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Abstract. Functional Block Diagrams (FBD) are commonly used as a
graphical representation for safety analysis in a wide range of complex
engineering applications. An FBD models the stochastic behavior and
cascading dependencies of system components or subsystems. Within
FBD-based safety analysis, Event Trees (ET) dependability modeling
techniques are typically used to associate all possible failure/success
events to each subsystem. In this paper, we propose to use higher-order
logic theorem proving for the formal modeling and step-analysis of FBDs.
To this end, we develop a formalization in HOL4 enabling the mathemat-
ical modeling of the graphical diagrams of FBDs and the formal analysis
of subsystem-level failure/reliability. The proposed FBD formalization in
HOL4 is capable of analyzing n-level subsystems with multi-state system
components and enables the formal FBD probabilistic analysis for any
given probabilistic distribution and failure rates.

Keywords: Functional block diagrams · Event trees · Safety analysis ·
Higher-order logic · Theorem proving · HOL4

1 Introduction

In many safety-critical complex systems, a catastrophic accident may happen
due to the coincident occurrence of multiple sudden events in different subsystem
components. These undesirable accidents in safety-critical systems may result in
huge financial losses and sometimes severe injury or fatalities. Therefore, the
central safety inquiry in many complex systems is to identify the possible con-
sequences given that one or more sudden events could happen at a subsystem
level. For that purpose, several dependability modeling techniques have been
developed for safety analysis of critical-systems, such as Fault Trees (FT) [14],
Reliability Block Diagrams (RBD) [21] and Event Trees (ET) [18]. FTs and
RBDs are used to either analyze the factors causing a complete system failure or
the complete success relation ships of a system only, respectively. In contrast to
FTs and RBDs, ETs provide a complete analysis for all possible complete/partial
failure and success consequence scenarios that can occur in a system. Moreover,
ET analysis can be used to associate failure and success events to all subsys-
tems of a safety-critical system in more complex hierarchical structures, such as
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Functional Block Diagrams (FBD) [9]. An FBD is a graphical representation of
the detailed system functionality and the functional relationship between all its
subsystems that are represented as Functional Blocks (FB). Each FB describes
the failure characteristics of a subsystem by modeling its component failure and
success relationship in terms of an ET structure [18]. All these subsystem level
ETs associated with their corresponding FBs are then composed together to
build a complete subsystem-level ET model of a complex system.

Papazoglou [9] was the first researcher to lay down the mathematical founda-
tions of ETs and FBDs in the late 90s, where the analysis is done purely manually
using a paper-and-pencil approach. A major limitation in the manual approach
is the possibility of human error-proneness. On the other hand, there exist sev-
eral simulation ET tools, such as ITEM [11], Isograph [10], and EC Tree [20],
which have been widely used to determine all possible failure and success con-
sequence scenarios of realistic systems, like electrical power grids [16], nuclear
power plants [19] and Electric railways [12]. However, simulation based analy-
sis approaches lack the rigor of detailed proof steps and may not be scalable for
large systems due to an explosion of the test cases. To the best of our knowledge,
these tools have not been used for FBD modeling and analysis. On the other
hand, such simulation approaches generally use approximate random-based algo-
rithms, such as MATLAB Monte-Carlo Simulation (MCS) for ET analysis [13],
for faster computation, which could introduce undesirable inaccuracies that can
be deemed fatal for safety-critical systems.

