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ABSTRACT

Optical systems are increasingly being used in safety-critical applications. Due to the complexity and sensi-
tivity of optical systems, their verification raises many challenges for engineers. Traditionally, the analysis of
such systems has been carried out by paper-and-pencil based proofs and numerical computations. However,
these techniques cannot provide accurate results due to the risk of human error and inherent approximations
of numerical algorithms. In order to overcome these limitations, we propose to use theorem proving (i.e., a
computer-based technique that allows to express mathematical expressions and reason about their correctness
by taking into account all the details of mathematical reasoning) as a complementary approach to improve optical
system analysis. This paper provides a higher-order logic (a language used to express mathematical theories)
formalization of electromagnetic optics in the HOL Light theorem prover. In order to demonstrate the practical
effectiveness of our approach, we present the analysis of resonant cavity enhanced photonic devices.
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1. INTRODUCTION

Optical systems are being increasingly used in many safety-critical domains, ranging from microsystems and
telecommunication to medicine, laser industry, aerospace, and military technologies. Verification of such systems
is one of the most critical and time consuming steps in system development and enhancing the performance of
the verification process has a great impact on the key business drivers of quality, schedule and cost. Due to
the complexity and sensitivity of optical systems, the validation of system models and verification of the system
properties raise many challenges for engineers.

The verification of an optical system is generally achieved by combining various means. The most basic one
is the actual manufacturing of a prototype that can then be tested. However, there are instances where this
costly process cannot be accomplished, e.g., for large optical space borne systems, it is almost impossible to
perfectly reproduce space conditions on the ground. Therefore, engineers try as much as they can to detect
faults in a design before resorting to testing. This requires developing a mathematical model of the system and
then analyzing it. Such a model is based on various theories of physics depending on the system properties that
need to be verified.

Once the system modelling is finalized, the model has to be analyzed to ensure that it exhibits the desired
optical system properties. The traditional method for analyzing an optical system model, is the paper-and-
pencil approach. However, as system behaviours become more complex, this approach can become extremely
cumbersome and more prone to human error. Many examples of erroneous paper-and-pencil based proofs are
available in the open literature, for example we can refer to a study on planar waveguides containing chiral
nihility metamaterial1 and its identification and correction report.2 A natural improvement on this method is to
use numerical approaches and computer-aided-design algorithms and the associated softwares. In this context,
the analysis is mostly done using computer simulation3 and Computer Algebra Systems (“CASs”).4 Although
these techniques make the analysis less cumbersome – and thus less error-prone, due to the nature of numerical
algorithms and large set of unverified simplification algorithms,5 one should not rely solely on these traditional
techniques, especially when used in safety-critical areas (e.g., laser surgery), where system flaws may result in
the loss of human lives.
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Given the enormous usage of optical systems in safety-critical applications, ranging from astronomy6 to the
refractive index measurement of cancer cells,7 their precise analysis is a dire need. Therefore, we propose a
higher-order-logic theorem proving based framework for the accurate analysis of electromagnetic theory based
optical system models.

The formal analysis of optical systems has gained some interest from the community recently (e.g.,8–10). For
the first time, in 2009, Hasan et al.8 presented the idea of formalizing optics using theorem proving by formal
analysis of a planar waveguide. However, the authors considered the electromagnetic field equations of the planar
waveguide as real functions, which make the formal definition of electromagnetic fields not general enough to
address many applications. The next significant work on formal analysis of optics, done by Siddique et al.,9,10

focused on formal analysis of geometrical optics addressing the stability analysis of resonators. However, the
accuracy of geometrical optics is limited to find basic properties of optical systems, such as approximate image
and object positions and magnifications, when the wavelength is small compared to other geometrical features
of the optical system. This condition is clearly not adequate for studying many optical systems of present day
with dimensions in the order of an optical wavelength or less. Recently, Khan-Afshar et al.11 reported their
effort on formalization of optical interconnects based on electromagnetic optics. However, the work is focused
on formalizing individual components without providing a foundation to extend the work. In 2013, Gay and
Nagarajan reported formal modelling and analysis of quantum systems12 using three different approaches, i.e.,
behavioural equivalence in process calculus, model-checking, and equivalence checking. The authors reason about
why formal techniques are necessary for the analysis of large-scale systems that combine quantum and classical
components, e.g., quantum optics, however, their approach addresses system level designs. We also can refer to
the work of Mahmoud et al.13,14 in quantum optics where formal verification of beam splitters and quantum flip
gates are presented, respectively. To the best of our knowledge, the most comprehensive work on formalization
of optical systems is a general framework presented in 2013, by Khan-Afshar et al.,15 to use theorem proving as
a complement to computational and numerical approaches to improve analysis of optical system models, in ray,
electromagnetic and quantum optics.

