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Abstract. Protecting information has become very important due to
the safety-critical nature of many computer-based applications. Informa-
tion flow analysis plays a very important role in quantifying information-
related properties under external attacks. Traditionally, information flow
analysis is performed using paper-and-pencil based proofs or computer
simulations but due to their inherent nature, these methods are prone
to errors and thus cannot guarantee accurate analysis. As an accurate
alternative, we propose to conduct the information flow analysis within
the sound core of a higher-order-logic theorem prover. For this purpose,
some of the most commonly used information flow measures, including
Shanon entropy, mutual information, min-entropy, belief min-entropy,
have been formalized. In this paper, we use the Shannon entropy and
mutual information formalizations to formally verify the Data Process-
ing and Jensen’s inequalities. Moreover, we extend the security model for
the case of the partial guess scenario to formalize the gain min-entropy.
These formalizations allow us to reason about the information flow of a
wide range of systems within a theorem prover. For illustration purposes,
we perform a formal comparison between the min-entropy leakage and
the gain leakage.

Keywords: Information flow · Entropy · Gain function · g-Leakage ·
Theorem proving · Higher-order logic

1 Introduction

Information flow analysis mainly consists of using information measures to evalu-
ate the amount of information an attacker could get by observing the low output
of a system or a protocol. Examples of this analysis include the evaluation of
anonymity protocols [27] and security networks [31]. Protecting the confidential-
ity of sensitive information and guaranteeing a perfect level of anonymity are
increasingly being required in numerous fields such as electronic payments [17],
auctioning [32] and voting [7].

Various techniques for analyzing the information flow have been used. The
possibilistic approach [3] consists of using non-deterministic behaviors to model
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the given system. Information flow analysis based on epistemic logic [11] and
process calculi [28] fall into the category of possibilistic analysis. This approach
is limited in terms of distinguishing between systems of varying degrees of pro-
tection [10]. As a solution for this limitation, probabilistic approaches, based on
information and statistics, are considered as a more reliable alternative for com-
puting information flow. In a threat model where the secret should be guessed
in one try, the main objective of the attacker is to maximize the probability
of guessing the right value of the high input (secret), in one try, by betting on
the most probable element. To cater for this particular threat model, Renyi’s
entropy metrics [26], i.e., min-entropy and belief min-entropy are employed [30].
These measures are commonly used to effectively reason about deterministic and
probabilistic systems.

Due to the difficulty of preventing the information leakage completely,
“small” leaks are usually tolerated [19,29] by the above-mentioned information
flow measures. With respect to the partial guess, g-leakage [2] is introduced as
a generalization of the min-entropy model. The main idea of this notion is to
extend the vulnerability in order to take into consideration the so called gain
function g. The gain function models the profit that an attacker gets by using a
certain guess z over the secret x. The gain value ranges from 0, when the guess
has no corresponding secret value, to 1, in the case of an ideal guess. Hence the
vulnerability (g-vulnerability) is redefined as the maximum expected gain over
all possible guesses [2].

Traditionally, the quantitative analysis of information flow has been con-
ducted using paper-and-pencil and computer simulation. The paper-and-pencil
technique cannot cope with complex systems due to the high chances of human
error while dealing with large models. On the other hand, the computer simula-
tion approach cannot be considered accurate due to the use of numeric approx-
imations. In order to overcome those shortcomings, formal methods [12] have
been proposed as a sound technique to enhance accuracy of safety-critical sys-
tems. For instance, in [19], the probabilistic mode checker PRISM has been used
to reason about several information systems, e.g., the Dining Cryptographers
protocol. However, the state-space explosion problem of model checking limits
the scope of its usage in information flow analysis. In contrast, higher-order-logic
theorem proving can be used for the analysis of information flow to overcome
these limitations.