Following the recommendations of safety standards, such as IEC 61850 [15],
EN 50128 [6], and ISO 26262 [17], we propose to use formal techniques based
on theorem proving for the safety analysis of complex systems. In particular,
we use the HOL4 theorem prover [8], which provides the ability of verifying
probabilistic mathematical expressions constructed in higher-order logic (HOL).
Prior to our work, there were two notable projects for building frameworks to
formally analyze FTs and RBDs. For instance, HOL4 has been previously used
by Ahmad et al. in [5] to formalize Static FTs and RBDs. Furthermore, Elder-
halli et al. in [7] had formalized Dynamic FTs and RBDs in the HOL4 theo-
rem prover. All these formalizations are basically required to formally analyze
either a system static/dynamic failure or static/dynamic success only. Therefore,
in [2], Abdelghany et al. developed a HOL4 theory to reason about ETs consid-
ering both failure and success states of system components simultaneously. The
authors proposed a new datatype EVENT TREE consisting of ET basic construc-
tors that can analyze large scale ET diagrams. Based on [2], Abdelghany et al.
have also developed the formalizations of cause consequence diagrams (CCD)
in HOL4 to enable formal failure analyses combining, respectively, ETs with
FTs [3] and ETs with RBDs [4]. These works allow the reasoning about all pos-
sible complete/partial failure and success consequences events that can occur
at the subsystem level. However, a limitation of CCD analysis is that we can
only assign two states to each subsystem (failure or success). While for realistic
systems, safety and reliability engineers need to assign multi-states to subsys-
tem components (e.g., partial failure, partial success, complete failure, complete
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success). To this end, Functional Block Diagrams (FBD) would be the graphical
representation of choice for the reliability analysis of n-level multi-state criti-
cal systems.

In this paper, we provide a formalization of Functional Block Diagrams that
can mathematically model FBDs based on our ET theory in HOL4 to analyze
multi-state subsystem components and obtain all possible consequence classes
(e.g., partial failure, partial success, etc.) that can occur in the whole system at
the subsystem level. The proposed formalization in HOL4 defines a basic FBD
constructor Functional Block (FB), which can be used to build the mathematical
expressions of n-level FBDs based on multi-state subsystem components. Also,
the formalization of FBDs, in this paper, enables a formal probabilistic risk
assessment of scalable graphical diagrams of FBDs that provides the reasoning
support for formal safety analysis of complex systems at the subsystem-level
based on any arbitrary probabilistic distribution and failure rates.

The rest of the paper is organized as follows: In Sect. 2, we review the recently
developed ET theory in HOL4. Section 3 introduces the fundamentals of FBDs.
In Sect. 4, we detail our proposed HOL4 formalization of FBDs. Lastly, Sect. 5
concludes the paper.

2 Preliminaries

Event Tree (ET) is a well-known probabilistic reliability and risk assessment
technique, which provides all possible risk consequence scenarios that can occur
in a safety-critical system, i.e., complete/partial failure and reliability [18]. An
ET diagram starts by an Initiating Node from which all possible consequence
scenarios of a sudden event that can occur in the system are drawn as Branches
connected to Proceeding Nodes so that only one of these risk scenarios can occur,
i.e., all possible ET consequence paths are disjoint and distinct.

2.1 Formal ET Modeling

The ET constructors are formally modeled using a new recursive datatype
EVENT TREE, in HOL4 as follows [1]:

Hol datatype EVENT TREE = ATOMIC of (event)|

NODE of (EVENT TREE list)|

BRANCH of (event) (EVENT TREE)

The type constructors NODE and BRANCH are recursive functions on EVENT TREE-
typed. Also, a semantic function is defined over the EVENT TREE datatype that
can yield a corresponding ET model as [1]:

Definition 1: Event Tree

� ETREE (ATOMIC X) = X ∧
ETREE (NODE (h::L)) = ETREE h ∪ (ETREE (NODE L)) ∧
ETREE (BRANCH Y Z) = Y ∩ ETREE Z
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The function ETREE takes a success/fail event Y, identified by an ET type con-
structor ATOMIC and returns the event Y. If the function ETREE takes a list XN of
type EVENT TREE, identified by a type constructor NODE, then it returns the union
of all elements after applying the function ETREE on each element of the given
list. Similarly, if the function ETREE takes a success/fail event X and a proceeding
ET Z, identified by a type constructor of EVENT TREE type, then it performs the
intersection of the event Y with the ET Z after applying the function ETREE. A
complete ET model should draw all possible consequence scenarios, called paths.
Each path consists of a unique consequence of branch events associated with it.
A function ETPATH is defined to obtain a specific path in the ET model con-
sisting of M branch events. This was done in HOL4 by using the HOL4 recursive
function FOLDL that recursively applies the BRANCH ET constructor on a given
list of different M branch events as [2]:

Definition 2: ET Path of M Events

� ETPATH p (EVENT1::EVENTM) =

FOLDL (λa b. ETREE (BRANCH a b)) EVENT1 EVENTM

A function
⊗

L is defined that can model an ET diagram with all possible sce-
narios for two consecutive node lists L1 and L2, as shown in Fig. 1a, based on
the mathematical Cartesian product

