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Abstract. Formal verification methods, such as Model Checking, have
been used for addressing performance/dependability analysis of systems.
Such formal methods have several advantages over traditional techniques
aiming at performance/dependability analysis such as the use of a single
computational technique for evaluation of any measure and all complex
numerical computation steps are hidden to the user. This paper reports
on the use of Probabilistic Model Checking for time performance eval-
uation of complex systems. We propose an approach, TPerP, that al-
lows a professional to clearly address time performance analysis based
on Continuous-Time Markov Chain (CTMC). Our approach takes into
consideration several types of delay analyzes. We applied it to a balloon-
borne high energy astrophysics scientific experiment where we dealt with
CTMCs that had around 30 million reachable states and 75 million tran-
sitions, and we concluded that the current definition used in the balloon
system is inadequate in terms of performance.

1 Introduction

Studies about performance evaluation of systems date back to the early 1900s
where single queues, Markov Chains, networks of queues and Stochastic Petri
Nets have been used for this purpose. Particularly, Markov Chains have been
applied to performance assessment since around 1950 [1].

Performance evaluation is thus a mature field. However, formal verification
methods, such as Model Checking and Theorem Proving, have also been used for
addressing performance/dependability analysis of systems. Such formal methods
have several advantages over traditional techniques (e.g. simulation) aiming at
performance/dependability analysis. For instance, temporal logic offers a high
degree of expressiveness and flexibility where most standard performance mea-
sures (e.g. transient probabilities, long-run likelihoods) can be easily expressed.
Moreover, it is possible to specify complex measures in a succinct way by nesting
temporal logic formulas [2].

Model Checking is a fully algorithmic approach towards performance eval-
uation where a single computational technique is used for assessment of any
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possible measure, and its time and space complexity is attractive. In the worst
case scenario, the time complexity is linear in the size of the measure specifica-
tion (logic formula), and polynomial (order 2 or 3, at most) in the number of
states of the stochastic process. Regarding space complexity, in the worst case,
it is quadratic considering the number of states of the stochastic process [2, 3].
Not less important, especially for practitioners, using Model Checking for perfor-
mance evaluation is interesting because all algorithmic/implementation details,
all detailed and complex numerical computation steps are hidden to the user.

In this paper, we report on the use of Probabilistic Model Checking for
time performance evaluation of complex systems. We organized the activities
accomplished in this work on an approach, Time Performance Evaluation via
Probabilistic Model Checking (TPerP), that allows a professional to clearly
address time performance analysis based on Continuous-Time Markov Chain
(CTMC) and Probabilistic Model Checking [3–6]. Even though TPerP is based
on standard steps defined for Model Checking, it takes into consideration several
types of delay analyzes and provides directives so that industry professionals may
use it for the development of real and complex systems/software. We applied it
to a balloon-borne high energy astrophysics experiment under development at
the Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil. We dealt with
CTMCs that had around 30 million reachable states and 75 million transitions
and thus Probabilistic Model Checking confirmed to be a suitable solution for
the performance analysis of complex systems. We concluded that the current
definition used in the balloon system is inadequate in terms of performance.

This paper is structured as follows. Section 2 presents our approach, TPerP.
Section 3 shows the characterization of the problem providing details about the
case study. Results and considerations by applying TPerP to the space system
are in Section 4. Section 5 presents related work. In Section 6, conclusions and
future directions are mentioned.

2 The TPerP Approach

TPerP takes advantage of Probabilistic Model Checking and CTMC to assist
in time performance analysis of complex system/software projects. The TPerP
approach is shown in Figure 1.

The first step that should be accomplished is to define the parameters to
be addressed. These parameters are variables that affect the time performance
of the system. TPerP aims at finding the most suitable/optimal values of such
parameters. Some examples of these variables are the amount of packages a
buffer of a hardware device must store, the size of a packet to be sent from one
equipment to another, and the number of sensor measurements to be sent to a
central management computer. All these parameters are considered taking into
account the time performance perspective.