In this paper, we provide a generic framework (solely focused) on formalization of electromagnetic optics.
The paper also presents the formalization of light as an electromagnetic wave and the formal verification of
some of its key properties, like the law of reflection, Snell’s law, Fresnel’s equations, which are the foremost
foundations of the physical-optics. We have used the HOL Light theorem prover for this development mainly
because of the availability of the required mathematical theories in its library. The rest of the paper is organized
as follows: in Section 2, we briefly describe the idea of verification using formal methods focusing on theorem
proving, and the physical foundations of optics, focusing on electromagnetism. Section 3 presents our framework
on verification of optical systems. Section 4 details the higher-order-logic formalization of the fundamentals
of the proposed approach. Section 5 illustrates the practical use of our framework by describing the analysis
of the Fabry-Pérot resonator; an essential structure of many complex optoelectronic systems, like lasers and
photo-detectors. Finally, Section 6 concludes the paper.

2. PRELIMINARIES

In this section, we first give a brief introduction to formal methods, in general, and higher-order-logic theorem
proving, in particular. The idea is to reason about why we chose theorem proving to formalize electromagnetic
optics. Then, by a brief introduction to electromagnetic optics, we present what we need to formalize as an
infrastructure to pave the way to the formal analysis of electromagnetic optics.

2.1 Formal Verification and Theorem Proving

Formal verification is the process employed to prove that a system is designed in accordance to its requirements
using computer-based mathematical reasoning. The formal description of the requirements is referred to as formal
specification and the system design is referred as formal implementation. In theory, formal verification can be
done at all levels of abstraction, as long as, formal specification and formal implementation can be extracted and
there exists a mathematical-relation which can be established between the two descriptions. There are two main
approaches to formal verification: automated state-space exploration and theorem proving.
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The main state-space exploration methods are “model checking” and “equivalence checking”.16 In “model
checking”, the system model (implementation) is defined as a finite state machine, and specifications are written
in temporal logic. Then, for each property written in temporal logic, an exhaustive search through the state
space of the system takes place to determine if the property holds. In case the property does not hold, a
counter example describing the failure point(s) is generated. Then the design can be corrected and reverified.
In “equivalence checking”, the output signals of two different models of the designs are compared for a given
set of input conditions. Correctness of the method relies on the exploration and comparison of the reachable
state spaces. In general, the main advantage of state exploration methods is their automation, while the main
drawback is the state explosion problem which is the principle limiting factor of this technology. The efficiency of
state exploration methods depends heavily on the size of the reachable state space. As the size of a state machine
describing the system model increases, exhaustive search becomes practically infeasible. In optical systems, the
continuous nature of the analysis prevents the system from being abstracted within a finite state machine without
loosing accuracy.

Theorem proving is an approach where both the system and its desired properties are expressed as formulae
in some mathematical logic. This logic is defined by a formal system, called proof system or calculus, which
defines a set of axioms and a set of inference rules. Theorem proving is the process of deriving formal proofs from
the basic axioms and possibly intermediate lemmas using inference rules. The axioms are usually “elementar”
in the sense that they capture the basic properties of the logic’s operators. Many theorem-proving systems have
been implemented and used for all kinds of verification problems. These systems are distinguished by, among
other aspects, the underlying mathematical logic, the way automatic decision procedures are integrated into the
system and the user interface.

In general, a logic provides a (formal) language to express mathematical facts, and a definition of what a
true sentence is in this language. The most basic kind of logic is the propositional logic (also called boolean
logic), which only allows sentences formed by propositional variables and boolean connectives: and (∧), or (∨),
not (¬), implies (⇒) and equality (=) connectives. For instance, (A ⇒ B) ∧ (B ⇒ C) ⇒ (A ⇒ C) is a sentence of
propositional logic. In addition, one can easily see that it is a true sentence (using the transitivity of implication).

Only the overall structure of mathematical sentences can be expressed in propositional logic and one lacks the
ability to talk about objects and their properties. This problem is answered by first-order logic that introduces
terms (which formalize the notion of “object”) and predicates (which formalize the notion of “property of an
object”). Terms are built inductively from constants and functions, e.g., the set of natural numbers is built
from the constant 0 and the function SUC, hence, 1 is represented by SUC(0), 2 by SUC(SUC(0)), etc. Being
an even or a prime number are then properties of natural numbers that can be represented by predicates.
First-order logic thus allows to write sentences like Even(0) or Prime(SUC(SUC(0)). In order to get closer to
the usual mathematical language, first-order logic also introduces the notion of a variable. Finally, sentences
with variables are not complete if we cannot specify how variables should be interpreted, so two new ways of
building a sentence are added to the language by using for all (∀) and there exists (∃) (called quantifiers): e.g.,
“∀x. Even(x) ⇒ Even(SUC(SUC(x))” or “∃x. Prime(x)”.

First-order logic does not permit quantifying over predicates. For instance, it is impossible to express the
induction principle for natural numbers: ∀P.P(0)∧ (∀n.P(n) ⇒ P(SUC(n))) ⇒ ∀n.P(n) since ∀ can only be applied
to variables and not to predicates. Higher-order logic provides this feature and thus, in comparison to the
aforementioned logic is stronger to represent mathematical theories. Theoretically, any system that can be
expressed in a closed mathematical form can be defined in higher-order logic due to highly expressive nature of
this logic.