⊗
concept, in HOL4 as [2]:

Definition 3: Two Stair ET Generation

� L1

⊗
L L2 =

MAP (λa. MAP (λb. ETREE (BRANCH a b)) L2) L1

where the function
⊗

L takes two different EVENT TREE-typed lists and returns
an EVENT TREE-typed list by recursively mapping the BRANCH constructor on each
element of the first NODE list paired with the entire second NODE list using the
HOL4 mapping function MAP.
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ETPath 

Proceeding  
Node 

Event1 
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Z 

Z 

Event2 

EventN 

Event1 

Event2 

Event3 

EventZ 

Event1 
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Event3 

EventZ 

(a) Two Stair ET Generation
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(b) N Stair ET Generation

Fig. 1. Generic ET model generation
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Also, a function
⊗N

L is defined that generates a sequential and a complex
ET model (see Fig. 1b) consisting of N components of a given system and
each component is represented by a different M multi-state model for relia-
bility studies (i.e., 2-state model, 3-state model, ..., M -state model), as shown
in Fig. 2. in HOL4 as follows [2]:

Definition 4: N Stair ET Generation

� L
⊗N

L LN = FOLDR (λL1 L2. L1

⊗
L L2) LN L

where L is a list of all component states till N − 1 (i.e., L = [[C1]; [C2];. . . ;
[CN−1]]) and LN = [CN ].

Moreover, a reduction function �N is defined in [2] to reduce the generated
complete ET model. Lastly, a partitioning function � is defined to extract a
collection of ET paths specified in the index list N from the reduced ET model
L representing the possibilities of an accident event, in HOL4 as [2]:

Definition 5: ET Paths Partitioning

� N � L = MAP (λa. EL a L) N

where the HOL4 function EL extracts a specific element from the given list.

1 2
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λ

μ

λ: Failure Rate

2

1 3
λ13

μ31
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Down
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μ21

μ32

λ12

2 1
(1/T)
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3 4
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λμμ
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T: Average reserve shut-down time
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Failed

In service

5λ23

λ34

λ41λ14

λ21

λ12

λ45

λ52

λ25

λ24 Cold 
reserve

Fig. 2. Multi-state models for safety studies
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2.2 Formal ET Probabilistic Analysis

For the formal ET probabilistic analysis, Abdelghany et al. verified, in [2], several
mathematical ET probabilistic formulations, as presented in Table 1.

Table 1. ET HOL4 probabilistic theorems [2]

EventTrees ProbabilisticTheorems

Initiating 
Node

Pr (Event1)

∑ Probability

Pr (Event2)

Pr (Event3)

Pr (EventN)

Theorem1:
probp

ETREE

(NODE( E1::EN))
)

=
∑

(PrL p E1::EN)
)

Proceeding
Node

Pr (Event1)

∑ Probability

Pr (Event2)

Pr (Event3)

Pr (EventZ)

Branch

Pr (EventX)

Π Probability

Theorem2:
probp

ETREE

(BRANCH EventX
(NODE( E1::EZ)))

)

=(probp EX) × ∑
PrL p( E1::EZ)

)

Initiating 
Node

Branch

ETPath

Proceeding 
Node

Pr (Event1)

N

Z

Z

Pr (Event2)

Pr (EventN)

Pr (EventM)

Pr (Event1)

Pr (Event2)

Pr (Event3)

Pr (EventZ)

Pr (Event1)

Pr (Event2)

Pr (Event3)

Pr (EventZ)

Π Probability

Theorem3:
probp

ETPATH p( E1::EM)
)

=
∏

PrL p( E1::EM)
)

Path1M

PathNM

N

Pr (Event1)

N

Z

Z

Pr (Event2)

Pr (EventN)

Pr (Event1)

Pr (Event2)

Pr (Event3)

Pr (EventZ)

Pr (Event1)

Pr (Event2)

Pr (Event3)

Pr (EventZ)

Π Probability
∑ Probability

Theorem4:
probp

ETREE

(NODE

(MAP( λa. ETPATH pa)

