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Abstract

In this paper, we present a formal hardware verification
framework linking ASM with MDG. ASM (Abstract State
Machine) is a state based language for describing transi-
tion systems. MDG (Multiway Decision Graphs) provides
symbolic representation of transition systems with support
of abstract sorts and functions. We implemented a transfor-
mation tool that automatically generates MDG models from
ASM specifications, then formal verification techniques pro-
vided by the MDG tool, such as model checking or equiv-
alence checking, can be applied on the generated models.
We support this work with a case study of an Island Tun-
nel Controller, which behavior and structure were specified
in ASM then using our ASM-MDG tool successfully verified
within the MDG tool.

1 Introduction

There has been a recent surge of interest in formal veri-
fication and tool support recently, this is because of the in-
creasing complexity of digital hardware systems, and as a
result, it is becoming impossible to simulate large designs
adequately.

ASM (Abstract State Machines) [10] is a formal spec-
ification method for software and hardware systems that
has become successful for specifying and verifying com-
plex systems [4]. It provides powerful means for abstrac-
tion and uninterpreted function symbols in order to fit larger
models into the validation and verification process, which
are not available in other hardware modeling languages like
VHDL and Verilog, in addition, ASM is not limited to the
hardware domain, but also includes software modeling, or
mixture of both. An ASM model describes the state space
of the system by means of universes or functions, and the
state transitions by means of transition rules. ASM is used
as a modeling language in a variety of domains as it has
been used both in academic and industry contexts [4, 11].

The wide group of ASM users shows that there is inter-
est in the language and, consequently, there is an interest
in tool support. ASM model transition systems in a sim-
ple and uniform fashion and give these transition systems
an operational semantics. Many verification tools that are
available are based on transition systems. A transformation
from ASM into these tools’ languages can be done without
losing properties of the original model [18].

MDGs (Multiway Decision Graphs) [6] are decision dia-
grams based on abstract representation of data and are used
for modeling hardware systems in first place. The MDG
tool provides equivalence checking and model checking ap-
plications based on MDG. The given modeling language is
the hardware description language MDG-HDL [22]. The
MDG tool can support verification of larger systems as
shown by different case studies [2, 5, 17, 21, 23]. How-
ever, the main problem of verification with the MDG tool,
is the lack of support by any high level language for specifi-
cation or a standard hardware description languages such as
VHDL or Verilog, instead MDG-HDL is used, which con-
tains no support for advanced modeling features like modu-
larity and hierarchy.

In this paper, we introduce a formal hardware verifica-
tion framework linking ASM with MDG as shown in Fig-
ure 1. We chose to interface ASM with the MDG tool for
three reasons: first, both notions, ASM and MDGs, are
closely related to each other since they are both based on a
subset of many-sorted first order logic and the abstract rep-
resentation of data. They also both support uninterpreted
functions which is not available in many hardware model-
ing languages. In fact the transformation is easier and more
concise than the treatment of the syntax of another input
language would be. Second, MDGs as data structure for
representing transition systems provide a powerful means
for abstraction in order to fit large models into the model
checking process. Finally, the need to provide the MDG
tool with a high-level modeling language, namely ASM,
would allow MDG users to model a wide range of appli-
cations in a more elegant and succinct manner.
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Figure 1. ASM-MDG verification procedure

This work is a major extension of initial ideas presented
in [8], where a tool interface between ASM and MDG was
proposed through the usage of an intermediate specifica-
tion language, ASM-IL [18], which is a flat architectural
model. In fact, experiments have shown that the generated
MDG-HDL code for structural models (design implemen-
tations) cannot even be compiled by the MDG tool for a
medium range circuit due to its large size. To overcome
this problem, we propose in this paper a totally different
transformation approach based on syntactic analysis and di-
rect mapping of design structures. Moreover, we propose
a complete framework, which enables the verification of
translated ASM models in the MDG tool by extracting and
generating required data structures and files for the verifi-
cation procedure. We illustrate the proposed approach and
tool interface through a comprehensive case study of an Is-
land Tunnel Controller.