Given a logic, the most frequent problem is to try to determine whether a given sentence is true or not.
This is done by considering a set of axioms, i.e., basic sentences that are assumed to be true (e.g., P ∨ ¬P), and
inference rules, i.e., rules that allow to derive the truth of a sentence depending upon the truth of other sentences
(e.g., if P and Q are true sentences, then P ∧ Q is a true sentence). Using axioms and inference rules, one can
thus prove or disprove logical sentences. This idea is at the principle core of theorem proving: the language
definition, the axioms and inference rules can be implemented in the theorem prover. This allows the user to
write down mathematical sentences inside the theorem prover, and then to prove them using only the axioms
and inference rules provided by the theorem prover. This latter point is essential since, assuming there exists
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no inconsistencies in the foundations of the theorem prover, it ensures that no unsound reasoning step can be
used to prove a theorem. This guarantees that any sentence, which is proved in a theorem prover, is indeed
true. Thus, theorem proving is a powerful verification technique which can provide a unifying framework for
various verification tasks at different hierarchical levels. However, the task of proving complex theorems requires
expertise in both formalization and the application in hand, in addition to great effort and creativity on the part
of the verifier.

2.2 Electromagnetic Theory of Light

In the electromagnetic theory, light is described by the same principles that govern all forms of electromagnetic
radiations. An electromagnetic radiation is composed of an electric and a magnetic field. The general definition
of a field is “a physical quantity associated with each point of space-time”. Considering electromagnetic fields
(“EMFs”), the “physical quantity” consists of a 3-dimensional vector for the electric and the magnetic field.

Consequently, both those fields are defined as vector functions �E(�r, t) and �H(�r, t), respectively, where �r is the
position and t is the time. These functions are related by the well-known Maxwell equations17 (e.g., in differential
form):

∇× �E = −∂ �B

∂t

∇× �H = �J +
∂ �D

∂t

∇ · �D = ρ

∇ · �B = 0

(1)

with their associated constitutive equations,

�D = ε0 �E + �P = ε �E and �B = μ0( �H + �M) = μ �H

where �D and �B are the electric and magnetic flux density, respectively, �J the electric current density, ρ the electric
charge density, and ∇× and ∇· denote the curl operation and divergence, respectively. The parameters ε and
μ represent the permittivity and permeability in the medium, and ε0 and μ0 are permittivity and permeability
in free space, respectively. The vector fields �P and �M represent the polarization and the magnetization density,
which are measures of the response of the medium to the electric and magnetic fields, respectively.18 Once the
medium is known, an equation relating �P and �E, and another relating �M and �H is established. When substituted
in Maxwell equations, the set of partial differential Equations (1) will be simplified governing only the two vector

fields �E and �H. Therefore, to describe electromagnetic waves in a medium, it would be enough to describe the
medium, and the electromagnetic fields : �E and �H.

3. FORMAL ANALYSIS FRAMEWORK

The proposed approach for the formal analysis of optical system models is depicted in Figure 1. Just like any
system analysis problem, the inputs to the proposed analysis framework are an informal description of the optical
system model and an informal specification of the desired properties of the system. The first step towards formal
analysis of a system is to have both the specification of the system (in terms of properties), and implementation
of the system formally described (in our case, using higher-order logic). The next step is to formally verify in a
theorem prover that the implementation implies all the properties extracted from the specifications. Obviously,
a mathematical correlation must exist between the formal specification and the formal model.

The formalization of ray, wave, electromagnetic, and quantum optics play a vital role in both of these steps.
Firstly, they provide the means to describe the specification and system model formally. Secondly, they also
provide the formal reasoning support for verifying the system properties. Since our focus, in this paper, is
on the electromagnetic theoretic analysis of optical systems, we proceed with the formalization of the system
behaviour by formalizing its EMF and medium aspects. The EMF aspects of an optical system are usually
described mathematically using complex vectors. Whereas the medium aspects are mathematically expressed
using euclidean geometry. As it can be depicted in Figure 1, we need to have both concepts of complex vectors
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Figure 1. Formal Analysis Framework

and Euclidean space formalized in our libraries. Next, the properties of the system have to be verified within
the sound core of theorem prover. This can of course be done from scratch by using only the inference rules of
higher-order logic. But some fundamental results are always used, irrespective of the optical component that
we want to verify, e.g., the law of Reflection, Snell’s law, or Fresnel equations. So we propose to prove these
foundations once and for all in order to make the verification of new components easier. This yields a “library
of primitive rules of optics”.

Optical systems are usually composed of some commonly used sub-systems like resonators or waveguides.
Therefore, we also propose to formalize such often-used structures so that complex optical systems can be
modelled and analyzed easily in a hierarchical manner. The fact that our formalization starts from the low-level
roots of optics not only allows us to formalize these often-used structures, but also provides the ability to define
new structures when needed. This makes our framework both easy to use in standard cases and flexible when we
need to get out of the standards. Note that new formalized structures can be added to the library of components
and sub-systems in order to be used without enduring the pain of formalizing them again. This fact is illustrated
in Figure 1 by the feedback between the optic system analysis libraries and the theorem prover.