In [8], Coble has formalized the conditional mutual information in the
higher-order-logic theorem prover HOL4 [1] based on the Lebesgue integra-
tion. These fundamentals have been later used to formally analyze the privacy
and the anonymity guarantees and proposed the Dining Cryptographers. How-
ever, Coble’s formalization of Lebesgue integrals can only consider finite-valued
measures, functions and integrals. Considering this fact, Mhamdi et al. [22] gen-
eralized the formalizations of the probability and information theories by intro-
ducing the notions of extended real numbers and formalizing Borel sigma algebra
that covers larger classes of functions in terms of integrability and conver-
gence. The authors further used these fundamentals to formalize the measures
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of entropy, relative entropy and mutual information [9]. In the same context,
information and conditional information leakage degree have been formalized
[23] in HOL4 to assess security and anonymity protocols. Similarly, Hölzl [15,16]
formalized a generic version of the measure, probability and information theories
in Isabelle/HOL. This definition is very similar to Coble’s work. Hölzl used the
measure and the probability theories to define the Kullback-Leibler divergence,
entropy, conditional entropy, mutual information and conditional mutual infor-
mation and verify the properties related to the quantification of the information
represented by a random variable [24].

Most of our work is based on the probability and information theories, for-
malized in Mhamdi’s work [21], due to their completeness and availability in
HOL4. We previously used these fundamentals to develop formal reasoning sup-
port for information flow using min-entropy and belief min-entropy [14], which
we are extending to the gain min-entropy (g-leakage), which considers the model
where the secret is totally guessed based on a partial gain about the secret
using a certain guess. We will also use the formalized information measures in
[23] to conduct the formal verification of the Data Processing [4] and Jensen’s
[18] inequalities which are major properties in information flow analysis. In the
information flow context, the Data Processing Inequality (DPI) states that any
post-processing of data does not increase the information leakage while Jensen’s
Inequality shows a relation between data averaging and data processing.

To the best of our knowledge, these measures have not been formalized before.
We apply them to conduct an information leakage analysis of a threat scenario
to compare min-entropy leakage and g-leakage (based on gain min-entropy) and
since a small/partial leak can be tolerated, we show that the min-entropy leakage
can be arbitrarily greater than the g-leakage.

2 Preliminaries

This section describes the HOL4 environment as well as the formalization of
probability and information theories, which we would be building upon to for-
malize the DPI and Jensen’s Inequality as well as the gain Min-Entropy notions.

2.1 HOL Theorem Prover

The HOL system is an environment for interactive theorem proving in higher
order logic. Higher-order logic is a system of deduction with a precise semantics
and is expressive enough to be used for the specification of almost all classical
mathematics theories. In order to ensure secure theorem proving, the logic in
the HOL system is represented in the strongly-typed functional programming
language ML. An ML abstract data type is used to represent higher-order-logic
theorems and the only way to interact with the theorem prover is by executing
ML procedures that operate on values of these data types.
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Soundness is assured as every new theorem must be verified by applying
the basic axioms and primitive inference rules or any other previously verified
theorems/inference rules. The HOL system has been used to formalize pure
mathematics and verify industrial software and hardware systems.

2.2 Probability and Information Theory

Probability and information theories provide mathematical models to evaluate
the uncertainty of random phenomena. These concepts are commonly used in
different fields of engineering and computer sciences, such as signal process-
ing, data compression and data communication, to quantify the information.
Recently, the probability and information theories have been widely used for
cryptographic and information flow analysis [29]. Some foundational notions of
these formalizations are described below.

Let X and Y denote discrete random variables, with x and y and X and Y
denoting their specific values and set of all possible values, respectively. Similarly,
the probabilities of X and Y being equal to x and y is denoted by p(x) and p(y),
respectively.

– Probability Space: a measure space such that the measure of the state space
is 1.

– Independent Events: Two events X and Y are independent iff p(X ∩ Y ) =
p(X)p(Y ).

– Random Variable: X : Ω → R is a random variable iff X is (F,B(R))
measurable, where Ω is the state space, F denotes the set of events and B is
the Borel sigma algebra of real valued functions.

– Joint Probability: A probabilistic measure where the likelihood of two events
occurring together and at the same point in time is calculated. Joint probability
is the probability of event Y occurring at the same time event X occurs. It is
mathematically expressed as p(X ∩ Y ) or p(X,Y ).

– Conditional Probability: A probabilistic measure where an event X will
occur, given that one or more other events Y have occurred. Mathematically
p(X|Y ) or p(X∩Y )

p(Y ) .