The work introduced in [18] about interfacing ASM and
MDG is closely related to our work, however the purpose
of that work was to represent ASM models using the MDG
data structures. Doing so, will not enable us to use the
MDG tool as a black–box tool. In other words, the work
there provided an interface to the MDG internal data struc-
tures, rather than to the MDG tool [18]. It also provided
an interface for ASM models with the SMV model checker
[14], however, the MDG tool provides a useful means for
representing abstract models containing uninterpreted func-
tions, where SMV supports neither abstract data types nor
uninterpreted functions. This allows model checking on an
abstract level at which the state explosion problem can in
some cases be avoided.

Other related work in the open literature about verifica-

tion of ASM models include the work of Spielmann [15],
who investigated the problem of verifying a class of re-
stricted abstract state machine programs (called nullary pro-
grams) automatically. In the work on real-time systems by
Beauquier and Slissenko [3], ASMs are represented by an
extension of the theory of real addition and then the verifica-
tion problem is discussed. These results are complemented
by our work since the MDG tool facilitates the handling of
functions over abstract domains and ranges. From a more
general perspective, the work described by Shankar [16]
and Katz and Grumberg [12] are also related in that they
provide a very general tool framework comprising a general
intermediate language which allows one to interface a high-
level modeling language with a variety of tools. In [13],
Kort et al. describe a hybrid formal hardware verification
tool linking MDG and the HOL theorem prover obtaining
the advantages of both verification paradigms.

2 Abstract State Machines

Abstract State Machines (ASM) [10, 11] is a specifica-
tion method for software and hardware modeling. It is effi-
cient for modeling a wide range of systems and algorithms
as the number of case studies demonstrates [11]. The sys-
tem is modeled by a set of states and transition rules.

States are given as many sorted first-order structures, and
are usually described in terms of functions. A structure is
given with respect to a signature. A signature is a finite col-
lection of function names, each of a fixed arity. The given
structure fixes the syntax by naming sorts and functions, and
provides carrier sets and a suitable symbol interpretation on
the carrier sets, which assigns a meaning to the signature.
So a state can be defined as an algebra for a given signature
with universes (domains or carrier sets) and an interpreta-
tion for each function symbol. States are usually described
in terms of functions. A location of a state is a pair of a
dynamic function symbol and a tuple of elements in the do-
main of the function. For changing values of locations the
notion of an update is used. An update of state is a pair of
location and value. To fire an update at the state, the update
value is set to the new value of the location and the dynamic
function is redefined to map the location into the value. This
redefinition causes the state transition. The resulting state is
a successor state of the current state with respect to the up-
date. All other locations in the next state are unaffected and
keep their value as in the current state.

Transition rules define the changes over time of the states
of ASMs. While terms denote values, transition rules de-
note update sets, and are used to define the dynamic behav-
ior of an ASM. ASM runs starting in a given initial state
are determined by a closed transition rule declared to be the
program. Each next state is obtained by firing the update
sets at the current state. Basic transition rules are skip, up-
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date, block, and conditional rules.
The notion of ASM includes static functions, dynamic

functions and external functions. Static functions have a
fixed interpretation in each computation state: that is, static
functions never change during a run. They represent prim-
itive operations of the system, such as operations of ab-
stract data types (in software specifications) or combina-
tional logic blocks (in hardware specifications). Dynamic
functions which interpretation can be changed by the tran-
sition occurring in a given computation step, that is, dy-
namic functions change during a run as a result of the spec-
ified system’s behavior. They represent the internal state
of the system. External functions which interpretation is
determined in each state by the environment. Changes in
external functions which take place during a run are not
controlled by the system, rather they reflect environmental
changes which are considered uncontrollable for the system
[18].

