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Abstract—One of the challenges for the verification of analog
and mixed signal (AMS) designs is the stochastic behavior
associated. In this paper, we propose a runtime verification
approach to verify the statistical property of the AMS design. The
methodology is based on the combination of the statistical method
and Mont Carlo simulation. The verification procedure produces
confidence level and error margin that provide the tolerance
and accuracy for the verification results. We apply the proposed
methodology to study the jitter property of a PLL design.

I. INTRODUCTION

With the constant growth in integrated circuit technology,
more complex functionalities can be realized in compact
systems such as smart cell phones and portable game consoles.
System on Chip (SoC) architecture has prevailed for the last
decade. It usually contains digital, analog, mixed signal and
radio frequency functional units in one chip. Although SoC
designs have been driving the semiconductor industry, the
growth of design productivity has been lagging behind the
improvement in the number of transistors per chip by as much
as 37% [16]. Analog and mixed signal (AMS) components,
which connect the analog world and digital world, are con-
sidered a bottleneck in improving the overall performance of
the system and the factor for enhancement of the first silicon
success rate. The failure of AMS circuits has been one of
the major causes for the high design re-spun rate [3]. To
overcome these obstacles, 70% of the total design effort in
the semiconductor industry is now spent on verification. The
design and verification of AMS systems became very important
in recent years.

The major challenges for the verification of AMS designs
can be regarded as the complexity, the formal specification of
the property, the computational consumption and the stochastic
behavior. The complexity mainly refers to sophisticated behav-
iors involved in the AMS design which contains pure analog
components, pure digital blocks and the components mixed of
the two. The continuous (analog) signal and discrete (digital)
signal should be described using the uniform approach in order
to exhibits the interrelationship between the two. The lack of
formal specification language for AMS properties challenges
the verification engineers all the time. Even now, there is no
standard language for specifying the property in AMS systems.
Due to the complex and mixed behaviors associated within
the AMS design, high simulation time as well as expensive

memory usage makes the verification of AMS design more
challenging. The stochastic behavior results from the undesired
variation or the random noise within the AMS design. Unlike
other challenges, stochastic behaviors are even responsible for
the failure of the AMS circuit. In this paper, we tackle this
challenge for the AMS design.

Runtime verification is an approach, which bridges the
gap between traditional simulation and formal verification,
to verify the property at runtime. Runtime verification deals
with the detection of violation, as well as satisfaction, of
the property. A monitor is used to detect the violation. The
monitoring technique can be performed in two ways, namely,
online and offline monitoring. Online monitoring, which is
used to check a current execution of a system when the
simulation is running, is able to detect a property violation
as soon as it occurs. On the other hand, offline monitoring
operates on a set of recorded executions after the simulation
is done. When the reliable issue, such as random behaviors, is
considered, we prefer offline monitoring.

In this paper, we propose a runtime verification
methodology for statistical properties of AMS designs
in an offline fashion. The approach combines the statistical
method and Monte Carlo simulation to investigate the
stochastic behavior by verifying the statistical property of the
AMS design. Confidence level and error margin are provided
along with the verification results.

Related work Statistical verification can be divided into three
main categories: statistical theorem proving, statistical model
checking and statistical runtime verification. Although several
interesting advances have been made in statistical theorem
proving, this technique is still in its infancy. The theorem for
continuous random variables and random processes is needed
to handle the analysis and verification of AMS and hybrid
system [4]. The model checking method has been advanced
first to complement general model checking. In [14], the
authors present an independent model checking approach for
verifying probabilistic properties of discrete event systems.
The probabilistic properties were expressed using continuous
stochastic logic (CSL) [1] formulas. These formulas were
then verified through Monte Carlo simulations and statistical
hypothesis testing. The verification procedure provides two
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parameters, α and β, which represent the probability of
making a wrong decision in checking whether a formula is
true or false. In a related work [15], the author presents a
probabilistic model checking method to bound the probability
of error, mentioned in [14], for the indifferent region (i.e.,
the region where both acceptance and rejection decisions can
not be made). A symmetric polling system was studied to
demonstrate the performance of the method. Following the
statistical model checking approach in [14], [15], the authors
in [2] applied this technique to a class of AMS circuits
for the first time. The saturation property of a third order
delta-sigma converter was verified both in time and frequency
domains. However, the issues of state explosion and excessive
computation time still prevail in statistical model checking.
In this paper, we employ the statistical runtime verification to
avoid this issue.