– Expected Value: E[X] of a random variable X is its Lebesgue integral with
respect to the probability measure. The following properties of the expected
value have been verified in HOL4 [22]:
1. E[X + Y ] = E[X] + E[Y ]
2. E[aX] = aE[X]
3. E[a] = a
4. X ≤ Y then E[X] ≤ E[Y ]
5. X and Y are independent then E[XY ] = E[X]E[Y ]

– Variance and Covariance: Variance and covariance have been formalized in
HOL4 using the formalization of expectation. The following properties have
been verified [22]:
1. V ar(X) = E[X2] − E[X]2

2. Cov(X,Y ) = E[XY ] − E[X]E[Y ]
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3. V ar(X) ≥ 0
4. ∀a ∈ R, V ar(aX) = a2V ar(X)
5. V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

The above-mentioned definitions and properties have been utilized to formalize
the foundations of information theory in HOL4 [22]. The widely used information
theoretic measures can be defined as:

– The Shannon Entropy: It measures the uncertainty of a random variable

H(X) = −
∑

x∈X
p(x)log p(x)

– The Conditional Entropy: It measures the amount of uncertainty of X when
Y is known

H(X|Y ) = −
∑

y∈Y
p(y)

∑

x∈X
p(x|y)log p(x|y)

– The Mutual Information: It represents the amount of information that has
been leaked

I(X;Y ) = I(Y ;X) = H(X) − H(X|Y )

– The Relative Entropy or Kullback Leiber Distance: It measures the inaccuracy
or information divergence of assuming that the distribution is q when the true
distribution is p

D(p‖q) =
∑

x∈X
p(x)log

p(x)
q(x)

– The Guessing Entropy: It measures the expected number of tries required to
guess the value of X optimally

G(X) =
∑

1≤i≤n

ip(xi)

– The Rényi Entropy: It is related to the difficulty of guessing the value of X

Hα(X) =
1

1 − α
log (

∑

x∈X
P [X = x]α)

Among the measures listed above, Mhamdi [21] and Coble [8] formalized the
Entropy, Conditional Entropy, Relative Entropy and Mutual Information in
HOL4 and Hölzl [15] formalized similar concepts in Isabelle/HOL.

3 Shannon Based Information Flow

In this section, we will use the most common measures to quantify information
flow, such as Shannon entropy, related entropy and mutual information formal-
ized in [23] to formally verify the Data Processing Inequality as well as Jensen’s
Inequality properties.
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3.1 Data Processing Inequality

According to the Data Processing Inequality (DPI), post-processing cannot
increase information. Quantitatively, considering three random variables X, Y
and Z satisfying the Markov property [5], the DPI states that Z cannot have
more information about X than Y has about X; which is

I(X,Z) ≤ I(X,Y )

Our formalization is based on the Discrete Time Markov Chain formalization
(DTMC) [20], formalized information measures and probability theory [21].

The motivation behind this definition relies on the fact that the three random
variables X, Y and Z satisfy the Markov property and thus

p(x, y, z) = p(x).p(y, z|x) = p(x).p(y|x).p(z|x, y)

Similarly, we can also deduce that

p(z|x, y) = p(z|y)

In order to formally verify the DPI, we first formalized the conditional mutual
information

Definition 1. (Conditional Mutual Information)
For discrete random variables X, Y , and Z, conditional mutual information is
defined as

I(X;Y |Z) =
∑

z∈Z

∑

y∈Y

∑

x∈X

PX,Y,Z(x, y, z) log
Pz(Z).PX,Y,Z(x, y, z)
PX,Z(x, z).PY,Z(y, z)

= H(X,Z) + H(Y,Z) − H(X,Y,Z) − H(Z)
= H(X|Z) − H(X|Y,Z)

Then, using the commutativity of the distribution function which says that
PY,Z((y, z)) = PZ,Y ((z, y)), we get the following equality: I(X;Y,Z) =
I(X;Z, Y ) Therefore, the following result can be deduced:

I(X;Y |Z) + I(X;Z) = I(X;Y,Z) = I(X;Z, Y ) = I(X;Z|Y ) + I(X;Y )

Theorem 1. (Symmetry of Mutual Information Property)

� ∀ b p X Y Z.