(Path1M::PathNM )))
)

=
∑

MAP

(λa.
∏

(PrL pa))( Path1M::PathNM )
)

The probability of N events in an ET initiating node is verified as the sum
of probabilities associated with the events of the given list. The probability
of a branch success/fail event connected to a proceeding node is verified as
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the multiplication of the branch event probability with the sum of the proba-
bilities for the next proceeding node events. Also, the probability of ETPATH

consisting of M ET branch events is verified as the multiplication of the indi-
vidual probabilities of all the branch events associated with it. Moreover, a
two-dimensional probabilistic formulation is verified for extracting a collec-
tion of N paths and each of M success/fail events from an ET model, where
each path consists of an arbitrary list of events, as the sum of the individual
probabilities of all the paths associated with it. These mathematical expres-
sions (Theorems 1–4) are verified under the ET constraints defined by Papa-
zoglou [18] (a) all associated events in the given list XN are drawn from the events
space p (XN ∈ events p); (b) p is a valid probability space (prob space p);
(c) the events in the given list XN are independent (MUTUAL INDEP p XN );
(d) each pair of elements in a given list XN is distinct (ALL DISTINCT XN );
and lastly (e) each pair of elements in the given list XN is mutually exclusive
(disjoint XN ). The elements in a list are intrinsically finite and thus all ET
constraint requirements are satisfied. The function PrL takes an arbitrary list
[Z1, Z2, Z3, . . . , ZN ] and returns a list of probabilities associated with the ele-
ments of the list [Pr(Z1), P r(Z2), , . . . , P r(ZN−1), P r(ZN )], while the function∏

takes a list [Y1, Y2, Y3, . . . , YN ] and returns the product of the list elements
Y1 × Y2 × Y3 × · · · × YN . The function

∑
takes a list [X1,X2,X3, . . . , XN ] and

returns the sum of the list elements X1 + X2 + X3 + · · · + XN .

3 Functional Block Diagrams

Functional Block Diagrams (FBDs) are a probabilistic risk assessment tech-
nique that can construct hierarchical ET structures to perform subsystem-level
reliability analysis for complex systems. A Functional Block (FB) is the basic
constructing element of an FBD graph that represents the stochastic behavior
of each subsystem in a safety-critical system. To present a clear understanding
of FBD-based safety analysis, consider a turbine governor system of a steam
power plant that controls the position of a steam inlet valve (V), which in turn
regulates the steam flow to the turbine and thus controls the output power. The
valve operates with an induction motor (IM) that is energized by a power sup-
ply (PS), as shown in Fig. 3. The main objective of the valve is to control the
Steam Flow (SF) at point B given the flow situation at point A and a command
signal C that dictates the required function of the valve, i.e. open or close. The
FBD six step-wise analysis, defined by Papazoglou [9], are as:

1. FBD Construction: A system FBD (decomposed into FBs) is constructed
based on the engineering knowledge to describe the subsystem-level behavior,
as shown in Fig. 4.

2. ET Generation: Construct a complete ET model corresponding to each sub-
system FB. Assuming each subsystem component is represented by two oper-
ating states only, i.e., Success (S) or Fail (F). Figure 5 depicts the subsys-
tem complete ETs, i.e., ET1(Complete), ET2(Complete) and ET3(Complete) corre-
sponding to FB1, FB2 and FB3, respectively, of the steam-turbine governor.
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A B 
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IM 
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C 

Fig. 3. Steam-turbine governor of a power plant
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(IM)

FB 3 
Steam Valve   

(V)WFB2

Command Signal (C)

WFB1

P1

P2

P3

P4

Fig. 4. FBD of steam-turbine governor

3. ET Composition: All ETs associated with their corresponding FBs are com-
posed together considering the functional behavior of the governor system
to form a complete subsystem-level ET model. For instance, ET1(Complete),
ET2(Complete) and ET3(Complete) are composed to form the subsystem-level
ETGovernor, as shown in Fig. 5, with all possible complete/partial failure and
reliability ET consequence paths that can occur.