In computer networking or telecommunications, there are various types of
delays (di). TPerP considers the following ones: (i) Propagation Delay: PD =
l/s. It is the ratio between the link length (l) and the propagation speed (s)
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Fig. 1. The TPerP approach. Caption: QA = Quantitative Analysis; SA = Satisfaction
Analysis

over the specific medium. In wireless communication, the speed is the light’s
propagation speed; (ii) Transmission Delay: TxD = PDU size/bit rate. It is
the amount of time from the beginning until the end of a message transmission.
It depends on the size of the Protocol Data Unit (PDU) and the speed set for
the physical transmission medium; and (iii) Time for PDU Generation: TPG.
This is the time needed to create/mount a PDU such as as packet or a frame.
It basically depends on the requirements for generating system’s data.
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It is possible that one di can be indeed a combination of two or all of the
delays defined above. In addition to these, other delays such as queue processing
delays can be addressed. Once a type of delay is chosen, TPerP suggests to select
the quantitative requirements based on the system/software specifications.

The next step is to calculate CTMC’s parameter rates, λi. There should be
defined as many λi as the amount of relevant flows of data transmission between
communicating units. Besides, the calculation of λi should be done considering
the piece of information that is transmitted per unit of time resolution. Al-
though other ways to calculate the parameter rates are possible, we would like
to emphasize two of them:

a) Local PDU influence.

λi =
bit rate

PDU size× time res
. (1)

In this case, λi is calculated simply due to the size of the PDU of the local
flow of data transmission;

b) Diverse processing delays and encapsulation influence.

λi =
bit rate(

PDU size+

(∑
j

pdj +
∑
k

enk

)
× bit rate

)
× time res

. (2)

Here,
∑
j

pdj and
∑
k

enk represent, respectively, the influence of delays such

as queue processing and the impact of other sizes mainly related to the en-
capsulation features of network architecture models such as Open Systems
Interconnection (OSI) and The Consultative Committee for Space Data Sys-
tems (CCSDS). Note that in order to use Equation 2, it is necessary to
consider at least one influence (processing delays or encapsulation) or both.

Let us assume that a certain flow of data transmission between two computing
devices has the following characteristics: PDU size = 65,535 Bytes, bit rate = 1
Gbps, queuing and end system delays (encoding, decoding) = 50 ms. Let us
also assume that a encoding system is used where each Byte of data is assigned
a 10-bit code like the 8b/10b encoding used in Gigabit Ethernet. In addition,
let us consider that a certain requirement, RQi, demands that the system must
meet a time bound in the range of milliseconds. Thus, the parameter rate is in
accordance with Equation 2:

λ =
109

(65535× 10 + 0.05× 109)× 1000
= 0.019741. (3)

In Equation 3, λ means that, for each millisecond, 0.019741 of a PDU is
received by the destination device.
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Describing the system in a high-level language supported by a Probabilistic
Model Checker such as PRISM [4] is the next step. TPerP suggests the tradi-
tional procedure where CTMCs are not obtained in a straightforward way, but
rather generated automatically from higher-level descriptions in languages such
as stochastic Petri nets, stochastic process algebras [5], or state-based languages
[4]. This description is read into a Stochastic/Probabilistic Model Checker which
then automatically creates a CTMC based on it. Besides, it is very important to
simulate the CTMC model thoroughly in order to avoid an excessive number of
false positive counterexamples. The simulation should be carried out by means
of the features (outputs) provided by Model Checkers, for example, checking if
there are transitions between states of the CTMC model consistent with the
expected behavior of the system, and according to the defined parameter rates.

TPerP provides some guidelines to develop the description of the system.
In Model Checkers that allow synchronization, our approach suggests using it
as much as possible so that modules can make transitions simultaneously. Using
auxiliary variables, such as boolean ones, to indicate the end of certain processing
is not advisable. Such variables increase the state space and, for the purpose of
time performance analysis modeling, they may be replaced by synchronization.
For instance, in PRISM, some parts of the modules may be as shown below.

module device1

...

[action1] var1 = max_var1 -> rate1 : (var1’ = 0);

...

module device2

...

[action1] var2 < max_var2 -> 1 : (var2’ = var2 + 1);

...