The ASM Specification Language (ASM-SL) [7] is the
language used for specifying ASM models. In case of a
hardware model we can have behavioral (specification) as
well as a structural description (implementation) for the
same system. A behavioral description is a higher-level
model of the system, we can use if-then-else rules and dy-
namic functions to describe the system behavior. On the
other hand, a structural description is a lower-level model
in which we use static functions to define our primitives,
such as operations on abstract data types or combinatorial
logic blocks. From these primitives we build a hierarchical
or modular structure of the system.

In order to exploit the support of abstract data types
provided by MDGs, a syntactic feature to label any sort
as being an abstract sort was introduced [18]. Functions
over abstract sorts do not have a fixed interpretation. They
generally substitute infinite sorts, and functions over them,
since these cannot be exhaustively explored. They allow for
any interpretation that matches their signature. Abstracting
from sorts is a means of lifting a “concrete” ASM model
into an “abstract” ASM model whose instances comprise
concrete models for all possible interpretations of the ab-
stract sorts and functions.

3 Multiway Decision Graphs

MDG [6] is a relatively new class of decision dia-
grams which subsumes the traditional ROBDDs while al-
lowing abstract data sorts and uninterpreted function sym-
bols. MDGs are based on a subset of many-sorted first or-
der logic, with a distinction between abstract and concrete
sorts (including the Boolean sort). Concrete sorts have enu-
meration while abstract sorts do not. The enumeration of a
concrete sort � is a set of distinct constants of sort �. The
constants occurring in the enumeration are referred to as in-

dividual constants, and other constants as generic constants
and could be viewed as 0-ary function symbols. The dis-
tinction between abstract and concrete sorts leads to a dis-
tinction between three kinds of function symbols. Let f be
a function symbol of type �� � �� � � � � � �� � ����.
If ���� is an abstract sort, then f is an abstract function
symbol. If all the �� � � � �� are concrete, then f is a con-
crete function symbol. If ���� is concrete while at least
one of the �� � � � �� is abstract, then f is referred to as a
cross-operator. Concrete function symbols must have ex-
plicit definition; they can be eliminated and do not appear
in MDG. Abstract function symbols and cross-operators are
uninterpreted.

An MDG is a finite, directed acyclic graph (DAG). An
internal node of an MDG can be a variable of concrete sort
with its edge labels being the individual constants in the
enumeration of the sort; or it can be a variable of abstract
sort and its edges are labeled by abstract terms of the same
sort; or it can be a cross–term (whose function symbol is a
cross-operator). An MDG may only have one leaf node de-
noted as T, which means all paths in an MDG are true for-
mulae. Thus, MDGs essentially represent relations rather
than functions. MDGs can also represent sets of states.
In MDG, a data value can be represented by a single vari-
able of abstract type rather than by concrete (e.g., 32 bits)
boolean variables. Variables of concrete sorts are used for
representing control signals. Using MDGs, a data operation
is represented by an uninterpreted function symbol. As a
special case of uninterpreted functions, cross-operators are
useful for modeling feedback from the datapath to the con-
trol circuitry.

Using abstract sorts and uninterpreted functions reduces
the size of the model represented by the MDG, and thus
makes reachability analysis and equivalence checking feasi-
ble for lager systems. It allows the user to model on a higher
level of abstraction and to hide design details of the lower
level. In terms of hardware systems, for instance, the user
can model at the register transfer level (RTL) rather than the
logic gate level. MDGs hence allow a direct representation
of the high level descriptions without additional encoding
into Booleans (which is necessary when using ROBDDs).

The MDG tool accepts hardware description in a Prolog-
style called MDG-HDL, which allows the use of abstract
variables for representing data signals. MDG-HDL sup-
ports structural descriptions, behavioral descriptions, or a
mixture of both. Often models on both levels of abstraction
are given and shown to have equivalent behavior (e.g., by
means of sequential equivalence checking).

As part of the MDG software package, the user is pro-
vided with a large set of pre-defined modules such as logic
gates, multiplexers, registers, bus drivers, black box com-
ponents, etc. Moreover, a special structure is defined called
tables, which can be used to describe functional blocks. A
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table is similar to truth table, but allows first-order terms in
the rows.

