM a E ⇒ FST a 
= HD (z conj int K m n))

⇒ z deduction L E = z del (L ++ SND (EL z E)) m’ n’

The first two assumptions ensure that neither the list E, i.e., the list of EVFs,
nor the second element of the pair at index z of the list E is empty. Similarly, the
third assumption ensures that the list L, i.e., the list of initial molecules, contains
at least two elements. These constraints ensure that we can have at least one
reaction with the resultant being available at index z of the EVF list. The next
four assumptions ensure that the indices m’ and n’ are distinct and these along
with the index z fall within the range of elements of their respective lists of
molecules L or EVFs E. According to the next assumption, i.e., ALL DISTINCT
(L ++ SND (EL z E)), all elements of the list L and the resulting molecules of
the EVF at index z are distinct, i.e., no molecule can be found two or more times
in the initial list L or the post-reaction list E. The next assumption, i.e., (∀ a b.
a �= b ⇒ FST (EL a E) �= FST (EL b E)), guarantees that all first elements
of the pairs in list E are also distinct. Note that this is different from the previous
condition since the list E contains pairs as elements and the uniqueness of the
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pairs does not ensure the uniqueness of its first elements. The final condition
models the presence of only one pair of reactants scenario. According to the
assumptions of this implication condition, the variable K is used to represent a
list that only has elements from list L or the second elements of the pairs in list E.
Thus, it models the molecules list in a live experiment. Moreover, the variables
m and n represent the indices of the list K and thus they must have a value less
than the total elements in the list K (since the first element is indexed 0 in the
HOL4 formalization of lists). Now, if the indices m and n become equal to m’
and n’, respectively, then the head element of the z conj int K m n would be
equal to FST of EL z E. Otherwise, for all other values of indices m and n, no
combination of molecules obtained by HD(Z conj int K m n) would be equal
to the first element of any pair of the list E. Thus, the if case ensures that the
variables m’ and n’ point to the reacting molecules in the list of molecules L and
the variable z points to their corresponding resultant molecule in the EVF list.
Moreover, the else case ensures that there is only one set of reacting molecules
in the list L. The conclusion of the theorem formally describes the scenario when
the resulting element, available at the location z of the EVF list, is appended to
the list of molecules while the elements available at the indices m’ and n’ of L
are removed during the execution of the function z deduction on the given lists
L and E.

The proof of Theorem 3 is again based on verifying sub-goals corresponding
to this scenario for all the sub-functions, i.e., z EVF, z recur1, z recur2 and
z deduction recur. The formal reasoning for all of these proofs involved various
properties of the del function for a list element and some of the key theorems
developed for this purpose in our development are given in Table 3 and more
details can be found in [1].

The formalization described in this section consumed about 500 man hours
and approximately 2000 lines of HOL4 code, mainly due to the undecidable
nature of higher-order logic. However, this effort raises the confidence level on
the correctness of our formalization of Zsyntax . This fact distinguishes our
work from all the other formal methods based techniques used in the context of
BRNs, where the deduction rules are applied without being formally checked.
Moreover, our formally verified theorems can also be used in the formal analysis
of molecular pathways. The assumptions of these theorems provide very useful
insights about the constraints under which a reaction or no reaction would take
place. To the best of our knowledge, this is the first time that properties, like
Theorems 1 and 3, about a molecular pathway experiment have been formally
verified. Thus, the identification of these properties and their formal verification
both constitute contributions of this paper.

5 Case Study: Pathway Leading to Fructose-1,
6-Bisphosphate

Formation of Fructose-1,6-bisphosphate (F1,6P) is an intermediate step in gly-
colysis, i.e., a sequence of enzyme catalyzed reaction that breaks down glucose
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Table 3. Formally Verified Properties of the del Function

Signature Theorem

del ASSOC THM � ∀ L E m. m < LENGTH L

⇒ del (L + + E) m = del L m + + E

del LENGTH THM � ∀ L E m. m < LENGTH L

⇒ LENGTH (del L m) = LENGTH L − 1

del EL THM � ∀ L m n. m < n ∧ n < LENGTH L ∧ 1 < LENGTH L

⇒ EL m L = EL m (del L n)

del DISTINCT THM � ∀ L n. n < LENGTH L ∧ ALL DISTINCT L

⇒ ALL DISTINCT (del L n)

del MEM THM � ∀ L a m. m < LENGTH L ∧ MEM a (del L m)
⇒ MEM a L

del NOT MEM THM � ∀ L m. ALL DISTINCT L ∧ m < LENGTH L

⇒∼ MEM (EL m L) (del L m)

and forms pyruvate, which is then used to supply energy to living cells through
the citric acid cycle [18]. In this section, we show how this pathway involving
F1,6P can be formally verified in HOL4 using our formalization of Zsyntax .