Statistical runtime verification has also been investigated
in the past. One of the interesting works is [13] where
the authors introduce a methodology to verify quantitative
and probabilistic properties in a real-time system at runtime.
The quantitative specification was realized using Meta Event
Definition Logic (MEDL)which is based on LTL. Statistical
hypothesis testing technique was employed to evaluate the
probabilistic properties and to make decisions about acceptance
and rejection. Whenever the decision is made, a confidence
level and error margin is provided. The monitor was imple-
mented in a runtime verification tool termed MaC (Monitoring
and Checking) [5] and performed in an online fashion. Instead,
in this paper, we present a methodology for statistical runtime
verification for AMS designs and the impact of confidence
level for the verification results is discussed. The monitor
is implemented using Monte Carlo hypothesis testing. We
provide the information of error margin in addition to the
confidence level for the verification results.

The rest of the paper is organized as follows: in Section II
we introduce the essentials of the statistical hypothesis testing
and Monte Carlo simulation. The statistical runtime verifica-
tion methodology is described in detail in Section III. The
experimental results are presented in Section IV. Finally, in
Section V we conclude the paper.

II. PRELIMINARIES

A. Statistical Hypothesis Testing

Statistical hypothesis testing is a technique which provides
a decision making procedure about logic statements based
on statistical information. The conclusion is drawn with a
confidence level and an error estimate. Hypothesis testing is
generally formulated in two parts. They are null hypothesis,
denoted by H0, which is what we want to test and alternative
hypothesis, denoted by H1, which is what we want to test
against the null hypothesis. If we reject H0 based on our
statistical investigation, then the decision to accept H1 is made.
Error Bounds

There are two kinds of error bounds that apply when we
are making a decision in statistical hypothesis testing. They are
known as Type I error and Type II error [9]. A Type I error,

or false positive, occurs when we reject H0 which is actually
true. A Type II error, or false negative, arises when we accept
H0 which is actually false. α and β denote the probability of
Type I error and Type II error respectively. Formally,

α = Pr{reject H0|H0 is true }
β = Pr{accept H0|H0 is false}

Confidence Level
In hypothesis testing, the confidence is drawn according

to the compliment of the Type I error α. α is also called
significance level. Formally, the confidence level δ is give by:

δ = 1− α (1)

For instance, α = 0.05 and α = 0.01 refer to the confidence
level of 95% and 99%, respectively. Before performing the
hypothesis testing, the Type I error should be established.

Tail Test
The rejection region is needed to perform the statistical

hypothesis test. A rejection region, over which we would reject
H0, is the area covered by the probability density function
(PDF). The critical value is used to divide the domain of
the test statistic into a rejection region and a non-rejection
region. Generally, the rejection region is located at the tails of
the distribution of the test statistic when H0 is true. The test
can take place either in the lower tail or the upper tail which
depends on the alternative hypothesis H1. Upper tail test: If
a large value of the test statistic would provide evidence for
rejecting H0, then the rejection region is in the upper tail of the
distribution of the test statistic. Lower tail test: If a small value
of the test statistic would provide evidence for rejecting H0,
then the rejection region is in the lower tail of the distribution
of the test statistic.

B. Monte Carlo Simulation

Monte Carlo method originated in the 1940’s [11]. It refers
to a method of solving problems using random variables.
It is widely used in the estimation of phenomena involving
stochastic processes. The basic idea behind the Monte Carlo
method is to sample the model of the true population of
interest. This is followed by calculating the statistics of interest.
The sampling and calculation procedure is repeated for M
trials. The investigation of the distribution characteristics of the
statistics is carried out based on those M experiments. When
the Monte Carlo method is applied in hypothesis testing, we
sample from a distribution which is known or assumed. The
Monte Carlo hypothesis testing algorithm used for statistical
runtime verification is described next.