(POW (p_space p) = events p) ∧ prob_space p ∧
random_variable X p s1 ∧ random_variable Y p s2 ∧
random_variable Z p s3 ∧ random_variable (λ x.(Z x, Y x)) p s32 ∧
FINITE (p_space p) ∧

(mutual_information b p s1 s2 X Y �= −∞ ∧
mutual_information b p s1 s2 X Y �= +∞ ∧
mutual_information b p s1 s3 X Z �= −∞ ∧
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mutual_information b p s1 s3 X Z �= +∞) ⇒
conditional_mutual_information b p s1 s3 s2 X Z Y +

mutual_information b p s1 s2 X Y =

conditional_mutual_information b p s1 s2 s3 X Y Z +

mutual_information b p s1 s3 X Z

where POW and FINITE refer to the power set operator and finiteness tester in
HOL4 respectively.

The proof of the property above relies on the associativity of the joint dis-
tribution, namely P (X, (Y,Z)) = P (X, (Z, Y )) as well as the symmetry of the
additivity. Now we formally verify our main goal, DPI, as follows

Theorem 2. (Data Processing Inequality: DPI)
For all random variables X, Y and Z satisfying the Markov property, the DPI
states that I(X;Z) ≤ I(X;Y )

which is formalized in HOL as follows:

	 ∀b p X Y Z.(POW (p_space p) = events p) ∧ prob_space p ∧
random_variable X p s1 ∧ random_variable Y p s2 ∧
random_variable Z p s3 ∧
random_variable (λ x.(Y x, Z x)) p s23 ∧
random_variable (λ x.(Z x, Y x)) p s32 ∧
FINITE (p_space p) ∧ mc p X Y Z∧

(mutual_information b p s1 s2 X Y �= −∞ ∧
mutual_information b p s1 s2 X Y �= +∞ ∧
mutual_information b p s1 s3 X Z �= −∞ ∧
mutual_information b p s1 s3 X Z �= +∞) ⇒

mutual_information b p s1 s2 X Y ≥
mutual_information b p s1 s3 X Z

where mc p X Y Z denotes the Markov property and the assertions related to
the mutual information are constraints to avoid the infinite bounds of the infor-
mation leakage.

For proving this theorem, we first need to prove the following two properties:

– ∀X,Y random variables X and Y , the mutual information between X and Y
is non-negative, I(X;Y ) ≥ 0

– if X, Y and Z form a Markov chain, then I(X;Z|Y ) = 0

Applying the above properties to the equality:

I(X;Y |Z) + I(X;Z) = I(X;Z|Y ) + I(X;Y )

as well as the previously verified property which states

I(X;Y,Z) = I(X;Z, Y )

our result can be proved.
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The above result states that any transformation of the output channel Y will
not give more information about the input X than itself. This concept also states
that the information content of a signal cannot be increased via a local physi-
cal operation: post-processing cannot increase information. The main challenges
of proving this result in HOL is to use the formalized notions of probability
and information theories and reason about one of the major applications of the
information theory. By proving the DPI, we show the usefulness of the theoretic
information framework formalized in HOL.

3.2 Jensen’s Inequality

Jensen’s inequality has applications in many fields of applied mathematics and
specifically information theory. For example, it plays a key role in the proof
of the information inequality, 0 ≤ D(p||q). In the following, we prove Jensen’s
inequality in its measure theoretic form as an application for information theory
formalized in HOL. We first formalize in HOL4 the notion of convex functions:

Definition 2. (Convex function)
	 conv_func = ∀ x y z. (x<y ∧ y<z) ⇒

((f(y)-f(x))/(y-x) ≤ (f(z)-f(y))/(z-y))

Now, let Ω be a probability space, μ is a measure funcion on Ω, and g and f be
arbitrary convex functions on the real numbers, respectively. Then according to
Jensen’s inequality:

∫

Ω

f(g(x)) dμ ≥ f(
∫

Ω

g(x) dμ).