We can see that action1 synchronizes device1 and device2 avoiding the use
of a boolean variable to state that a certain PDU is ready to be transmitted
from one device to another.

2.1 Quantitative Analysis

Probabilistic Property Specification Templates (ProProST) is a specification pat-
terns system for probabilistic properties as they are used for quality requirements
[7]. ProProST complements and extends existing patterns systems [8, 9], in that
it allows to specify probabilistic properties as they are required to formulate
quality properties. ProProST provides a solution in the form of a formal speci-
fication template for Continuous Stochastic Logic (CSL) [3].

Specification patterns systems are very important for Model Checking real
world applications since they provide templates/guidelines so that professionals
can use them in order to formalize their requirements/properties. Based on this
fact, TPerP directs the practitioner to use the Probabilistic Until pattern of
ProPoST [7] for CSL:

P./p[Φ1 U [t1,t2] Φ2]. (4)
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In TPerP, we call this Pattern for Quantitative Analysis (Pattern QA in
Figure 1) and it is presented in Equation 5:

(α,P=?[pdu notsent U≤T pdu received]). (5)

However, there are three remarks if we compare ProProST’s formula (Equa-
tion 4) with TPerP’s formula (Equation 5). First, some Model Checkers such as
PRISM allow to specify properties in a quantitative way. In other words, rather
than just verifying and answering true or false whether or not a probability is
above or below a certain bound, such tools allow to return the actual probabil-
ity of some behavior of the model under consideration. For time performance
evaluation this is very suitable because in many situations we are interested in
knowing what is the optimal value of a parameter pi based on the time con-
straints defined in the requirements. If we know the exact value of a probability,
we are able to respond more adequately this question. TPerP suggests using the
P operator in this way: P=?. As a result, we will have the value of the probability
for the paths starting in the initial state ι.

Naturally, several PDUs may be transmitted from one device to another.
Therefore, it is interesting when accomplishing a time performance evaluation
to consider a fine-grained analysis, i.e. to take into account α states from where
to start the analysis instead of doing it from the initial state ι. Thus, α in
TPerP’s formula (Equation 5) means precisely to start the analysis from the
states that indicate that a PDUk is ready to be sent from the source device but
which has not yet been transmitted to the destination device. Thus, TPerP takes
the average values of probabilities for the paths that satisfy the path formula
[pdu notsent U≤T pdu received], such paths start in α states.

The third remark is about the time interval [t1, t2]. By default, TPerP in-
stantiates this time interval as [0, T ]. But it is perfectly possible to change the
lower bound from 0 to other real number just assuring that t1 ≤ t2.

Let us consider the following requirement from the automotive industry [10]:
If the system’s diagnostic request IRTest is set, then the infrared lamps are turned on
after at most 10 seconds. Thus, a possible physical architecture has an Electronic
Control Unit (ECUdiag) responsible for ordering the diagnostic request and other
unit (ECUlamp) which indeed turns the infrared lamps on. So, communication
could take place via one of the protocols used in the automotive industry such as
the Controller Area Network (CAN). Hence, the formalization of the requirement
is as follows:

(α,P=?[request notsent k U≤10 request received− lampson k]). (6)

In Equation 6, the state formula request notsent k means that the kth re-
quest (e.g. a CAN frame or a PDU of a CAN-based higher-layer protocol) is
ready, in the ECUdiag, to be sent to the ECUlamp but has not yet been trans-
mitted. The state formula request received − lampson k means that not only
this kth request has been transmitted and received by ECUlamp but also that
the ECUlamp turned the lamps on. The state formulas are usually characterized
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by means of model variables that indicate the states in which the PDU has not
been sent (notsent) and that the same PDU has been received (received).

After applying Model Checking and evaluating the results, it should be de-
cided whether the quantitative analysis must be ended or not. It is very beneficial
that “new” requirements are created by modifying (usually to a larger value) the
time constraints defined in the original specifications’ requirements. This activ-
ity is very useful to find out how inadequate is a particular solution of a system
in terms of performance. Therefore, the quantitative analysis should be repeated
for each new defined requirement (new time value).