III. METHODOLOGY

The statistical runtime verification is carried out using
Monte Carlo monitor to check the statistical property of the
AMS design. The monitor is constructed by hypothesis testing
and Monte Carlo simulation. In this section, we first present
the overall methodology of the statistical runtime verification.
Then, we describe how to apply Monte Carlo simulation to the
statistical hypothesis testing.
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A. Statistical Runtime Verification

The methodology of the statistical runtime verification is
shown in Figure 1. The statistical property, such as mean or
variance, we want to verify is expressed as a null hypothesis
H0. The alternative hypothesis H1 becomes the counterexam-
ple naturally. The Monte Carlo monitoring is then carried out
based on the confidence level δ we specify. The decision is
made based on the significance level α with respect to the
confidence level δ. In Monte Carlo Monitor, the property is
verified using hypothesis test incorporated with Monte Carlo
simulation. The statistical property is verified if the decision
of accepting the null hypothesis H0 is made. The rejection of
null hypothesis H0 leads to the violation of the property. All
the decisions are produced under the specific confidence level
δ along with the error margin ε. The error margin specifies a
confidence interval where the estimated statistic falls with the
probability of δ. The Monte Carlo simulation is then employed

Statistical
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Hypothesis
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Confidence Level

Monte Carlo 
M itMonitor

Property is 
false with 
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0H
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Fig. 1: Monte Carlo Based Statistical Runtime Verification

to evaluate the performance of the hypothesis test in terms of
the Type I error. The difference between the significance level
α and the actual Type I error α̂ committed during the procedure
provides a performance indicator for the hypothesis testing.

B. Hypothesis Testing - Critical Value Approach

There are several approaches for hypothesis testing. In this
paper, we address only the critical value approach. It is also
important to note that in order to perform the hypothesis test,
the distribution of the test statistic under the null hypothesis H0

is assumed to be known. Before we describe the critical value
approach, we first introduce an important concept, namely
quantile function.
Quantile Function

Quantile function plays an important role in statistics [9].
The quantile qp of a random variable X is defined as
the smallest number q such that the cumulative distribution
function (CDF) P (X) is greater than or equal to some p,
where 0 < p < 1. This can be calculated for a continuous
random variable with probability density function f(x) by
solving

p =
∫ qp

−∞
f(x)dx (2)

for qp. The quantile function is the inverse of the cumulative
distribution function (CDF) and is given by

qp = quantile(p) = F−1(p) (3)

The p-th quantile of a random variable X is the value qp such
that

F (qp) = P (X < qp) = p (4)

In hypothesis test, we will see that quantile function is used
to determine the decision about rejection of a hypothesis.

Critical Value Approach
In hypothesis testing, if the observed statistic is within some

region, we reject the null hypothesis. The interval where the
null hypothesis is rejected is called critical region, or rejection
region. The critical value is used to divide the domain of the
test statistic into rejection region and non-rejection region. The
critical value approach is used to check whether the observed
value falls into the rejection region. It requires α and Tobs to
calculate the critical value. α is the significant level, or Type
I error, and Tobs is the observed value calculated by

Tobs =
x̄− μ0

σ̄
(5)

where x̄ is the sample mean of the random variable, μ0 is the
mean value under the null hypothesis and σ̄ = σx/

√
n is the

standard error of the sample.
The probability of wrongly rejecting H0, or Type I error, is

supposed to be controlled before we perform a hypothesis test.
The critical value depends on the significance level α, namely
the Type I error. The typical values of α are 0.01, 0.05, and
0.10. The critical value is found as a quantile (under the null
hypothesis H0) calculated using Equation 3.

C. Monte Carlo Hypothesis Testing

In order to perform Monte Carlo monitoring, the distribu-
tion of the population is supposed to be known in advance or
assumed. Then a model which reflects the characteristics of the
original population is made. Monte Carlo simulation is used
to generate random sample for estimation of the distribution
of the original population. Hypothesis testing is then used to
check whether observed value of test statistic falls into the
reject region specified by the estimated critical value.