The most challenging part of the proof of Jensen’s inequality is to prove the
existence of subderivatives a and b of f , such that for all x, a.x+ b ≤ f(x), where
for x0 =

∫

Ω

g(x) dμ we reach the equality a.x0 + b = f(x0). This follows from the

following two facts:

– According to the Mean value theorem, there exists ν such that if x < ν < ξ,
then: f(x)−f(ξ)

x−ξ = f ′(ν)
– Since f is convex, then its derivative increases, i.e. f ′(ν) ≤ f ′(ξ)

Having a and b, the proof of Jensen’s inequality is straightforward:∫

Ω

f(g(x)) dμ ≥ ∫

Ω

(a.g(x) + b) dμ

≥ a.
∫

Ω

g(x) dμ + b.
∫

Ω

1 dμ

≥ a.x0 + b
≥ f(x0)
= f(

∫

Ω

g(x) dμ)

Since μ is a measure, it holds that μ(Ω) = 1. Therefore
∫

Ω

1 dμ = 1.

Using the monotonicity of sub-derivatives and the existence of a convex func-
tion properties, we formalize Jensen’s inequality for the continuous case:
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Theorem 3. (Jensen’s Inequality)
� ∀f g m. measure_space m ∧ integrable m g ∧ (b = integral m λy.b)∧

(a *(integral m λx.g(x)) + b = f((integral m λx. g(x)))) ∧
(∀x.a * x + b ≤ f x) ⇒

f (integral m λx.g(x)) ≤ integral m λx.(f(g(x)))

The result verified above is a relation between the integral of a convex function
and the value of a convex function of an integral. In the information theoretic
context, Jensen’s inequality relates the averaging of data to the transformation
of data. This result is then formally verified in HOL4.

4 Partial Guess, Gain Function and g-Leakage

In this section, we analyze the threat scenarios where the secret is totally guessed
in one try by using min-entropy measures [14]. This model is extended with the
presence of the attacker’s belief leading to the concept of the belief min-entropy
[14]. Since the guess of the sensitive information can be partial, we formalize the
gain function and the gain min-entropy. We first start by the formalization of
the gain function and the related leakage properties. Compared to min-entropy
and belief min-entropy measures, where the secret is assumed to be guessed in
one try, the new model assumes that the secret can be partially guessed. We
then introduce the notion of gain functions, which range from 0 to 1 and operate
over a guess z and a secret x. Then g(z, x) models the gain that an attacker gets
about the secret x using the guess z.

Definition 3. (Gain Function)
Given a set X of possible secrets and a finite and non-empty set of guesses Z, a
gain function is defined as: g : Z × X → [0, 1]

For the rest of the paper, Hg, Vg and ILg will respectively denote gain min
entropy (also called as g-min-entropy), (prior/posterior)gain vulnerabilty (also
called g-vulnerability) and gain information leakage (also called g-leakage).

Based on the gain function, we define the prior vulnerability:

Definition 4. (Prior g-Vulnerability)
Given a gain function g, a random variable X modeling the a-priori behavior,
the prior g-vulnerability is

Vg(X) = max
z∈Z

∑

x∈X
p(X = x).g(z, x)

which is formalized in HOL4 as follows

	 ∀ p X g Z. prior_g_vulnerability = extreal_max_set

(IMAGE (λz.
∑

x∈X
distribution p X {x}.g(z,x))

(IMAGE X (p_space p)) Z)



292 G. Helali et al.

where IMAGE f s in HOL denotes the image of the set s by the function f
which in our case is X(Ω) and extreal max set (IMAGE f s) refers to the
max of the set IMAGE f s which in our case is the maximum probability over
the distributions set.

Compared to the previous definition of vulnerability, the above definition
shows that the gain is weighted by the probability of the secret itself, which
means that the adversary A tries to make a guess maximizing the gain about
every x from X .

Definition 5. (Posterior g-Vulnerability)
Given a gain function g, a high input behavior modeled by the random variable
X and a low output modeled by Y , the posterior g-vulnerability is

Vg(X|Y ) =
∑

y∈Y
max
z∈Z

∑

x∈X
p(X = x).p(Y = y|X = x).g(z, x)

=
∑

y∈Y
max
z∈Z

∑

x∈X
p(X = x, Y = y).g(z, x)

This definition can be formalized in HOL4 as

	 ∀p X Y g Z. posterior_g_vulnerability =∑

y∈Y
extreal_max_set(IMAGE (λz.