2.2 Satisfaction Analysis

The satisfaction analysis proposed by TPerP is in line with the traditional verifi-
cation way of properties assessment in Model Checking. This step is particularly
suited to realize whether an existing system/software solution is in accordance
with system/software time requirements. If a solution does not satisfy a time
requirement, thus we can determine which are the necessary modifications in
the solution to achieve this goal.

Again the Probabilistic Until pattern of ProPoST [7] for CSL is used, starting
the analysis from α states as explained in the previous section. In TPerP, we
denote this Pattern for Satisfaction Analysis (Pattern SA in Figure 1) and it is
given by:

∃(α,P≥bound[pdu notsent U≤T pdu received]). (7)

A note should be made on the ∃ quantifier in this TPerP’s formula (Equa-
tion 7). We took advantage of Model Checkers such as PRISM that al-
low to reason whether there are some paths that satisfy the path formula
[pdu notsent U≤T pdu received], such paths start in α states, with a proba-
bility greater than or equal to a probability bound.

It is important to stress that, by using ∃, we are not going into the for-
mal details of the qualitative fragment of Probabilistic Computation Tree Logic
(PCTL) or CSL. Path quantifiers, ∀ and ∃, present in the syntax of CTL were
replaced by the probabilistic operator Pbound in PCTL and consequently in CSL.
We just relied on the benefits of some tools that enable us to reason about a
fine-grained time performance analysis.

Let us consider again the real-time requirement from the automotive industry
[10] presented in Section 2.1. Its formalization in accordance with Pattern SA
can be:

∃(α,P≥0.98[request notsent k U≤10 request received− lampson k]). (8)

Similarly to the quantitative analysis, it should be decided whether the sat-
isfaction analysis continues or not, in accordance with the same reasoning of
creating new requirements by varying time. Likewise, the satisfaction analysis
should be repeated for each new defined requirement.
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3 Case Study: Characterization of the Problem

protoMIRAX is a hard X-ray imaging telescope [11] which has been developed at
the Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil. This scientific
experiment will be launched by a balloon and it will operate between 40 to
42 km of altitude. The main objective of protoMIRAX is to carry out imaging
spectroscopy of selected bright X-ray sources to demonstrate the performance of
a prototype of the MIRAX satellite’s instrument. A very simplified view of the
protoMIRAX’s physical architecture is shown in Figure 2.

 EVP (115.2 kbps)

OBDHXRC CMD/HK (115.2 kbps)

HK (115.2 kbps)

SCI TM (500 kbps)

HK TM (115.2 kbps)

TC (9.6 kbps)

ACS

GS

Space Segment Ground Segment

L-Band
link

FCTS

Fig. 2. Simplified physical architecture of the protoMIRAX balloon experiment

The On-Board Data Handling Subsystem (OBDH) is responsible for acquir-
ing, formatting and transmitting all TeleMetry (TM) data that come from sev-
eral subsystems (X-ray Camera (XRC), Attitude Control Subsystem (ACS)) of
protoMIRAX’s space segment to the Ground Station (GS). The OBDH is also
responsible for receiving and retransmitting, when necessary, various types of
TeleCommands (TCs) sent by the GS to the space segment. For each X-ray pho-
ton detected by the XRC, a 6-Byte packet is created encasing the time stamp,
x−y position, and energy (pulse height) of the event (X-ray photon). This 6-Byte
unit of information is called an event packet (EVP) and such event packets are
sent every 1 second to the OBDH by means of a 115.2 kbps RS-422 unidirectional
serial interface. XRC generates 40 event packets/s.

In order to transmit scientific data TM (SCI TM) to ground, a 500 kbps
synchronous channel connects the OBDH with the Flight Control and Telecom-
munications Subsystem (FCTS). Housekeeping data TM (HK TM) are sent to
the GS via a serial RS-232 channel operating at 115.2 kbps.