The detailed procedure is illustrated in Algorithm 1 where
Tobs is observed value calculated using Equation 5, n is the
sample size, σ is the population standard deviation, σ̄ = σ/

√
n

is the standard error of the sample, and μ denotes the pop-
ulation mean. The loop between line 1 and line 5 is the
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Monte Carlo simulation repeated for M trials. In each trial,
we randomly sample from the distribution of population under
the null hypothesis with the same sample size n (line 2 and
line 3) and then calculate and record the observed value of this
pseudo sample Tmc (line 4) which is given by

Tmc =
s̄− μ

σ̄
(6)

where s̄ is the mean value of the pseudo random sample.
It is important to note that all the calculations till now are
under the hypothesis that H0 is true. The hypothesis testing is
performed afterwards (from line 6 to line 21). In the case of the
lower tail test the significant value is α, while 1−α is chosen
when we perform the upper tail test. For upper tail test, the
large significant evidence is investigated. In other words, if the
observed value Tobs is greater than the critical value we reject
the null hypothesis H0. Otherwise, we retain H0. For lower
tail test, a small value is needed as the evidence to reject H0.
Hence, if Tobs is less than the critical value, calculated using α
in this case, we reject H0. Otherwise we retain H0. In Monte
Carlo hypothesis testing, the critical value is estimated based
on the model generated by Monte Carlo simulation. Whereas
the critical value in Algorithm 1 is based on the standard
normal distribution. The hypothesis test is carried out using
the estimated critical value and the observed value Tobs the
same way that Algorithm 1 does. Because for each hypothesis
test the Monte Carlo simulation generates different random
model, it is expected that the estimated critical value varies
for each test.

Algorithm 1 Monte Carlo Hypothesis Testing
Require: α, Tobs, n, σ, σ̄, μ

1: for i = 1 to M do do
2: r = random number generator(n)
3: s = σ · r + μ
4: Tmc(i) = (mean(s)− μ)/σ̄
5: end for
6: while Upper Tail Test do
7: critical value = quantile(Tmc, 1− α)
8: if Tobs > critical value then
9: Reject H0

10: else if Tobs < critical value then
11: Accept H0

12: end if
13: end while
14: while Lower Tail Test do
15: critical value = quantile(Tmc, α)
16: if Tobs < critical value then
17: Reject H0

18: else if Tobs > critical value then
19: Accept H0

20: end if
21: end while

D. Error Margin

For random variables, it is unlikely that the observed value
of the sample is exactly equal the true value of the population
parameter such as the mean or the variance. Hence, it is
more useful to have an interval of numbers that contains the
true value. The probability of the true value appearing in the
interval is the confidence level δ we introduced previously. We
define the error margin ε as

ε = q(1−α/2)
σ√
N

(7)

where q(1−α/2) is the quantile for the probability 1−α/2. The
error margin depends on the significant level α and standard
deviation σ of the population.

The error margin is provided together with the confidence
level when the hypothesis test is done. The confidence level
indicates the Type I error, which we establish in advance, of
the statistical hypothesis testing. The error margin provides
the confidence interval that contains the population parameter
we want to estimate. The larger the confidence interval which
incloses the population parameter is, the higher confidence
level we can achieve.

IV. EXPERIMENTAL RESULTS

Jitter is simply the deviation in time between a noisy signal
and an ideal one. It affects the quality of the system especially
for high frequencies. A typical PLL based frequency synthe-
sizer, shown in Figure 2, is widely used in communication
systems as clock generator or clock recovery circuits.One
major source of jitter is the reference clock input. The voltage
controlled oscillator (VCO) within the PLL is another major
source of jitter noise which exhibits random jitter. In this paper,
we focus only on the random jitter associated within the VCO.
The PLL system was implemented in Matlab.

Fig. 2: PLL Frequency Synthesizer with Jitter Sources

A. Jitter Noise in VCO

VCO oscillates with the frequency proportional to the input
voltage signal coming from the lowpass filter. The jitter in
VCO is mainly caused by thermal noise of the circuit. Hence,
it exhibits Gaussian random process [8]. The model of a
VCO with jitter noise is illustrated in Figure 3. In fact, VCO
generates the sine wave by dealing with the frequency. Hence,
the jitter, which is defined as variation in the period, has to be
modeled as a variation in the frequency of the VCO. Assume
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that, the frequency of a periodic signal without jitter is given
by f = 1