∑

x∈X
distribution p Y {y}.

conditional_distribution p X Y ({x},{y}).g(z,x))
(IMAGE X (p_space p)))

Now we define the uncertainty measures; g-min-entropy (initial uncertainty),
and conditional g-min-entropy, (remaining uncertainty) which will be used to
define the g-leakage.

Definition 6. (g-Min-Entropy, g-Conditional-Min-Entropy and g-Leakage)
	 g_min_entropy p X g Z = -log(prior_g_vulnerability p X g Z)
	 g_conditional_min_entropy p X Y g Z =

-log(posterior_g_vulnerability p X Y g Z)
	 g_information_leakage p X Y g Z =

g_min_entropy p X g Z - g_conditional_min_entropy p X Y g Z

We next consider a model where the attacker can get partial knowledge about
the secret using a certain guess. The gain function models the benefit that the
attacker gets about the secret. We then verify that the prior g-vulnerability
cannot exceed the posterior g-vulnerability. Thus the g-leakage is positive:

Theorem 4. (Positive g-Leakage)

	 ∀ p X Y g Z. prob_space p ∧ FINITE (p_spac p) ∧ FINITE Z ∧
Z �= ∅ ∧ p_space p �= ∅ ∧ ∀x. x ∈ p_space p ⇒
{x} ∈ events p ∧ events p = POW(p_space p) ∧
∀x z. 0 ≤ g(z, x) ∧ g(z, x) ≤ 1⇒
0≤ g_information_leakage p X Y g Z
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Proof. First, note that the gain information leakage (g-leakage) is ILg =
Hg(X) − Hg(X|Y ) = log(Vg(X|Y )) − log(Vg(X)). After simplification, our goal
will be reduced to Vg(X) ≤ Vg(X|Y ). Then

Vg(X) = max
z

∑

x

∑

y

P (X = x, Y = y).g(z, x)

≤
∑

y

max
z

∑

x

P (X = x, Y = y).g(z, x)

≤ Vg(X|Y )

Next, we will study the case when the g-leakage is equal to zero. We will eval-
uate the condition under which this result occurs. Before stating this property
formally we need first to define the notion of the expected gain of a guess z.
With respect to the same configuration, the prior and posterior expected gains
are defined as:

Definition 7. (Prior Expected Gain)

Eg(z) =
∑

x

P (X = x).g(z, x)

which is formalized in HOL4 as follows

	 ∀p X g z. prior_expected_gain p X g Z =∑

x∈X(Ω)

distribution p X {x}.g(z,x)

Definition 8. (Posterior Expected Gain)
Given an output y the expected gain of a guess z is

Eg(z, y) =
∑

x

P (X = x)P (Y = y | X = x).g(z, x)

The HOL4 formalization of this definition is

	 ∀p X Y y g z. posterior_expected_gain p X Y y g z =∑

x∈X(Ω)

distribution p X {x}.

conditional_distribution p Y X ({y},{x}).g(z,x)

In the context of vulnerabilities and information flow, these definitions satisfy
the following properties:

Theorem 5. (Expected Gain and Vulnerabilities)

– Vg(X) = max
z

Eg(z)

– Vg(X | Y) =
∑

y

max
z

Eg(z,y)

– Eg(z) =
∑

y

Eg(z, y)
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We prove these results in the HOL4 theorem prover as follows

	 ∀p X g Z. prior g vulnerability p X g Z =
extreal max set (IMAGE (λz. prior expected gain p X g z) Z)

	 ∀p X Y g Z. FINITE Ω ∧ prob space p ∧
(∀x. x ∈ Ω ⇒ {x} ∈ events p) ⇒

posterior g vulnerability p X Y g Z =
∑

y∈Y (Ω)

extreal max set

(IMAGE (λz. posterior expected gain p X Y y g z) Z)

	 ∀p X Y y g z. prob space p ∧ FINITE Ω ∧ Ω �= ∅ ∧
(∀x. x∈ Ω ⇒{x} ∈ events p) ∧
(∀x. x∈(X(Ω)) ⇒ 0≤g(z,x) ∧ g(z,x)≤1) ⇒

prior expected gain p X g z =∑

y∈Y (Ω)

posterior expected gain p X Y y g z

We will later use these properties in order to verify the zero valued g-leakage
result. We prove the fact that the g-leakage of 0 is related to the expected gain
of all outputs, i.e., this statement occurs if there exists a guess z′ maximizing
the expected gain for all outputs y.