The total size of TC and TM (focus of this research) packets are variable and
defined according to each space mission. The problem that needs to be solved by
this research is as follows. As the OBDH continuously stores on-board and sends
to the GS all TM data (scientific, housekeeping, etc.) it obtains, what is the
most suitable (optimal) size of the scientific data TM packet, with event packets
created by the XRC and sent to the OBDH, so that we have the minimum delay
of such scientific data stored on-board and the same data that are visualized on
the GS in real-time? In previous INPE’s balloon scientific instrument, this delay
was in the range of hour. A suitable performance analysis was not accomplished
for this previous project.
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4 Application of TPerP

We applied TPerP to the protoMIRAX instrument. We defined one parameter,
p1, which is the size of the scientific data TM packet. Thus, we would like to know
what is the most suitable (optimal) value of p1. We will denote this optimal value
as OP EV P . XRC generates 40 event packets/s and transmits to the OBDH
which formats and generates a scientific data TM packet to be sent to the GS.
OP EV P is a value which ranges from 1 to 108. In other words: (i) Minimum
size of TM packet (OP EV P = 1; Size in Bytes = 274). This implies 1 × 40
event packets. Once the OBDH receives the 40 event packets in each second, it
formats, stores the data in its memory, and transmits them straight to the GS;
and (ii) Maximum size of TM packet (OP EV P = 108; Size in Bytes = 26,596).
This implies 108 × 40 event packets. In other words, the OBDH waits for the
arrival of 108 units of 40 event packets and, after that, the OBDH sends such
data to the GS.

4.1 Transmission Delay

We chose two types of delays where the Transmission Delay (TxD) was the first
one. Thus, one performance requirement was taken into account: RQ1 - The delay
between the scientific data TM packet stored in the OBDH’s computer memory and
the same data received by the GS must be, at maximum, 500 milliseconds.

Four parameter rates were considered according to 4 flows of data transmis-
sion, and all such rates were calculated taken into account a resolution in ms:
(i) λevp = EV P rate/1000 = 0.04. This is the XRC’s event packets genera-
tion rate; (ii) λxrc sci = (bit ratex−o)/(PDU sizex × 1000) = 0.045714. This
rate relates to the transmission of a unit (40) of event packets from the XRC
to the OBDH. Note that it is a local PDU influence rate (Equation 1); (iii)
λobdh sci = (bit rateo−g)/((PDU sizeo + (qd+ od)× bit rateo−g)× 1000). This
rate relates to the transmission of scientific data (event packets), after being
completely formatted, from the OBDH to the GS. It is a diverse processing
delay rate (Equation 2) where qd it is the queue processing delay within the
software embedded into the OBDH’s computer, and od refers to other delays
due to further required processing. Note that the size of the OBDH’s PDU
(PDU sizeo) is directly proportional to OP EV P . Hence, for OP EV P = 1,
λobdh sci = 0.003285, and for OP EV P = 108, λobdh sci = 0.001378; and (iv)
λall hk = (bit ratehk−o−g)/((PDU sizeh +(qd+od)×bit ratehk−o−g)×1000) =
0.001525. This rate relates to the transmission of housekeeping data from several
subsystems (XRC, OBDH, ACS) to the OBDH which then sends housekeeping
information to the GS. It is also a diverse processing delay rate.

We used PRISM and hence we described our system using its language, and
simulated the behavior of the CTMC model. Our models range from 546,530
reachable states and 1,647,070 transitions (OP EV P = 1) to 29,785,885
reachable states and 75,502,215 transitions (OP EV P = 108). After re-
alizing that the CTMC model truly reflects our system, we formalized RQ1 as
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proposed by TPerP:

(α,P=?[onboard TM k U≤500 ground TM k]). (9)

The state formula onboard TM k means that the kth scientific data TM
packet is formatted and ready, in the OBDH, but has not yet been transmitted
to the GS while the state formula ground TM k means that such kth packet
has been transmitted and received by the GS. As explained in Section 2.1, α are
the states from where to start the analysis because they represent the situations
where PDU k is ready to be sent from the OBDH but such PDU has not yet
been sent and received by the GS.

We did several experiments and created several graphics varying the time in
accordance with 0 ≤ t ≤ T, where T = 500 ms. Due to space restrictions we
will not show them. The current solution defined for the protoMIRAX system
is OP EV P = 1 (minimum). Analyzing the results of the Model Checking, we
noticed that such a solution is not a good option because the average value of
the probability is too low (0.3316) when T = 500 ms.