4. Probabilistic Analysis: Lastly, evaluate the probabilities of the system com-
plete ET paths based on the occurrence of a certain event. These probabilities
represent the likelihood of each unique sequence at the component-level that
is possible to occur in a system so that only one can occur. For example, the
probability of IM Complete Failure (CF) and Governor Complete Success
(CS) shown in Fig. 5, i.e.,

∑
probability(Paths 4−31) and Path0, respectively, can

be expressed mathematically after shorthand as:
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Fig. 5. Steam-turbine governor ET diagrams

Pr(IMCF ) = Pr(PSS) × Pr(CS) × Pr(IMF )+
Pr(PSS) × Pr(CF ) + Pr(PSF )

Pr(GovernorCS) = Pr(PSS) × Pr(CS) × Pr(IMS)×
Pr(SFS) × Pr(VS)

(1)

where Pr(XF ) is the probability of failure for a component X and Pr(XS)
represents the correct functioning of the component, i.e., 1 – Pr(XF ).

4 FBD Formalization

In this section, we describe, in detail, our proposed FBD formalization in the
HOL4 theorem prover.

4.1 Formal FBD Modeling

We start the formalization of FBDs by defining a modeling function for its basic
element FB, using Definition 4, as shown in Fig. 6, in HOL4 as follows:

Definition 6: Functional Block

� FB (S::IN) = IN

⊗N
L S
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where S is a list of all subsystem internal components failure and success states
and IN is a two-dimensional list of all inputs states that affect the subsystem
FB, i.e., IN = [[I1]; [I2]; [I3];. . . ; [In]]. Also, we can obtain the ET model of a
specific functional block FBj by defining a function FBET , in HOL4 as follows:

Definition 7: Functional Block ET

� FBET FBj = ETREE (NODE FBj)

FB
(S)

W

I2I1

Initiating 

Node

Branch

S1

I1m

I21

Sm

I2m

I11

Proceeding Node

N
In

I1m

I11

I21

I2m

I21

I2m

I21

I2m

W

Fig. 6. An FB equal to a complete ET model

To construct multiple consecutive N FBs, we define the following recursive func-
tion FBN

ET , in HOL4 as follows:

Definition 8: Multiple Functional Block ET

� FBN
ET (FB1::FBN) = (FBET FB1)::(FBN

ET FBN)

In order to verify the correctness of the above-mentioned functions, we for-
malize the following FBD modeling properties, in HOL4 as follows:

Property 1 : An ET diagram of an FB model having N input lists IN and an
internal state list S can be split as connected individual FBs for all lists associ-
ated with the FB model, as shown in Fig. 7, in HOL4 as:

Theorem 5: Splitting Single Functional Block

� FBET

(FB (S::IN)
)
= ETPATH p

(FBN
ET (S::IN)

)

Property 2 : The commutativity and associativity properties of two consecutive
FBs consisting of N input lists IN , as shown in Fig. 8, in HOL4 as:

Theorem 6: Commutativity and Associativity of Two FBs

� FBET

(FB (I1::IN)
⊗

L I2

)
= FBET

(I1

⊗
L (FB (I2::IN))

)
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INI1

FB 
(S)
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IN(states)

NodeN
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Fig. 7. An FB of N inputs split into individual FBs
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I2 IN I2 I1 

W W 

N N 

Fig. 8. Commutativity and associativity of two FBs

Now, we can define a three-dimensional function FBN that takes N FBs,
where each FB takes an arbitrary list of n-inputs and then generates the corre-
sponding complete FBD model to obtain all possible risk consequences of failure
and reliability, as shown in Fig. 9, in HOL4 as:

Definition 9: Three Dimensional N Functional Blocks

� FBN

(SI1::SI2::SIN

)
= FB (

MAP (λa. FB a) (SI1::SI2::SIN)
)

Wi 

S1 

FB1 
W1 W2 Wi-1 WN-1 

FB2 FBi FBN 

WN = W 
I1(J) S2 I2(K) Si Ii(L) SN IN(M) 

Fig. 9. Complete FBD model of multi-level FBs connected together

The next steps of the FBD analysis are to reduce and partition the ET model
for each FB. Since the outcome of FB is a list of all risk events, we can use the
same reduction function �N and partitioning function � for ET analysis to
reduce the ET model and partition a collection of consequence events that end
with the same risk events.