Theorem 6. (Zero Gain Information Leakage)
Given a random variable X modeling the initial uncertainty, a random variable
Y modeling the remaining uncertainty and a gain function g, the g-leakage is 0
if there exists a guess z′ ∈ Z such that: ∀z y. Eg(z′, y) ≥ Eg(z, y)

In the HOL4 environment, this property is formalized as follows:

	 ∀p X Y y g Z. (prob space p ∧ FINITE (p space p) ∧
((p space p) �= ∅) ∧
(∀x. x ∈ p space p ⇒ {x} ∈ events p) ∧ (FINITE Z) ∧
(events p = POW (p space p)) ∧ (Z �= ∅) ∧
(∀x z. (0 ≤ (g (z,x))) ∧ ((g (z, x)) ≤ 1)) ∧
(0 < prior g vulnerability p X g Z)) ⇒
((∃z’. (z’∈Z) ∧ (∀z y. (posterior expected gain p X Y y g z) ≤
(posterior expected gain p X Y y g z’))) ⇒

(g information leakage p X Y g Z = 0))

Proof. If such a guess exists, then we first prove that it corresponds to the
maximum prior expected gain ∀z. Eg(z′) ≥ Eg(z). Then, using the previous
results, it follows that the posterior g-vulnerability is equal to the prior expected
gain of the best guess

Vg(X,Y ) =
∑

y

Eg(z, y) =
∑

y

max
z

Eg(z, y) =
∑

y

Eg(z′, y) = Eg(z′)
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However, since Eg(z′) is the prior g-vulnerability Vg(X), from Theorem 5, so it
follows from the definition of the g-leakage that this measure is 0.

Based on the soundness of theorem proving, the above-mentioned formally
verified theorems are guaranteed to be accurate and contain all the required
assumptions. Moreover, these results can be built upon to reason about infor-
mation flow analysis of various applications within the sound core of a theorem
prover.

5 Min-Entropy Leakage and g-Leakage

In this section, we illustrate the practical usefulness of the theoretical foundations
developed in this paper so far. We will present a threat scenario in which we
conduct a comparison between the min-entropy leakage and the g-leakage and
show that the g-leakage can be smaller than min-entropy leakage. Consider the
channel (Matrix of transitional probabilities), described in Table 2, where xi are
the high inputs and yi are the outputs modelled, respectively, with the random
variables X and Y . We assume for this example that inputs and outputs are
uniformly distributed.

Table 1. Transition channel

y1 y2

x1
1
2

1
2

x2 1 0

x3 0 1

Table 2. Gain function

gd x1 x2 x3

z1 1 0 0

z2 0 1 0.98

z3 0 0.98 1

For our particular example, we consider the gain function called the distance
gain function between the secrets, assuming that X = Z, gd(z, x) = 1 − d(z, x)
where d(z, x) is the normalized distance between z and x. Using this configura-
tion, we prove that the min-entropy leakage is equal to log 2 = 1 and g-leakage
is equal to log 2

1.98 . The formalization of this theorem in HOL4 is

Theorem 7. (Comparing Min-Entropy Leakage and g-Leakage)

	 ∀p X Y Z g. (prob space p) ∧ (FINITE (p space p)) ∧
(∀x. (x ∈ p space p) ⇒ {x} ∈ events p) ∧
((IMAGE X (p space p)) = {0;1;2}) ∧
((IMAGE Y (p space p)) = {0;1}) ∧ (Z = {0;1;2}) ∧
(∀x. x ∈ (IMAGE X (p space p)) ⇒ distribution p X {x} =