As OP EV P increases, we could see a significant improvement on the average
value of the probability when T = 500 ms. However, using a large value of
OP EV P is not the best solution. When OP EV P = 108 (maximum), the
average value of the probability for T = 500 ms is only 0.4924. Figure 3 shows the
mean values of probabilities for T = 500 ms for all possible values of OP EV P .
We perceive that there is a set of optimal values: 12 ≤ OP EV P ≤ 19. The
highest mean probability is due to OP EV P = 15 (0.6954).

We continued the quantitative analysis in order to find out how unsuitable
was the current solution (OP EV P = 1). Thus, we changed RQ1 and created a
new requirement where the time is now 1 hour. We noticed a small improvement
but the average value of the probability reaches a limit still too low (0.3581).
Importantly, the result of this analysis does not claim that the scientific data
will last one hour, or even more, to reach ground (GS). The maximum value of
the probability for OP EV P = 1 is, in fact, 0.8065. However, a low mean value
of probability means that, on average, significant delays may occur with greater
probability when the operation of the protoMIRAX system.

Regarding the satisfaction analysis, we accomplished it in order to answer this
question: given the current characteristics of the protoMIRAX system (packet
sizes, communication rates, etc.) is RQ1 satisfied? The previous quantitative
analysis has provided an indication of what value, or interval, of OP EV P would
be the most appropriate. Such analysis also suggests that the current solution,
OP EV P = 1, is inappropriate. But nothing was said concerned the satisfaction
of RQ1. We formalized RQ1 in accordance with TPerP:

∃(α,P≥0.98[onboard TM k U≤500 ground TM k]). (10)

In Table 1, we see that RQ1 is NOT satisfied in accordance with the current
characteristics of the protoMIRAX experiment. No value of OP EV P was such
that the CTMC model satisfied RQ1 (T = 0.5 s). Note that the current char-
acteristics of the protoMIRAX system (packet sizes, communication rates) only
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Fig. 3. TxD: Average values of probabilities considering T = 500 ms (all OP EV P )

begins to fulfill the time performance requirements from T ≥ 2 s but, even so,
for some values of OP EV P (10, 13, 15, 17, and 30). It is important to stress
that neither for the minimum (1) nor for the maximum (108) value of OP EV P
the requirement is satisfied when T = 2 s. In addition, the minimum value (1)
and current solution does not satisfy the requirements even if we consider T = 1
day (86,400 s). This is another result that corroborates the previous conclusion:
current solution (OP EV P = 1) is inadequate.

Table 1. TxD: Satisfaction of time performance requirements

OP EV P Time (seconds)

0.5 1 2 5 10 86,400

1 7 7 7 7 7 7

10 7 7 3 3 3 3

13 7 7 3 3 3 3

15 7 7 3 3 3 3

17 7 7 3 3 3 3

30 7 7 3 3 3 3

108 7 7 7 3 3 3
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4.2 Total Time

For protoMIRAX, the Propagation Delay is neglected due to the small distance
of operation of the balloon compared to the light’s propagation speed. How-
ever, it is interesting to consider the Time for PDU Generation (TPG). For this
system, such a time is basically defined as a function of OP EV P . That is, if
OP EV P = 10 thus 1 scientific data TM packet will be ready every 10 seconds
(approximately) to be sent to ground. We considered the Total Time which is
based on TPG and TxD: Total T ime = TPG+ TxD.

We repeated the process suggested by TPerP for this new delay. The require-
ment is basically the same as previously proposed but with T = 30 s. Since TPG
is at least one second, there is no sense in demanding the system to meet a re-
quirement in the range of milliseconds. The semantics to create the CTMC did
not change but the parameter rates did (λi calculated with resolution in s): (i)
λevp = EV P rate = 40; (ii) λxrc sci = (bit ratex−o)/(PDU sizex+(OP EV P×
bit ratex−o)). Note the influence of the encapsulation feature (Equation 2) pre-
sented in the calculation of this rate due to its dependency on OP EV P ; (iii)
λobdh sci = (bit rateo−g)/(PDU sizeo + (qd + od + OP EV P ) × bit rateo−g).
In this case, we have both dependencies: processing delays and encapsulation;
and (iv) λall hk = (bit ratehk−o−g)/(PDU sizeh + (qd + od + OP EV P ) ×
bit ratehk−o−g). Again, diverse processing delays and encapsulation influence
were used.