4. FORMALIZATION OF OPTICS FOUNDATIONS

The HOL Light theorem prover provides a formalization of complex numbers, real vectors, complex vectors,19

and euclidean geometry. Using these libraries, in this section, the higher-order-logic formalization of the electro-
magnetic model of light wave and the formal verification of some primitive laws of optics are presented. These
foundations play a vital role in analyzing optical systems based on the proposed framework of Figure 1.

4.1 Formalization of the Electromagnetic Model

As explained in Section 2.2, the electromagnetic theory considers light as an electromagnetic field (“EMF”).
Thus, we first need to define a field. The general definition of a field is “a physical quantity associated with
each point of space-time”. Points of space are represented by 3-dimensional real vectors, so we define the type
point as an abbreviation for the type real3 (AN is the HOL Light library built-in type for vectors of size N whose
components are of type A20). Instants of time are considered as real so the type time is a synonymous for the
type real in our formalization. Finally, the “physical quantity” is formally defined as a 3-dimensional complex
vector. Consequently, the type field (either magnetic or electric) is defined as point → time → complex3.
Then, since an EMF is composed of an electric and a magnetic field, we define the type emf to represent
point → time → complex3 × complex3.
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A very general expression of an EMF is �U(�r, t) = �a(�r)ejφ(�r)ejωt, where �U can be either the electric or magnetic
field at point �r and time t. We call �a(�r) the amplitude of the field and φ(�r) its phase. Note that we consider
only monochromatic waves, i.e., waves with only one frequency ω. This is a classic simplification which is not a
restriction since any polychromatic wave can be decomposed into a sum of monochromatic ones.

Here, we focus on monochromatic plane waves, where the phase φ(�r) has the form −�k · �r, defined using the

dot product between real vectors. We call �k the wavevector of the wave; intuitively, this vector represents the
propagation direction of the wave. This yields the following definition∗:

Definition 4.1 (Plane wave).

	def plane wave (k : R3) (ω : R) (E : C3) (H : C3) : emf

= λ(r : point) (t : time). (e−j(k·r−ωt)E, e−j(k·r−ωt)H)

where j denotes
√−1. Note that, although complex numbers are already defined in HOL Light,21 we had to

develop our own library of complex vectors19 in order to define operations like addition, multiplication by a scalar
or dot product for such vectors. In addition to Definition 4.1, we define the helper predicates and the functions
is plane wave, k of w, ω of w, e of w, and h of w such that:
∀emf. is plane wave emf ⇔ emf = plane wave (k of w emf)(ω of w emf)(e of w emf) (h of w emf)

When a light wave passes through a medium, its behaviour is governed by different characteristics of the
medium. The refractive index is the most dominant among these characteristics and thus we have used the data
type medium to represent the medium with its refractive index, which is a real number. Most of the study of
an optical device deals with the passing of light from one medium to another. So our basic system of study is
the interface between two mediums. In general, such an interface can have any shape, but, most of the time, a
plane interface is used, as shown in Figure 2.
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Figure 2. Plane Interface between Two Mediums

So we define the type interface as medium× medium× plane× real3, i.e., two mediums, a plane (defined
as a set of points of space), and an orthonormal vector to the plane, indicating which medium is on which side
of the plane.

Another useful consequence of Maxwell equations18 is that the projection of the electric and magnetic fields
shall be equal on both sides of the interface plane. This can be formally expressed by saying that the cross
product between those fields and the normal to the surface shall be equal:

Definition 4.2 (Boundary conditions).

	def boundary conditions emf1 emf2 n p t ⇔
n× e of emf emf1 p t = n× e of emf emf2 p t ∧ n× h of emf emf1 p t = n× h of emf emf2 p t

∗From now on, all HOL Light statements will be written by mixing HOL Light script notations and pure mathematical
notations in order to improve readability. Also R and C indicate the types real and complex, respectively.
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where × denotes the complex cross product, and e of emf and h of emf are helper functions returning the
electric and magnetic field components of an EMF.

We now have all the definitions that are required to reason over electromagnetic plane waves and the interface
between two mediums. This reasoning is classically simplified by decomposing EMFs into two orthogonal EMFs
with orientation towards the normal of interface plane. These two orthogonal EMFs are considered as two modes
of any EMF and called TE mode, for “transverse electric”, and TM mode, for “transverse magnetic”. In the TE
Mode, all electric fields are collinear and perpendicular to the normal of interface, while in the TM mode, all
magnetic fields are collinear and perpendicular to the normal of interface. Definition 4.3 ensures aforementioned
conditions in the TE mode.