T where T is the period of the ideal signal. The jittery
frequency can be represented as

fjitter =
1

T + ΔT
=

1
1
f

+ ΔT
=

f

1 + ΔT · f (8)

with ΔT = Jλ and J is the jitter deviation and λ is a
zero mean unit-variance Gaussian random process. We finally
obtain the formula of VCO with jitter noise as

V COout(t) = Acos(ω0t + φ(t) + φ0) (9)

φ(t) = KV CO

∫ t

0

Filter out(τ)

1 +
Jλ ·KV CO · Filter out(τ)

2π

dτ (10)

)(_ toutFilter )(tVCOout)(t )(t
Integrator ModulatorVCOK

J

Fig. 3: VCO Model with Jitter Noise

B. Statistical Runtime Verification

We apply the proposed methodology to verify the property
of jitter noise in VCO mentioned in the previous section. The
property is expressed as: the period jitter of the given system
is less than a specific value. The specific value comes from
the system specification of phase noise. For example, if the
phase noise is L = −25dBc at the offset frequency 10Hz, the
corresponding period jitter to this phase noise is calculated
as 5.62ns [6]. As a result, the null hypothesis H0 and the
alternative hypothesis H1 of this property can be expressed as

H0 : Jperiod ≤ 5.62ns; (11)

H1 : Jperiod > 5.62ns. (12)

where Jperiod is the period jitter of the VCO output. We esti-
mate Jperiod by observing the information along the simulation
path (0.005s) as a sample. The observed period jitter is denoted
by Jobs. Since a large value would provide the evidence for the
rejection of the null hypothesis H0, an upper tail test scenario
is considered in this case.

The Mont Carlo monitor is implemented using Matlab [10].
The experiments were run on the ULTRA SPARC-IIIi server
(177 MHz CPU, 1GB memory). The experimental results for
several jitter deviation factors J with the confidence level
δ = 0.95 (α = 0.05) are shown in Table I. The simulation
was carried out under the significance level α = 0.05. J varies
from 10−8s to 10−7s. The acceptance of the null hypothesis
H0 indicates that the property is satisfied and the rejection of
H0 indicates that the property is violated and the period jitter in
VCO is larger than the specification. Due to the upper tail test,
the evidence of rejecting H0 is that the observed value Tobs is
greater than the critical value based on the significance level.

When J = 5 × 10−7s, the Monte Carlo monitor announces
the rejection of H0 based on the fact that Tobs is greater
than the critical value (i.e., it falls into the rejection region).
The experiment was performed with the Monte Carlo trials
M = 1000. The last column lists the error margins (ε) for the
confidence interval of 95% when J varies. Each error margin
forms a confidence interval with the observed value Jobs for
Jperiod. For example, when J = 5×10−7s, the probability that
the true value of the period jitter of the whole simulation path
presents within the interval (90.4403, 92.5857)ns is 95%. The
interval falls into the rejection region which indicates that we
have the confidence level of 95% to reject H0 in this case. The
error margin ε is calculated using Equation 7. It is noted from

TABLE I: Statistical Runtime Verification with Different J

J(s) C.V. Tobs Jobs (ns) H0 α ε (ns)

1 × 10−8 1.5069 -3.8455 3.4609 Accept 0.05 1.0710
5 × 10−8 1.5896 -1.7013 4.6667 Accept 0.05 1.0589
1 × 10−7 1.6597 0.5900 5.9552 Accept 0.05 1.0711
5 × 10−7 1.5442 152.73 91.513 Reject 0.05 1.0727