Analyzing the results of the Model Checking where 0 ≤ t ≤ T, T = 30s, we
realized that, initially, OP EV P = 1 had a better performance compared with
the other values. This is explained by the lower TPG when OP EV P = 1. How-
ever, it was evident that the average value of the probability when OP EV P = 1
reaches again a low limit (0.6057). The interval 13 ≤ OP EV P ≤ 17 is a good
option, although OP EV P = 10 was the value which had the highest average
value of probability (0.8103). In Figure 4, we see more clearly the mean values
of probabilities considering all values of OP EV P .

Concerning the satisfaction analysis, the protoMIRAX system also did NOT
satisfy the requirement initially proposed (T = 30 s). No value of OP EV P
given in Table 1 was such that the requirement could be satisfied. Increasing
T to 60 s, then OP EV P = 10 and OP EV P = 13 were the only ones to
meet the requirement and thus none of the other values, including the minimum
(OP EV P = 1), satisfied the property for T = 60 s.

4.3 Considerations about the Evaluation conducted via TPerP

Based on the time performance analysis accomplished via TPerP, we can con-
clude: (i) the current solution adopted in the protoMIRAX system, OP EV P =
1, is inadequate. This conclusion is valid not only if we consider the Transmis-
sion Delay but also the Total Time; (ii) the interval 13 ≤ OP EV P ≤ 17 is a
good alternative to solve this performance issue. As a first option, we suggest
OP EV P = 15 (average value of the interval) to be used in the protoMIRAX
system. It means a TM packet with 3,718 Bytes. This value is particularly suited
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Fig. 4. Total Time: Average values of probabilities considering T = 30 s (all OP EV P )

if more emphasis is given to a shorter Transmission Delay; and (iii) if we desire
a lower Total Time, a second alternative is OP EV P = 10 (packet with 2,488
Bytes). This value also performed well in the TxD analysis, although it was not
as good as OP EV P = 15. The advantage in using OP EV P = 10 rather than
OP EV P = 15 would be the fact of having more frequent updating of scientific
data visualized on the GS’s computers.

We can highlight some points given the results presented by using TPerP for
this space system, aiming to apply our approach to other types of systems. For
applications that need to store the acquired data and transmit them to another
remote system, using a minimum value of a parameter (size of memory buffer,
size of a packet) may be, at first, advantageous because, usually, this implies less
processing demands (for example, less complex memory management). However,
not always this minimum value may be the most appropriate (as we showed in
this study), especially considering real-time systems where performance require-
ments may have greater relevance.

Different types of delays may require different solutions for the optimal values
of the parameters that are being evaluated. The decision to choose the most
suitable value of the parameters will depend on a priority of the considered
delays.
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5 Related Work

In this section, we will focus on some relevant studies that use formal verification
methods aiming at performance/dependability evaluation of systems.

Probabilistic Model Checking was applied to address usability concerns that
involve quantitative aspects of a user interface for a groupware system [5]. There
are usability issues that are influenced by the performance of the groupware
system rather than by its functional behavior. Our approach allows a more re-
fined analysis considering the size of PDUs to estimate the rates compared with
their work. In addition, the CTMC model they developed is very simple (19
states) which raises doubts whether the same results would be achieved for more
complex models.

Probabilistic Model Checking was also used to analyze dependability proper-
ties of a embedded controller-based system [4]. Properties like the probability of
the system shutting itself down, the expected amount of time spent in different
classes of states of the model (using reward-based properties), expected number
of reboots, were taken into account. The basic difference between TPerP and
this work is that we aimed at evaluating the system time performance consid-
ering its normal operational behavior, and in [4] the authors aimed to assess
dependability-related issues.