Definition 4.3 (TE mode).

	def te mode (i : interface) emfi emfr emft ⇔
∃v. orthogonal v (normal of interface i) ∧ norm v = 1 ∧
(∀r t. vcollinear (e of emf emfi r t) v ∧ vcollinear (e of emf emfr r t) v ∧

vcollinear (e of emf emft r t) v)

where the functions vcollinear ensures collinearity between two vectors. The same definition is derived for the
TM mode. Any theorem or definition related to one mode has a counterpart in the other. Since any EMF can
be defined as the superposition of its TE and TM modes, if a property is formalized in one mode, it has to be
verified in the other mode. Here, we focus on the TE mode.

4.2 Formalization of Primitive Rules of Optics

Now that the notions of EMF and interface have been formalized, we can prove some basic properties of optics
that constitute the foundations to verify any optical system. We call them “primitives”. Most of these primitives
impose some particular constraints on the waves, for instance, some parameters must be positive, or non-null.
One of the major advantages of theorem proving over other analytical methods is that these constraints are
explicitly provided in the hypotheses of the corresponding theorems. This way, these theorems can only be
applied if the corresponding constraints are ensured. As already explained, the study of an optical component
mostly deals with the behaviour of light when it passes from one medium to another. Thus, we first formalize
the simple case of a plane interface between two mediums, in the presence of a plane wave, shown in Figure 2,
with the following predicate:

Definition 4.4 (Checking if the wave is a plane wave at plane interface.).

	def is plane wave at int i emfi emfr emft ⇔
is valid interface i ∧ non null emfi ∧
is plane wave emfi ∧ is plane wave emfr ∧ is plane wave emft ∧
(let (n1, n2, p, n) = i in ∀p. t is in plane pt p ⇒

∀t. boundary conditions (emfi + emfr) emft n pt t) ∧
(let (ki, kr, kt) = map trpl k of w (emfi, emfr, emft) in
0 ≤ (ki · n) ∧ (kr · n) ≤ 0 ∧ 0 ≤ (kt · n) ∧ ∃k0. norm ki = norm kr = k0n1 ∧ norm kt = k0n2) ∧
let emf in med = λemf n. h of w emf = 1

η0k0
(k of w emf)× (e of w emf))in

emf in med emfi n1 ∧ emf in med emfr n1 ∧ emf in med emft n2

where map trpl f (x, y, z) = (f x, f y, f z) and η0 is the impedance of vacuum, a physical constant relating mag-
nitudes of electric and magnitude fields of electromagnetic radiation travelling through vacuum. The predicate
of Definition 4.4 takes an interface i and three EMFs emfi, emfr, and emft, intended to represent the incident
wave, the reflected wave, and the transmitted wave, respectively. When is plane wave at int holds, it first
ensures that the arguments are well formed, i.e., i is a valid interface and the three input fields are plane waves.
It also ensures that the reflected wave exists by asserting that its electric field is non-null (both electric and
magnetic fields of an EMF are not null) and goes from medium 1 to medium 2, and that the reflected and
transmitted waves go in the opposite and same direction, respectively. These conditions are expressed by using
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the dot product of the wavevectors to the normal of the interface plane. Moreover, Definition 4.4 also ensures
that the boundary conditions shall hold at every point of the interface plane and at all times.

From this predicate, which describes the interface in Figure 2, we can prove the geometrical properties of the
wave. Firstly, the fact that the incident, reflected, and transmitted waves all lie in the same plane:

Theorem 4.5 (Law of Plane of Incidence).

	 ∀i emfi emfr emft. is plane wave at int i emfi emfr emft ∧
non null emfr ∧ non null emft ⇒ let n = normal of interface i in

coplanar {vec 0, k of w emfi, k of w emfr, k of w emft, n}

A second geometric consequence is the fact that the reflected wave is symmetric to the incident wave with
respect to the normal to the surface:

Theorem 4.6 (Law of Reflection).

	 ∀i emfi emfr emft. is plane wave at int i emfi emfr emft ∧
non null emfr ⇒ let n = normal of interface i in are sym wrt (−(k of w emfi)) (k of w emfr) n

where are sym wrt �u �v �w formalizes the fact that �u and �v are symmetric with respect to �w (this is easily expressed
by saying that �v = �u - 2∗(�u · �w)�w ). Referring to Figure 2, Theorem 4.6 just means that θi = θr, which is the
expression usually found in optics literatures.

We also verified the fact that the frequency is preserved by the reflected and transmitted waves:

Theorem 4.7 (Frequency Conservation).

	 ∀i emfi emfr emft. is plane wave at int i emfi emfr emft ⇒
(non null emfr ⇒ ω of w emfi = ω of w emfr) ∧ (non null emft ⇒ ω of w emfi = ω of w emft)

Next, the famous Snell’s law18 is verified as follows:

Theorem 4.8 (Snell’s Law).

	 ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ∧ non null emft ⇒
let n = normal of interface i in

let θ = λemf. vectorangle (k of w emf) n in

n1 sin(θ emfi) = n2 sin(θ emft)

where vectorangle �u �v returns the angle between �u and �v. Referring to Figure 2, Theorem 4.8 just means that
n1 sin(θi) = n2 sin(θr), which is the expression usually found in optics literatures.

Finally, another foundational result, Fresnel equations18 in the TE mode, can be derived, which relates the
magnitude of the incident and reflected waves:

Theorem 4.9 (Fresnel Equations).