Table I that when J increases from 1 × 10−7s to 5 × 10−7s,
the Monte Carlo monitor experiences a procedure that the
decision changes from acceptance to rejection. The Table II
shows the verification results influenced by the variation of
J and α. J increases by a small step from 1 × 10−7s to
1.4× 10−7s. The decision tends to change from acceptance to
rejection. However, for certain selection of J , if we change the
significance level α, the decision can be different. For example,
in the case of J = 1.2×10−7s, we accept H0 when α is 0.05;
while we have to reject H0 when α is 0.1. Figures 4 (a) and (b)
show the observed value Tobs (small triangle) and the rejection
region (shaded area) in the case that J = 1.2×10−7s and α is
0.05 and 0.1, respectively. In Figure 4 (a), the observed value
is located outside the rejection region. In Figure 4 (b), the
rejection region is enlarged and includes the observed value
Tobs. It can be explained using the critical value approach:
the fact that reducing the confidence level δ, or increasing
the significance level α, makes the critical value smaller. As
a result, the rejection region is enlarged accordingly. If the
observed value happens to fall within the enlarged rejection
region, the null hypothesis is rejected. Similar situation occurs
when J = 1.3× 10−7s except that when the confidence level
increases from 95% to 99% (α from 0.05 to 0.01), the Monte
Carlo monitor accepts H0 instead of rejecting it. This situation
is shown in Figures 4 (c) and (d). In addition, we notice that
the error margin ε increases as the confidence level decreases
and vice versa. The reason is that in order to achieve higher
confidence level, the interval is supposed to be larger to allow
the estimated value to be included there. In other words, the
probability that the estimated value falls into the narrower
interval is smaller than that for the wider one.

C. Discussion

The hypothesis test results can be different for different
confidence levels when the observed value is approaching the
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TABLE II: Statistical Runtime Verification with Different J
and α

J(s) C.V. Tobs Jobs (ns) H0 α ε (ns)

1 × 10−7 1.6597 0.5900 5.9552 Accept 0.05 1.0711
1.1 × 10−7 1.6383 0.9244 6.1432 Accept 0.05 1.0730
1.2 × 10−7 1.6571 1.5768 6.5267 Accept 0.05 1.0953
1.2 × 10−7 1.1920 1.5768 6.5267 Reject 0.1 0.9052
1.3 × 10−7 1.5874 1.9480 6.8476 Reject 0.05 1.1482
1.3 × 10−7 2.4287 1.9480 6.8476 Accept 0.01 1.3280
1.4 × 10−7 1.6803 2.8203 7.2094 Reject 0.05 1.1057
1.4 × 10−7 1.3506 2.8203 7.2094 Reject 0.01 1.4374
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Fig. 4: Effects of Confidence Level Selection

critical value. The accuracy would be affected if the confidence
level is too high or too low. On the other hand, the confidence
level influences the error margin. Higher confidence level
would increase the error margin and degrade the reliability;
lower confidence level on the other hand would increase the
rejection region and cause low accuracy. The reason is that
the interval needs to be enlarged in order to include the
estimated value for higher probability, or higher confidence
level. 95% of confidence level, which compromises the two
situations, is the most commonly used and suitable for most
engineering and science researches [12]. There is a dilemma
in the proposed statistical runtime verification. Once we intend
to increase the confidence level of the test, the accuracy
and reliability are compromised. It is not unusually the case
when statistical methods are applied. In fact, we estimate
the statistical property of the entire population by observing
a sample sequence of it. The confidence level of 100% is
impossible to reach. There are some techniques to provide
more reliable decision with certain confidence level such as to
guarantee the confidence interval within the rejection region
or non-rejection region.

V. CONCLUSION

We used the combination of hypothesis testing and Monte
Carlo simulation for statistical runtime verification of the AMS
design. The hypothesis test makes the decision between the
null hypothesis and its exclusive alternative hypothesis. Monte
Carlo simulation is used to generate the estimate random model
in the case that the distribution of the population is not known.
This makes the hypothesis robust to most stochastic processes.
We present random jitter analysis using the proposed statistical
runtime verification method. The effects of the confidence
level selection are illustrated and discussed. Higher confidence
level increases the reliability and enlarges error margin for the
interval. The conclusion is that the situation is inevitable and
the choice of the confidence level has to be made according
to the system specification. The proposed statistical runtime
verification method works independently from the design flow.
Thus, it can be inserted to the design flow for individual
verification point or carried out outside the design flow.

We believe our attempt to statistical runtime verification to
the AMS design was successful. However, the approach would
be extended to online fashion without losing any accuracy
and reliability in terms of confidence level and error margin.
The benefits of online statistical monitoring would be: (1)
interactively increase the simulation trace according to the
current observed information in order to guarantee the accuracy
of the results ; (2) interactively change the input in order to
improve the coverage especially for the noise analysis.
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