(1/|IMAGE X (p space p)|) ∧
(∀y. y ∈ (IMAGE Y (p space p)) ⇒
distribution p Y {y} = (1/|IMAGE Y (p space p)|) ∧
(conditional distribution p Y X ({0},{0}) = (1/2)) ∧
(conditional distribution p Y X ({0},{1}) = 1) ∧
(conditional distribution p Y X ({0},{2}) = 0) ∧
(conditional distribution p Y X ({1},{0}) = (1/2)) ∧
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(conditional distribution p Y X ({1},{1}) = 0) ∧
(conditional distribution p Y X ({1},{2}) = 1) ∧
(g(0,0) = 1) ∧ (g(0,1) = 0) ∧ (g(0,2) = 0) ∧ (g(1,0) = 0) ∧
(g(1,1) = 1) ∧ (g(1,2) = Normal (0.98)) ∧ (g(2,0) = 0) ∧
(g(2,1) = Normal (0.98)) ∧ (g(2,2) = 1)) ⇒

((information leakage p X Y = 1) ∧
(g information leakage p X Y g Z = log (2/(Normal(1.98)))))

where g refers to the gain function, conditional distribution denotes the
transition distribution with respect to Tables 1 and 2 and the term Normal is
used for the extended real numbers theory.

The proof of this result is conducted using the vulnerability properties, prob-
ability reasoning and real analysis. The first part of the theorem is proved using
Theorem 4.2. The second part of the goal is verified by computing the values of
the initial and remaining vulnerabilities. We find that

Vgd(X) =
1
3
max{1 + 0 + 0, 0 + 1 + 0.98, 0 + 0.98 + 1} = 0.66

Now for the posterior vulnerability, we calculate the posterior distribution
P (X = x|Y = y1) = (13 , 2

3 , 0).

Vgd(X = x|Y = y1) = max

⎧
⎨

⎩

1
3 .1 + 2

3 .0 + 0.0,
1
3 .0 + 2

3 .1 + 0.0.98,
1
3 .0 + 2

3 .0.98 + 0.1

⎫
⎬

⎭ =
2
3

Similarly, we prove that Vgd(X = x|Y = y2) = 2
3 and then by rewriting these val-

ues on their corresponding quantities, we get ILgd(X, Y ) = log
2
3

0.66 ≈ log 2
1.98 .

Here the min-entropy leakage is greater than the g-leakage. Perceptively, this
example differentiates between x2 and x3. Due to the relations (z2, x3) and
(z3, x2), under the distance gain function, it follows that x2 and x3 are so close
(a gain of 0.98). Thus the g-vulnerability hardly increases. The proof of this
result required 550 lines of HOL4 code [13] and around 60 man-hours in terms
of reasoning effort. These results are considered to be accurate and the analysis
covers any type of systems (in terms of state space size).

6 Conclusion

This paper presents a formalization of some of the most commonly used proper-
ties of information flow in higher-order logic. These properties, depending on the
threat model, are based on Shannon entropy and gain min-entropy. This formal-
ization provides a more reliable and richer information flow analysis framework
compared to the traditional definitions of quantitative information flow analysis
as formalized measures cover a wide variety of threat scenarios. We used the
formalized notions of Shannon entropy to verify the Data Processing Inequality,
which states that leakage cannot be increased by post processing of the informa-
tion, and Jensen’s Inequality, which is a relation between the averaging and the
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processing of information flow. The g-leakage is introduced as a generalization of
the min-entropy leakage and belief min-entropy leakage to assess the case where
the secret is guessed partially using a gain function, which models the benefit
that an attacker gets about the secret. Gain functions engender the possibility to
cover a variety of operational scenarios. The proposed formalization can be built
upon to conduct the information flow analysis within the sound core of a theo-
rem prover and thus the analysis is guaranteed to be free of approximation and
precision errors. For illustration purposes, we performed a comparison analysis
between the min-entropy leakage and the g-leakage using the HOL4 theorem
prover and the analysis results were found to be generic and accurate.

This work is conducted as a formal framework that can be used to formally
verify many information flow aspects depending on the threat model. It pro-
vides a reasonable foundation for information flow in HOL. Many applications
can be analyzed using our formalization, such as the Crowds protocol [25] and
Freenets [6]. We are aiming to extend this work for the formal analysis of chan-
nel capacity (min-capacity and gain-capacity) and compare them with Shanon
capacity. Starting from a specific leakage bound, our work can be used to eval-
uate the input set based on the output set. This formalization can in turn be
used to formally ensure a specific level of security of critical information.
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