	 ∀i emfi emfr emft.
is plane wave at int i emfi emfr emft ∧ non null emfr ∧ non null emft
∧ te mode i emfi emfr emft ⇒
let (n1, n2, p, n) = i in

let mag = λemf. (TE axis i emfi emfr emft · FST(mag at pln p n emf)) in
let θ = λemf. vectorangle(k of w emfi) n in

mag emfr = n1 ccos(θ emfi) − n2 ccos(θ emft)
n1 ccos(θ emfi) + n2 ccos(θ emft)

mag emfi ∧
mag emft = 2n1 ccos(θ emfi)

n1 ccos(θ emfi) + n2 ccos(θ emft)
mag emfi
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where, mag at pln is a helper function returning the magnitude of electric and magnetic fields of a plane wave at
the interface as a pair of complex numbers. The function TE axis returns a unit vector with the same direction
as the TE mode component of emfi, emfr, and emft . The quantity mag emfr

mag emfi
is called the reflection coefficient

of the interface i for the wave emfi. The quantity mag emft
mag emfi

is called the transmission coefficient of the interface
i for the wave emfi. Both these results lead to the concepts of reflectance and transmittance that are essential
parameters of any optical interface. All the above results are essential to reason about any optical system. In
particular, the next section shows an application whose analysis makes an essential use of Fresnel equations.

The formal proofs of the above theorems heavily rely upon complex vectors and multivariate transcendental
functions properties and involved rigorous human interaction. The major advantage of these formalizations is
the ability to utilize them to formally analyze optical systems, as will be demonstrated in the next section.
Obviously, their development is significantly harder than their informal counterparts, especially since proofs in
physics textbooks make many mathematical assumptions and simplifications that are not always justified, or are
justified only by physical considerations without any mathematical arguments.

5. APPLICATION: FABRY-PÉROT RESONATOR

In this section, we show the effectiveness of our framework by formalizing the main characteristics of a Fabry-Pérot
resonator,22 shown in Figure 3. This resonator is used in many optical systems, namely, on-chip photo-detectors,
lasers,23 and optical bio-sensors.24 This structure, fundamentally, consists of two parallel, partially reflecting
mirrors with a free space between them.

Figure 3. Fabry-Pérot Resonator

The most important concept in the Fabry-Pérot resonator is the one of constructive interference of electro-
magnetic fields. As it can be observed in Figure 3, the incident wave Ei, hitting the first mirror, is partially
transmitted into the free space between the mirrors. Then ef1 , the transmitted electric field of the incident wave,
propagates through the free space of the resonator and hits the second mirror, yielding a transmitted wave eout1
and a reflected wave eb1 . The same process then goes on with the wave eb1 , and starts over with its reflected
wave ef2 . Consequently, there are infinitely many waves that are generated inside the resonator, and the waves
Ef, Eb and Eout, as shown in Figure 3, are the (infinite) sum of all those waves.

In the next sub-section, we formally define the Fabry-Pérot resonator, then, we formally describe three
electric fields, Ef, Eb and Eout, which are of high interest in many applications, e.g., lasers, which benefit from
the properties of the light at the output of the resonator,22 Eout, and photo-detectors, which benefits from the
energy of the light within the resonator,23 which depends on Ef and Eb. Finally we show how our formal model
of Fabry-Pérot resonator can be practically used in more advanced structures like laser.

5.1 Formalization of the Fabry-Pérot Resonator

According to our framework flow, we need to formally describe the mediums and the EMFs involved in the
system. In the Fabry-Pérot resonator, we have three mediums: one before the first mirror, one in the free
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space, and one after the second mirror, as shown in Figure 1. Both mirrors are modelled as interfaces between
mediums. Consequently, a Fabry-Pérot resonator can be formalized by two values of type interface. However,
to make a proper analysis of the resonator, we need to take into account the absorption in the free space. This
means that we should also consider an absorption coefficient a and the width L of the space. We thus define the
type fabry perot as interface× interface× real× real, where the first interface is the mirror Mf , the
second one is Mb, the first real number is a and the second is L. We define the predicate is valid FP to ensure
that a value of type fabry perot indeed represents an acceptable Fabry-Pérot resonator, by checking if a and L

are positive and if both mirrors are parallel to each other and have a medium in common. All the subsequent
theorems are verified under the assumption that each value of type fabry perot satisfies is valid FP . This
completes the formal modelling of the given medium.

The next step, according to the framework, is to formalize the EMFs. We first observe that the analysis of the
resonator is meaningless where there are no reflected or transmitted waves, so in order to ensure their presence we
define the following two functions which are the functional counterparts of the predicate is plane wave at int :

Definition 5.1 (Reflected and transmitted wave).

	def ∀ i emfi. reflected i emfi =
@ emfr. ∃ emft. is plane wave at int i emfi emfr emft

	def ∀ i emfi. transmitted i emfi =
@ emft. is plane wave at int i emfi (reflected i emfr) emft

where @ is the Hilbert’s choice operator and given an interface i and a wave emf, reflected i emf and
transmitted i emf denote the reflected and transmitted waves, respectively. Each time these functions are
used, it is required that the existence of their result is asserted. For the sake of readability, we will not write
such assertions in the following.