MDG tool supports model checking, equivalence check-
ing and invariant checking. Model checking is an algorithm
that can be used to determine the validity of formulas (prop-
erties) written in some temporal logic with respect to a be-
havioral model of a system. Equivalence checking is used
to prove functional equivalence of two design representa-
tions modeled at different levels of abstraction. Equivalence
checking can be divided into two categories: combinational
equivalence checking and sequential equivalence checking.
In combinational equivalence checking, the functions of
the two circuits to be compared are converted into canon-
ical representations of Boolean functions, typically Binary
Decision Diagrams (BDDs) or their derivatives, which are
then structurally compared. Sequential equivalence check-
ing only considers the behavior of the two designs while
ignoring their implementation details. Invariant checking
is used to show that a class of CTL formulas is invariant,
i.e., formulas of the form AG�, where � is propositional
formula. The semantics of this kind of formulas is that �
is true in all reachable states. The properties in MDG are
represented in a universally quantified first-order branching
time temporal logic, called ���� [20], which is a CTL*
like language where all formulas in ���� are path formu-
las. When any of the verification procedures fails, a counter-
example is generated. Figure 2 summarizes the MDG tool
applications.

YES/NO (Counter-example)

Algebraic
Specification

Property
Specification

Variable
Order

MDG Tool

Model Checking
Equivalence Checking

Invariant Checking

Structural
Model

Behavioral
Model

Figure 2. MDG verification tool

The MDG tool has some significant practical limitations:
For instance, due to the non-interpretation of data opera-
tors, the reachability analysis of abstract states may not ter-
minate [1]. Another practical drawback of the MDG tool
with respect to an industrial setting is that they do not ac-
cept VHDL or Verilog HDL as input language.

4 ASM-MDG Tool

The interface was motivated by the fact that ASM as a
modeling language is very close to MDG, specially when it

is used to model hardware systems, since they both provide
powerful means for abstraction and uninterpreted function
symbols in order to fit larger models into the validation and
verification process. ASM uses the notion of many-sorted
first-order structures to describe states of a system and adds
transition rules for modeling the system behavior during a
run. The MDG approach uses so called “Abstract State Ma-
chines” too in order to identify the system that is to be ana-
lyzed. In ASM, we treat specific sorts as abstract sorts and
thus every function that is applied to parameters of these
sorts is either a cross–operator or an abstract function and
has to be left uninterpreted. MDG is able to handle these
abstract sorts, cross–operators, and uninterpreted functions
since they can be part of the MDG graph structure as well
as the MDG-HDL syntax [5]. In a previous work in [8], we
introduced an implementation for the ASM-MDG interface
to generate MDG-HDL components from ASM models.

The interface works in two directions: generates behav-
ioral and structural MDG-HDL models. We failed to in-
put generated MDG-HDL structural models into our MDG
tool for large designs since they contained a huge number
of components beyond the capacity of the tool. This is
because we built our interface to the MDG tool based on
ASM-IL [18], which is a flattened representation of ASM
models. The disadvantage of ASM-IL is the fact that it
does not preserve the structure of the original ASM model
because it provides no means for modular or hierarchical
descriptions. When an ASM model is translated into the
ASM-IL rules, all structured functions are flattened into the
primitive ones. These rules are used to build the MDG-
HDL structural model, which is a set of components inter-
connected by internal signals. Since MDG-HDL supports
neither modularity nor hierarchy, the resulting MDG-HDL
structural model will be very large as only the predefined
MDG-HDL components are used. A large number of com-
ponents results also in a large number of variables which
makes it very hard to generate a good variable order. The
work we present here solves the above problems by intro-
ducing a direct interface from ASM to MDG (i.e, without
going through the ASM-IL).