In [6], the authors showed how CSL can be used to specify state- and path-
based dependability properties of systems being modeled as CTMC. Although
dependability was the focus and properties in CSL to reason about probabilities
of Quality of Service (QoS) were considered, some time-performance require-
ments were assessed. This paper is more a proof of concept to show the poten-
tial of the recently, at that time, introduced CSL for dependability/performance
analysis.

A report on the use of the COrrectness, Modeling and Performance of
Aerospace SyStems (COMPASS) toolset for correctness, dependability, and per-
formance analysis of a satellite system-level design was presented in [12]. The
greatest motivation behind their research is having a single, integrated, sys-
tem model that covers several aspects (discrete, real-time, hybrid, probabilistic)
rather than using various (tailored) models covering different aspects. The case
study is interesting and complex (50 million states) and they accomplished sev-
eral analyzes. However, the performability evaluation analysis ran out of memory
after 9 hours. Moreover, the analysis was conducted when the satellite project
was in its Phase B where requirements were not fully detailed. Thus, it is not very
clear if they were able to use detailed and defined requirements as we did in our
case study and also whether the performance analysis accomplished considers
the same type of time perspective and granularity that we carried out.

In a follow-up paper, authors of [12] published another work where they
presented the application of the COMPASS toolset to the same project but
addressing Phase C of the satellite’s system engineering lifecycle [13]. Thus,
there were many more design details than in the previous attempt. However, they
focused on diagnosability, not performability, analysis which was intractable in
the previous work as it needed more computing resources than they had available.
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Performance modeling of concurrent live migration operations in cloud com-
puting systems was presented in [14]. The authors used CTMC and Probabilistic
Model Checking as we did. They made some assumptions in their model so that
they could accomplish the analysis in a shorter time. For instance, migration
requests for sender servers are distributed in a uniform way, and thus they could
simplify the model for a large number of servers with the ratio of the number
of sender and receiver servers. This is clearly an attempt to deal with the state
space explosion problem. It is not evident if this uniform assumption is consistent
with the real characteristics of such systems.

We can point out the following differences and in some cases advantages of
our approach compared with these previous studies: (i) TPerP has well-defined
activities for the application of Probabilistic Model Checking for evaluating a
specific type of performance measure (delay). It is vital that systematic pro-
cedures are proposed so that formal methods can have a wide acceptance in
the industrial practice; (ii) we clearly define equations to calculate the parame-
ter rates of the CTMC model considering local PDU influence, queue processing
delays, encapsulation influence due to network architecture models, and time res-
olution; and (iii) with the exception of the studies [12, 13], all remaining papers
that we mentioned used very small case studies. We dealt with complex models
and so we believe that our approach is suitable for large scale applications.

6 Conclusions

In this paper we report on the use of Probabilistic Model Checking to evaluate
time performance of complex systems. We organized the activities that we carried
out in TPerP, an approach that analyzes several types of delay and goes towards
a wide acceptance of formal methods in practice. Our approach defines clear steps
to be followed by professionals by providing guidelines to calculate parameter
rates, and suggesting the use of a specification patterns system.

We applied TPerP to a complex space application under development at
INPE aiming at finding the optimal/most suitable size of the scientific data
TM packet, so that there is a minimum delay of such scientific data stored on-
board and the same data that are visualized on the ground. We found that
the current definition of the balloon-borne experiment is inadequate and we
suggest different sizes for the TM packet: OP EV P = 15 if we consider a shorter
Transmission Delay; or OP EV P = 10 if the Total Time is the driving factor.
CTMC models up to 30 million reachable states and 75 million transitions were
analyzed showing the usefulness of our approach.

Future directions include to propose a method for the automatic transla-
tion of the system/software behavior into the high-level modeling language of
a Probabilistic Model Checker such as PRISM. This step is quite interesting
because it can prevent errors in (manual) translating the system solution into
the language of the Model Checker. It is also interesting to investigate the use
of other ProPoST’s patterns and find out the impact on the time performance
analysis. Finally, application to other case studies (aerospace domain, automo-
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tive industry, etc.) should be addressed to consider the generalization of our
approach.
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