4.2 Formal FBD Probabilistic Analysis

The last step in the FBD analysis is to determine the probability of each ET
consequence possible scenario at the subsystem-level that could occur in the com-
plex system. Based on the ET probabilistic theorems (Theorems 1–4 in Table 1)
and the formal FBD modeling theorems (Theorems 5 and 6), we have verified
some FBD probabilistic theorems, in HOL4 as:
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Property 3 : The probability of the Cartesian product function
⊗

L for two
FB lists XN and YN , as shown in Fig. 10a, is verified as the multiplication
of the sum of the individual probabilities of all the events associated with each
list, in HOL4 as:

Theorem 7: Two FBs of One Inputs

� prob p
(FBET (XN

⊗
L YM)

)
=

∑
(PrL p XN) × ∑

(PrL p YM)

where the function
∑

takes a list YM and returns the sum of the elements of a list,
i.e., Y1+Y2+Y3+Y4+ · · ·+YN−1+YN while the function PrL returns the proba-
bilities of the elements of a list, i.e., [Pr(Z1), P r(Z2), , . . . , P r(ZN−1), P r(ZN )].

Property 4 : A generic probabilistic formulation for one FB associated with N
component multi-state lists, as shown in Fig. 10b, is verified as the product of
the sum of each component list probabilities, in HOL4 as:

Theorem 8: One FB of N Inputs

� prob p
(FBET (FB (L1::LN))

)
=

∏
(
∑

prob p (L1::LN))

where the function
∑

prob is used to recursively apply the functions PrL and
∑

on a given two-dimensional list LN , i.e., [[L1]; [L2]; [L3];. . . ; [Ln]].

Property 5 : A probabilistic formulation for two FBs of one list and N lists,
as shown in Fig. 10c, is verified as the multiplication of their probabili-
ties, in HOL4 as:

XN

FB1 FB2

WFB1

YM
ETSubsystem-Level

(a) 2 FBs of 1 Inputs

LnL1

FB 

N
ETSubsystem-Level

(b) 1 FB of N Inputs

FB2

YmY1 M

FB1

XN

WFB1

ETSubsystem-Level

(c) 2 FBs of 1 and N Inputs

FB2

Ym
ETSubsystem-Level

Y1 M

FB1
WFB1

XnX1 N

(d) 2 FBs of 2 N Inputs

Fig. 10. Different configurations of connected FBs
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Theorem 9: Two FBs of One Input and N Inputs

� prob p
(FBET (XN

⊗
L (FB (Y1::Ym)))

)
=∑

(PrL p XN) × ∏
(
∑

prob p (Y1::Ym))

Property 6 : A probabilistic formulation for two FBs of N input lists, as shown
in Fig. 10d, is verified as the multiplication of both probabilities, in HOL4 as:

Theorem 10: Two FBs of Two N Inputs

� prob p
(
FBET

(FB (X1::Xm)
⊗

L FB (Y1::Ym)
))

=
∏

(
∑

prob p (X1::Xn)) × ∏
(
∑

prob p (Y1::Ym))

The prime purpose of the above-developed formalization of FBDs is to build
a reasoning support for the subsystem-level formal safety analysis of complex
systems within the sound environment of HOL4. Our proposed formalization
is capable of enabling the verification of safety properties of complete/partial
failure of critical systems of any size and compute their reliability events simul-
taneously. For instance, our FBD formalization framework can handle systems
consisting of multi-level decomposition subsystems, where each subsystem is
composed of multiple components and each component is associated with multi-
state failure and success consequence events [1].

5 Conclusions

In this paper, we described the formalization of FBDs step-analysis in HOL
theorem proving using a generic list data-type. Our proposed formalization pro-
vides the mathematical verification of the graphical FBDs diagrams of complex
systems associated with multi-state components and based on any given prob-
abilistic distribution. The proposed formal approach enables safety engineers to
perform FBD-based safety analysis of n-level complex systems within the sound
environment of HOL4. We believe that our work will help safety design engineers
to meet the desired quality requirements. As future work, we plan to apply the
proposed the FBD formalization in the safety analysis of real world case stud-
ies. We also intend to develop an integrated framework with a GUI for FBD
modeling and linking ET tools with the FBD formalization in HOL4.
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