The proposed ASM-MDG tool consists of two comple-
mentary parts: the first part generates MDG-HDL struc-
tural models from ASM specifications, while the second
part generates MDG-HDL behavioral models. So we de-
velop two ASM models which are separately transformed
into the corresponding MDG-HDL models: ASM behav-
ioral model and an ASM structural model. One models the
behavior in terms of transition rules, the other models the
structure of the design in terms of static functions.
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4.1 Transformation of Structural Models

Figure 3 shows the proposed ASM-MDG direct inter-
face for structural designs. In the first part, ASM universes
including all type declarations, ASM functions including
static, dynamic and external functions, and transition rules
that describe the structure of the model are collected and
then used to construct design components, variables, func-
tions and sorts that represent the design. Finally, MDG-
HDL models are produced based on the information col-
lected in the previous step. Algebraic specifications are
produced based on the generic constants, concrete sorts, ab-
stract sorts, and uninterpreted functions. Variable ordering
in turn is generated according to the relationship between
variables and functions in the design such that the order
obeys the restrictions imposed by the MDG tool. It includes
all variables and internal signals used in the model.

Generic
Constants

State
Variables

Input
Variables

Design
Componants

Uninterpreted
Functions

Concrete
Sorts

Abstract
Sorts

Predefined
Componants

ASM
Domains Functions

ASM

Function
Static External

Function

Transition
Rules

Generator

Parser

Dynamic
Function

(ASM-SL)
Structural Model

Analyzer

(MDG-HDL)
Structural Model

Order
Variable

Spec.
Algebraic

Figure 3. ASM-MDG interface for structural
models

The MDG-HDL structural model is a circuit description
given as a netlist of components interconnected with sig-
nals. This is generated by a one-to-one mapping from an
ASM model of static functions to MDG-HDL library of

f2

f3

fn

Reg var

var := ( f2(...) , f3f1 ( f31(...), a,b), ,... fn(...) )
(a)

(c)

(b)

b
a

f1

f31

component(

component(
component(
component(
component(

component(
reg(S1, var ))

((S11, S12, ..., S1n), S1))f1
f2((S21, S22, ..., S2k),S11))
f3((S31, a, b), S2k))
f31((S311, S312, ..., S31m),S31))

((Sn1, Sn2, ..., Snj), S1n))fn

Figure 4. Mapping structural ASM-SL into
MDG-HDL components

components. The current implementation of the tool sup-
ports only a set of ASM functions that can be mapped di-
rectly to MDG-HDL, in addition to uninterpreted functions
and cross–operators. These functions include: AND, OR,
NOR, NAND, with up to n inputs, inverters and multiplex-
ers. Figure 4 shows a structural modeling of an ASM dy-
namic function (a), its mapping into MDG-HDL compo-
nents (b), and the generated MDG-HDL components (c),
where f1, through fn can be any of the library functions
above, an uninterpreted function or a cross operator, var is
the state variable, Sjks are internal signals, and finally a and
b are ASM functions (i.e, variables). All functions are de-
clared as �����������������	 �������. This structure is re-
cursively treated until a predefined function is found, which
is mapped into the corresponding MDH-HDL library com-
ponents without exploring its semantical meaning.

4.2 Transformation of Behavioral Models

To treat behavioral ASM-SL specifications, the trans-
formation is done via the general intermediate representa-
tion in ASM-IL. The transformation is shown in Figure 5.
The model is first parsed for syntax check and collection
of ASM universes, functions, and transition rules. Then
an analyzer generates the ASM-IL representation in which
all nested transition rules are flattened and all complex data
structures are unfolded [18]. The behavior of the model is
described as a set of guards and updates for each state vari-
able. The state variable evaluates in the next state to the
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given value if the corresponding guard is satisfied, other-
wise it keeps the same value as in the previous state. Based
on this ASM-IL model, MDG-HDL behavioral description
is generated in terms of tabular representations similar to
truth tables. In addition, a variable order and algebraic spec-
ifications are produced [9].