The theorem representing the reaction of the glycolytic pathway leading from
D-Glucose to F1,6P [4] can be described in classical Zsyntax format as follows:

Glc & HK & GPI & PFK & ATP & ATP � F1,6P

Using our formalization, this theorem can be defined in HOL4 as follows:

� DISTINCT [Glc; HK; GPI; PFK; ATP; ADP; G6P; F6P; F16P] =⇒
(z conj elim (z deduction [[Glc];[HK];[GPI];[PFK];[ATP];[ATP]]

[([Glc;HK],[[HK;Glc]]);

([HK;Glc;ATP],[[HK];[G6P];[ADP]]);

([G6P;GPI],[[F6P];[GPI]]);

([F6P;PFK],[[PFK;F6P]]);

([PFK;F6P;ATP],[[PFK];[F16P];[ADP]])] ) [F16P]

= [[F16P]]

The first list argument of the function z deduction is the initial aggregate
(IA) of molecules that are available for reaction and the second list argument of
the function z deduction represents the valid EVFs for this reaction. The EVFs
mentioned in the form of pairs and involving the molecules (G6P, F6P, etc.) are
obtained from wet lab experiments, as reported in [4]. The DISTINCT function
used above makes sure that all molecule variables (from initial aggregate and
EVFs) used in this theorem represent distinct molecules. Thus, the function
z deduction would deduce the final list of molecules under these particular
conditions. The function z conj elim will return the molecule F1,6P if it is
present in the post-reaction list of molecules, as previously described.

Figure 1 shows the pathway leading to F1,6P in a step-wise manner. The
gray-coloured circles show the chemical interactions and black colour represents
the desired product in the pathway, whereas each rectangle shows total number
of molecules in the reaction at a given time. It is obvious from the figure that
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`Glc HK GPI PFKATP ATP

Glc * HK PFK ATPATP GPI

Glc * HK * ATP PFK ATPGPI

PFK ATPG6P HK ADP GPI

G6P * GPI ATPHK ADP PFK

ATPGPIF6P PFKHK ADP

F6P * PFK ATPGPIADPHK

GPIF6P * PFK * 
ATP ADPHK

F1,6P GPI PFK ADPHK ADP

1

2

3

4

5

6

7

Fig. 1. Reaction Representing the Formulation of F1,6P

whenever a reaction yields a product, the reactants get consumed (no longer
remain in the list) hence satisfying the stoichiometry of a reaction.

As part of this work, we also developed a simplifier Z SYNTAX SIMP [1] that
simplifies the proof with a single iteration of the function z deduction recur
and works very efficiently with the proofs involving our functions. The proof
steps can be completely automated and the proof can be done in one step as
well. However, we have kept the reasoning process manual purposefully as this
way users can observe the status of the reaction at every iteration, which is a
very useful feature to get an insight of what is happening inside a reaction. Each
application of Z SYNTAX SIMP on the reaction, depicted in Figure 1, would result
in moving from a state n to n + 1.

The verification time required for each iteration step is given in Table 4. HOL4
was running on a linux based machine (Intel Core i5, 4GB RAM). The iteration
time depends on the total number of molecules (elements of list) present at a given
iteration. Low number of molecules translate to less number of possible combina-
tions, which in turn leads to less time required to move to the next iteration.
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Table 4. Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 11.996

2 → 3 7.376

3 → 4 12.964

4 → 5 12.756

5 → 6 9.240

6 → 7 0.048

Our HOL4 proof script is available for download [1], and thus can be used for
further developments and analysis of different molecular pathways. It is impor-
tant to note that formalizing Zsyntax and then verifying its properties was a
very tedious effort. However, it took only 10 lines of code to define and verify
the theorem related to the above case study in HOL4, which clearly illustrates
the usefulness of our foundational work.

We have shown that our formalization is capable of modeling molecular reac-
tions using Zsyntax inference rules, i.e., given a set of possible EVFs, our for-
malism can derive a final aggregate B from an initial aggregate A automatically.
In case of a failure to deduce B, the proposed method still provides the biologist
with all the intermediate steps so that one can examine the reaction in detail
and figure out the possible cause of failure.

The evident benefit of our reasoning approach is its automatic nature as
the user does not need to think about the proof steps and which EVFs to apply
where. However, the most useful benefit of the proposed approach is its accuracy
as the theorems are being verified in a formal way using a sound theorem prover.
Thus, there is no risk of human error or wrong application of EVFs. Finally, due
to the computer-based analysis, the proposed approach is much more scalable
than the paper-and-pencil based analysis presented in [4].

6 Conclusion

Most of the existing formal verification research related to molecular biology
has been focussed on using model checking. As a complementary approach, the
primary focus of the current paper is on using a theorem prover for reason-
ing about molecular pathways. The main strength of this approach, compared
to existing model checking related work, is that the underlying methods and
deduction rules can also be formally verified besides the verification of a partic-
ular molecular pathway case. Leveraging upon this strength, we formally verified
two key behavioral properties of molecular pathways based on the Zsyntax lan-
guage, which presents a deduction style formalism for molecular biology in the
most biologist-centered way. Besides ensuring the correctness of our formaliza-
tion of the Zsyntax operators and inference rules, the formally verified properties
also play a vital role in reasoning about molecular pathways in the sound core
of a theorem prover. The practical utilization and effectiveness of the proposed
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development has been shown by presenting the automatic analysis of Glycolytic
pathway leading to Fructose-1,6-bisphosphate.

The proposed work opens the doors to many new directions of research.
Firstly, we are developing a GUI to add more biologist friendly features in it.
Moreover, we are also targeting some larger case studies, such as Dysregulation of
the cell cycle pathway during tumor progression [16] and Fanconi Anemia/Breast
Cancer (FA/BRCA) pathway [26]. Another interesting future direction is to
leverage the high expressiveness of higher-order-logic and utilize calculus and
differential theoretic reasoning to add reaction kinetics support in our formalism.
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