Before defining the functions returning efn and ebn (according to the notations used in Figure 3), we need
to formalize the absorption in the medium. Absorption is physically modelled as follows. Consider a wave of
electric field �E at point P in a medium of absorption coefficient a. Let Q be a point in the same medium, within

distance d of P . Then the value of the electric field at point Q is: e−
ad
2 −j‖�k‖d �E, where �k is the wavevector. This

leads to the following:

Definition 5.2 (Absorbed wave).

	def ∀ emf fp d.

absorbed emf fp d = λ(r : point)(t : time). e−
(

abs of FP fp
2

+j‖k of w emf‖
)
demf r t

where the functions abs of FP and wdth of FP retrieve the absorption coefficient and the width of the inner
space, respectively. In this analysis, we are only interested in this value when the wave has traveled from one
side of the resonator to the other. One can prove using some basic geometry that the corresponding travelled
distance is: L

cos(�k,�n)
, where �n is the normal to the mirrors of the Fabry-Pérot resonator. Hence, absorption in

the medium is defined as:

Definition 5.3 (Absorbed in Fabry-Pérot resonator).

	def ∀emf fp. absorbed in FP emf fp =
absorbed emf (abs of FP fp)(trvl dist emf (nrml of FP fp) (wdth of FP fp))

where trvl dist is returning the distance between the two mirrors. We can now define functions returning
efn and ebn (according to the notations used in Figure 3). As already explained, these fields are the result of
infinitely reflection of transmitted portion of the incident wave ei between two mirrors and can be formalized by
the following mutually recursive functions efn , ebn , and eoutn :
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Definition 5.4 (efn , ebn , and eoutn).

	def ∀ fp emfi n. let (Mf, Mb, a, L) = fp in

efn emfi fp 0 = transmitted Mf emfi ∧
efn emfi fp (n+ 1) =

reflected Mf (absorbed in FP (reflected Mb absorbed in FP (efn emfi fp n)fp))fp) ∧
ebn emfi fp n = reflected Mb (absorbed in FP (efn emfi fp n)fp) ∧
eoutn emfi fp n = transmitted Mb (absorbed in FP (efn emfi fp n)fp)

The waves efn , ebn and eoutn have thus been formally represented by efn emfi fp n, ebn emfi fp n and
eoutn emfi fp n. Finally, the waves which we are really interested in, are actually the sums of these waves
for every n ∈ N:

Definition 5.5 (Ef , Eb , and Eout).

	def ∀ emfi fp. Ef emfi fp = λ(r : point)(t : time). vinfsum (efn emfi fp r t)
	def ∀ emfi fp. Eb emfi fp = λ(r : point)(t : time). vinfsum (ebn emfi fp r t)
	def ∀ emfi fp. Eout emfi fp = λ(r : point)(t : time). vinfsum (eoutn emfi fp r t)

where vinfsum returns the infinite sum of a sequence of complex vectors, e.g., vinfsum (eoutn emfi fp) formalizes∑
n∈N

eoutn .

We have now formalized both the medium and the EMFs for the Fabry-Pérot resonator, which completes the
system model. The next step is to formally specify the properties of interest.

5.2 Formal Analysis of the Fabry-Pérot Resonator

Many optical parameters of the Fabry-Pérot resonator, namely, intensity of light at the output, depend on the
magnitude of the three electric fields Ef , Eb and Eout which we formalize as follows:

Theorem 5.6 (Magnitude of Ef , Eb, Eout).

	 ∀ emf fp. let (Mf, Mb, a, l) = fp in

let (emfi, emfr, emft) = (emf, reflected Mf emf, transmitted Mf emf) in
is valid FP Mf Mb a l ∧ is plane wave at int Mf emfi emfr emft ∧
tm mode Mf emfi emfr emft ⇒
let n1 = n1 of FP fp ∧ n2 = n2 of FP fp ∧ n3 = n3 of FP fp in