ASM
Domains Functions

ASM Transition
Rules

ioc
0

, update (guard
00
), ... , update (guard

nn
, update (guard ),

11
)

, update (guard
00
), ... , update (guard, update (guard ),

11
)ioc

1 ii

, update (guard
00
), ... , update (guard, update (guard ),

11
)ioc

k mm

ASM-IL

...

Parser

Generator

Analyzer

(MDG-HDL)
Behavioral Model

Order
Variable

Spec.
Algebraic

Behavioral Model
(ASM-SL)

Figure 5. ASM-MDG interface for behavioral
models

For each location in the ASM model, we generate one
table. The first row of the table contains all variables in
the model and any cross term or function that occurs in the
ASM-IL guarded update expression of that location. The
last element is the location itself, it represents the variable
in the next state. Then we treat the list of (guard, value)
pairs one by one (see Figure 6). An expression with one
variable in the guard is mapped into one row with all other
variables are set to the “don’t care” (“*”) symbol. A con-
junction is mapped into one row with each variable or cross
term assigned its value (val�), or “don’t care” if it does not
occur in the expressions. The result value is assigned to the
last element in the row, which gives the valuation of the lo-
cation. A disjunction is mapped into as many rows as the
number of variables and cross terms in the expression. The
last element of each of these rows contains the value of the
location as shown in Figure 6.

vari vali  )val( (  "=" ,  ) , ,

vali[ *, * , , * , val ]

var1 1val,  ) , var2 val2conj ( ( "=" , , , val )( "=" ,  ) ,...

1val 2val[ , val ], ... , 

var1 1val,  ) , var2 val2 ), ,...( "=" , ( ( "=" , , val )disj

2val
1val

[ *, 
... , 

, *, ... , val ],

[ val ],,  *, * , ... ,

Figure 6. Creating MDG tables from ASM-IL
guarded updates

5 Case Study: Island Tunnel Controller

In this section, we provide a case study application of
our ASM-MDG interface based on the example of an Island
Tunnel Controller [21] in order to illustrate the proposed
ASM-MDG interface. The Island Tunnel Controller (ITC)
is used to control two traffic lights for a tunnel that connects
an island to the mainland. The island allows cars to travel
in one direction only. There can be a maximum number of
cars in the tunnel at one time, also the number of cars on the
island cannot exceed a specific maximum. There are four
tunnel sensors to detect vehicles at both sides of the tunnel
and four output signals to control the traffic lights at both
sides. The ITC is specified using three communicating con-
trollers: Island Light Controller (ILC), Tunnel Controller
(TC) and Main Land Controller (MLC), and two counters:
Tunnel Counter (TCR) and Island Counter (ICR), as shown
in Figure 7. The Tunnel Counter counts the number of cars
inside the tunnel, and the Island Counter counts the number
of cars on the island. Initially, both lights are assumed to be
red and both counters are set to zero and no vehicles are in
the tunnel or on the island.

5.1 ASM Modeling

The maximum number of cars to be on the island at one
time can be taken in ASM as a parameter of an abstract
type that represents any natural number. We can then define
a cross-operator for the operation “tc � maxcar”. This al-
lows modeling the controller for any number of cars, nicely
illustrating the advantage of using abstract types that are
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supported by our framework as we are able to verify this
system for any arbitrary counter size. With this abstraction,
some properties that are related to the counters would not
hold for this model, however, we are interested in the cases
in which the number of cars on the island (or in the tun-
nel) is equal to either zero, or maxcar. All other values can
be abstracted into one value since they would represent the
same state for the controller. We choose two blocks; the
MLC and ILC as parts of the design to be modeled in ASM
and verified using the MDG tool. For each, we developed a
behavioral model (specification) and a structural model (im-
plementation). MLC is described in details below. Since the
ILC is similar, we just show the models for the MLC.

5.1.1 Behavioral Modeling in ASM

Figure 8 shows the state transition diagram for the MLC,
where “&” means logical AND, “|” means logical OR, and
the bar above the variable means complement. It is assumed
to be initially in the RED state, where IRL is set to 1 while
in this state.

MX / MRL = T

MU = T
ME / MRL = F

MRL = F
MU = T

ME /

MX / MRL = T 

/ MR = T
MU = T
MRL = T

MRL = F

MRL = F
MU = T

MX / MRL = T 

REDGREEN

ENTERING

MR = ME

incr(TCR)

decr(TCR)

EXITING

& ME) /

& ME) /

(ICR < N & MY) | (ICR == N)

((ICR < N) & MY

/ MRL = T MX & MG

/ MR = ME
MU = T
MRL = F

MX & MG

(ICR < N & MY

Figure 8. ASM transition system for the MLC

The behavior of the MLC is modeled in ASM by defin-
ing a free type that represents the states of the controller.
Increment and decrement operations on the counters are
generally infinite mappings over integers. In our model,
we specify those as abstract static functions, which map
abstract values. These functions are left uninterpreted in
our transformation. Also comparison operation between
tunnel counter and maximum number of cars allowed to
be in the tunnel is modeled with a cross–operator lt. Ex-
ternal functions are used to represent environment opera-
tions for detecting vehicles at entrance or exit in addition
to signals from the TC, e.g., carentering (ME), carexiting
(MX), mainlandgranted (MG), and mainlandrelease (MY)
(see Figure 7).

We describe the controller states using the dynamic func-
tion: mainlandstate which is of the type IS_SORT that has
the enumeration �green, red, exiting, enter-
ing�

All Boolean outputs of this controller are also described
by dynamic functions, e.g., mainlandgreen (MGL), main-
landred (MRL), mainlanduse (MU), and mainlandrequest
(MR). We then describe the behavior of the system using
the if-then-else rules. One example is shown below for the
GREEN state. The behavior of the ILC is modeled by the
same way.

if (mainlandstate = green) then
mainlandred := false
mainlandgreen := true
mainlandrequest := false

5.1.2 Structural Modeling in ASM

We developed a structural model (implementation) for the
MLC model as shown in Figure 9, which was derived from
the specification given above in Figure 8. For the ASM
modeling, we used static functions to define primitive gates
(AND, OR, NAND, etc.). An example is shown below for
an OR gate with two inputs.

static function or2 (in0,in1) ==
if in0 = true or in1 = true

then true
else false

endif

An abstract state variable is used to model the abstract
counter. Black-box representation is used to model the in-
crement (incr) and decrement (decr) functions, while the
comparator “tc�maxcar” is modeled with a black-box rep-
resenting a cross–operator.
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Figure 9. MLC Implementation

5.2 MDG Verification

Using our ASM-MDG tool, we generated the corre-
sponding MDG-HDL models for both behavioral and struc-
tural models for each block, including: circuit description,
algebraic specifications, and variable order 1.

Once the generated MDG-HDL structural and behavioral
models were compiled successfully with the MDG tool, we
applied both sequential equivalence checking and model
checking on the generated models.

To verify that the MLC structural model is equivalent to
its behavioral model, we applied MDG sequential equiv-
alence checking on the generated MDG-HDL models. In
the following, however, we verify, for illustration purposes,
the MLC implementation including one error, which we in-
jected into the model. The assertion of the equivalence of
two models is done by the assertion that the correspond-
ing observable outputs of the two designs are equivalent.
While verifying the faulty design, the equivalence was vio-
lated and the tool generated a counter–example.

The CPU execution time and resource requirements, in-
cluding memory usage and MDG nodes generated, are
given in Table 1 shown below. The experimental results
were conducted on a Sun enterprise server with Solaris 5.7
OS and 6.0 GB memory.