let k = n1n2
‖k of w emfi‖ in

let θ1 = vectorangle (k of w emfi) (nrml of FP fp) in
let θ2 = arcsin( n1

n2
sin θ1) in

let θ3 = arcsin( n2
n3
sin θ2) in

let (rf, tf) = ( n2 cos θ1−n1 cos θ2
n1 cos θ2+n2 cos θ1

, 2n1 cos θ1
n1 cos θ2+n2 cos θ1

) in

let (rb, tb) = ( n3 cos θ2−n2 cos θ3
n2 cos θ3+n3 cos θ2

, 2n2 cos θ2
n2 cos θ3+n3 cos θ2

) in
let mag = λemf. (TM axis i emfi emfr emft · FST(mag at pln p n emf)) in

mag (Ef emfi fp) = tf
1−rfrbe−(a+2jk)l mag emfi ∧

mag (Eb emfi fp = rbe
−( a

2
+jk)l mag (Ef emfi fp) ∧

mag (Eout emfi fp) = tftbe
−( a

2
+jk)l

1−rfrbe−(a+2jk)l mag emfi

where n1 of FP , n2 of FP and n3 of FP return the refractive indices of the “input”, free, and “output” space,
respectively. The proof of this theorem involves all the primitive laws of optics of Section 4.2: the law of reflection
allows us to prove that all fields ef1 , ef2 , . . . have the same angle of incidence, and similarly for eb1 , eb2 , . . . and
eout1 , eout2 , . . . , respectively. These angles can be retrieved using Snell’s law (as can be seen in the let-bindings
of θ2 and θ3). This entails that the coefficients of Fresnel equations for Mf and Mb are independent of eout1 ,
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eout2 , . . . and similarly for eb1 , eb2 , . . . and eout1 , eout2 , . . . , respectively. The resulting coefficients are bound to
rf, tf, rb and tb in the above statement. Thus the magnitude of Eout, Ef and Eb can be expressed as recursive
sequences depending only on emfi and FP. Classical results on geometric series then allow us to remove the
recursion and get the above expressions. Note that the use of Fresnel equations is only allowed because we fixed
the polarization to TM-mode.

5.3 Use of the Fabry-Pérot Resonator in a Laser

To show the significance of our approach, in this section, we formalize the intensity of the light when the resonator
is used in a laser. Generally, the optical intensity is the optical power per unit area, which is transmitted through
any surface perpendicular to the propagation direction. It is proportional to the squared modulus of the electric
field’s norm:17

Definition 5.7 (Optical Intensity).

	def ∀emf S. intensity S emf = S ‖e of w emf‖‖e of w emf‖∗

where S is a coefficient that depends on the application.

We are now interested in evaluating the ratio between the optical intensity at the output and at the input of
a Fabry-Pérot resonator. Using Theorem 5.6, we can prove the following (under the same hypotheses and using
the same let-bindings):

Theorem 5.8 (Optical Intensity Ratio in a Fabry-Pérot Resonator).

intensity S (Eout emfi fp)
intensity S emfi

=
t2ft

2
be

−al

(1−rfrbe−al)2(1+
4rfrbe

−al

(1−rfrbe
−al)2

sin2(kl))

This result allows us to know which proportion of the incident light is transmitted by the Fabry-Pérot res-
onator. In practice, the values of tf, rf, tb, rb and e−al can be directly measured. For instance, consider a
Fabry-Pérot resonator with tf = tb =

√
0.1, rf = rb =

√
0.9, and e−al = 0.98. Now assuming resonator gets

illuminated by a gas-laser with λ0 = 638.8nm and Δλ = 40nm, using Theorem 5.8, we can conclude that
intensity S (Eout emfi fp)

intensity S emfi
> 0.7, i.e., more than 70% of the light intensity is preserved within the considered wave-

length range. This result matches the analytical approach,22 but with the additional confidence in the result
which is brought by the fact that all the steps leading to this result were checked by a theorem prover.

Overall, the corresponding HOL development is quite heavy: it required approximately one and half man-year
because of the broad range of the involved areas: complex vector spaces, complex linear algebra, and, of course,
electromagnetics itself. This includes the time to develop extensions to a number of standard libraries of HOL
Light. More details on our developments can be found at http://hvg.ece.concordia.ca/projects/optics/
EMoptics.htm.

6. CONCLUSION

In this paper, we presented a framework for the formal analysis of optical system based on electromagnetic
models. This framework introduces the formalization of optical components using higher-order logic and the
verification of desired properties in a theorem prover. The proof of these theorems is deduced from a finite set of
axioms, inference rules and previously proven theorems which guarantees error-free results. Another useful aspect
of the proposed framework is that it ensures the listing of all the approximations, used during the modelling
phase, explicitly as the assumptions of the formally verified theorems.

Towards the development of the proposed framework, we presented a very general formalization of electro-
magnetic theory, and optics fundamentals like Snell’s law and Fresnel equations in this paper. Moreover, we
showed the practical effectiveness of our framework by formalizing the Fabry-Pérot resonator. Larger and more
complicated systems could equally well be formalized, while preserving the confidence in the results.

Considering the mathematical complexity of optical model analysis, we often encounter equations with no
symbolic (or “closed-form”) solution. In order to handle such equations, our future work is to provide a bridge
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to a tool for symbolic and numerical computation such as Optica.25 In this bridge the equation is first sent to
the tool in order to be simplified symbolically. In case the equation cannot be simplified symbolically, we have
no option but to switch to numerical approaches, which introduce numerical approximations to our analysis.
However if the equation is simplified, the first attempt, in the theorem prover, is to certify this simplification
and then to proceed with the proof. Moreover, there is priority to use symbolic computations over numerical
approaches. Therefore, as far as the whole analysis is concerned, the proposed method will offer the most precise
solution. The availability of this bridge will ensure that the proposed framework can effectively be employed
during the development stages of the formal libraries.
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