Next, a set of properties were specified in ���� format,
1The full specification models in ASM as well as

the generated MDG-HDL models can be obtained from
http://hvg.ece.concordia.ca/Tools/ASMMDG/ITC/

Table 1. MDG sequential equivalence check-
ing results

CPU Time Memory # of MDG
(Sec) (MB) Nodes

MLC (Original) 0.730 155 955
MLC (Faulty) 1.040 1.41 1180
ILC (Original) 0.580 0.92 668
ILC (Faulty) 0.580 1.00 763

and then MDG model checking was applied to verify that
the generated MDG-HDL models satisfy them all. For
example, a (liveness) property on the MLC states that:

if the mainland is requesting the
controller, then it will be using it
at future time.

This property is formally specified as following, where the
symbols AG and F mean “for all paths, for all states” and
“there exists a state in the future”, respectively:

Property 1:
�������������	
�	� � �� �� �� �����������	 �
�����

Another (safety) property on the MLC states that:

mainland green light and mainland red
light should never be active simultane-
ously

and it is formally specified as following, where & is the
logical AND and ! is the logical NOT:

Property 2:
����������������		� � �� � ����������	� � �����

All properties were verified successfully. Verification re-
sults for a set of properties on the MLC (including the above
two) and on the ILC are given in Table 2.

6 Conclusions

In this paper, we introduced a formal verification frame-
work interfacing ASMs (Abstract State Machines) to the
MDG (Multiway Decision Graphs) tool. This new inter-
face, called “ASM-MDG”, enables ASM users to exploit
the fully automated verification techniques that are pro-
vided by the MDG tool, namely equivalence checking and
model checking. On the other hand, MDG users will be
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Table 2. MDG model checking results
CPU Time Memory # of MDG

Property (Sec) (MB) Nodes
Property 1 (MLC) 0.690 1.29 888
Property 2 (MLC) 0.540 1.75 606
Property 3 (MLC) 0.560 0.83 608
Property 4 (ILC) 0.460 0.86 507
Property 5 (ILC) 0.390 1.60 407
Property 6 (ILC) 0.410 0.29 399

provided by a high-level modeling language, namely ASM,
which as MDG, supports abstract data sorts and uninter-
preted functions. The interface automatically transforms
the ASM specification language, ASM-SL, into the MDG
hardware description language, MDG-HDL. This transfor-
mation is done in two directions. In the first, we translate
ASM-SL behavioral models into an intermediate language,
ASM-IL, and then transform this intermediate model into
the appropriate MDG-HDL behavioral code. In the second,
we translate ASM-SL structural models directly into MDG-
HDL netlist components using syntactic analysis and trans-
formation. Besides the MDG-HDL code, the interface pro-
duces a static variable ordering that satisfies the restrictions
given by the MDG approach, as well as algebraic specifica-
tion necessary for the checking procedures, such as sort and
functions definitions, etc.

The first approach was built upon existing work [8] that
proposes to transform ASM-SL to ASM-IL. Since no struc-
ture from the original ASM model is preserved in this step,
structural information needed to be regained in the second
step that transforms the intermediate language to the differ-
ent parts of the MDG-HDL code is lost.

We have applied the ASM-MDG interface on the Island
Tunnel Controller as a case study. We conducted MDG
model checking and equivalence checking on the gener-
ated MDG-HDL models. We succeeded in verifying sev-
eral properties on the Mainland Light Controller (MLC) and
Island Light Controller (ILC), and also verified that both
MLC and ILC implementations are equivalent to their re-
spective specifications.

Although the case study of the Island Tunnel Controller
is a hardware example and could have also been modeled
directly in MDG-HDL, the benefits of extending the MDG
tool with a general high-level modeling language like ASM
are easy to realize once the user focuses on behavioral hard-
ware problems, with ASM we can model on different lev-
els of abstraction in the same formalism (namely ASM).
Furthermore, the case study nicely demonstrates the ben-
efits of the MDG tool over ordinary ROBDD-based tools,
like SMV: Parameterized models can be checked without
instantiating the parameters. In the case of the Island Tun-

nel Controller, the model could be checked for an arbitrary
number of allowed cars in the tunnel.
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