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Abstract—Hardware accelerators are used for parallel computa-
tion with the tendency to accept inexact results. Such accelerators
are used extensively in big-data processing applications, and thus
can be designed approximately for reduced power consumption,
area and processing time. However, since for some inputs the
output errors may reach unacceptable levels, the main challenge
is to ensure the quality of the approximated results. Towards this
goal, in this paper, we propose a fine-grained input-dependent
decision tree-based adaptive approximate design to meet the
output quality constraints set by the user. For illustration pur-
poses, we use a library of 16-bit approximate array multipliers
with 20 different settings. The proposed methodology has been
evaluated for audio and image processing applications. The
simulation result, demonstrate the effectiveness of the proposed
methodology, utilizing a lightweight decision tree-based design
selector where the proposed adaptive design achieves the user-
specified target output quality with a relatively low overhead.

I. INTRODUCTION

Hardware accelerates, with a reduced power consumption,
latency and increased parallelism, are able to process big-
data more efficiently than software processing [1]. Thus, they
are quite suitable for image and digital signal processing
(DSP). Approximate computing (AC) or inexact computing
is an emerging computing paradigm for error-resilient ap-
plications where computing accuracy could be scarified for
gaining design efficiency in terms of reduced area, power and
delay. Approximate arithmetic components, i.e., adders [2],
dividers [3] and multipliers [4], can be utilized to construct
approximate hardware accelerators, which are suitable for
error-resilient computationally intensive application, e.g., big-
data and image/signal processing. Such applications have the
following approximation-enabling characteristics [5]: 1) the
input data is noisy with iterative-refinement nature, 2) there
is no golden or unique result where a set of outcomes are
acceptable, 3) the best solution is not required or guaranteed
where good-enough result is sufficient, and 4) the inexact
result is consumable by human perception.

For a static approximate design, the approximation error
persists during the operational-life of an approximate accel-
erator. Moreover, the error magnitude depends on the applied
inputs [6]. This mandates contemporary techniques to reduce
approximation error with minimal implementation overhead.
Thus, it is substantial to consider this critical issue at the early
design stage by accommodating to change the architecture of
the approximate accelerators. This could be realized by two
techniques; i) adapting the architecture of the approximate

components, i.e., approximate multipliers, which constitutes
the basic build block for the accelerators. For example, the
quality of AC can be controlled through error compensation
by predicting error magnitude for specific applied inputs uti-
lizing machine learning techniques [7], ii) switching between
different implementations of approximate components, where
[8] proposed to change the approximate design dynamically
for different input data to satisfy a user-defined target out-
put quality (TOQ). We consider the second technique of
switching between different implementations of approximate
components. In this paper, to assure approximation quality,
we propose a decision tree (DT)-based model to select the
most suitable approximate design based on the applied inputs
and user-specified quality constraints (TOQ). We consider
approximate accelerators with 20 different settings for a 16-
bit approximate array multipliers [4]. We implement a fully-
automated tool chain for the proposed methodology, which we
validated based on audio and image processing applications.

The rest of the paper is structured as follows: Section II
introduces the related work. Section III explains our proposed
methodology to assure the accuracy of approximate accelera-
tors by design adaptation. Section IV provides the experimen-
tal results of audio and image processing application. Section
V concludes the paper and highlights the future work.

II. RELATED WORK

The research efforts in the field of quality assurance of
approximate computing are scarce compared to the designing
of approximate components. Such efforts can be classified into
software and hardware techniques. However, to the best of
our knowledge, there are very few works targeting the quality
assurance of approximate accelerators based on fine-grained
of the applied inputs. While most prior works focus on error
prediction, in this paper, we aim to overcome the degraded
quality of approximation through design adaptation based on
the applied inputs.

In [9], the authors approximated different designs given as
behavioral descriptions based on the expected coarse-grained
input data distributions. These approximate designs are used to
build an adaptive accelerator based on the applied workload.
However, the real workload may differ completely from the
training one since not all possible workload distributions can
be precharacterized. Xu et al. [10] also presented a self-
tuneable adaptive approximate architecture that is suitable
for application-specific integrated circuit (ASIC) designs. The
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Figure 1: Proposed Methodology

used approximation techniques are variable-to-variable (V2V)
and variable-to-constant (V2C) optimization only. A design-
space exploration of state-of-the-art approximate designs has
been conducted in [11], where a flow for designing approxi-
mate coarse-grained reconfigurable arrays (CGRAs) has been
proposed.

Green [12] and SAGE [13] check the output quality of
approximate programs through sampling techniques, and use a
more accurate configuration if the approximation error is high.
However, they are inadequate for fine-grained input data. In
[14], a self-compensating accelerator has been proposed by
combining approximate components with their complementary
designs, which have the same error magnitude with opposite
polarity, however, obtaining such complementary components
is not always guaranteed. Compensation of approximation
error was proposed in [7], where it utilizes a single approxi-
mate design only while other designs may exist with superior
characteristics.

Motivated by the above, in this paper, we present an input-
dependent quality assurance methodology for approximate
computing. To the best of our knowledge, it is the first holistic
work that explicitly considers both a fine-grained input-data
and user preferences, as detailed in the following sections.

III. METHODOLOGY

Some of the main challenges of approximate computing
include [15]: 1) selecting the most suitable approximate design
based on the applied inputs and user preferences, 2) minimiz-
ing the approximation results with large error magnitude , and
3) continuously monitoring the output quality to compensate
the error. Thus, we propose a methodology to continuously
monitor the inputs and select the most suitable approximate
design accordingly. For that, we build a lightweight deci-
sion tree-based design selector. Figure 1 shows the proposed
methodology with the main building blocks. Overall, the
proposed methodology consists of the following main steps:

1- Library of approximate designs: In [4], a set of energy-
efficient approximate multipliers, both 8 and 16-bits designs,
based on two levels of approximation and 11 different types
of basic building blocks have been designed, i.e., full adders
(FAs). Then, based on the obtained results, the best 5 types
know as “approximate mirror adders” (AMA) [16] have
been selected and another 2 levels of approximations have

been added. This ended up with 20 designs with different
settings, based on 5 types and 4 levels of approximations,
which constitutes our approximate library. Design Type =
{AMA1, AMA2, AMA3, AMA4, AMA5}, while approxi-
mation Level/Degree = {D1, D2, D3, D4}, where D1 has 15
bits approximated out of the 32-bit result, while D2, D3, and
D4 have 16, 17, and 32 approximated bits, respectively

2- Training Data: Exhaustive simulation of 16-bit array mul-
tiplier includes 232 = 4.29 x 109 input combinations. Thus,
the training data for the 20 designs of the approximate library
includes 8.5x1010 instances. Each combination evaluates the
error distance (ED) which represents the difference between
the exact and approximate result as given by Eq. 1. However,
ED evaluates design accuracy for a single inputs only. Thus,
we have to evaluate average error metrics, such as peak signal
to noise ratio, which is the metric that we used to build the
DT-based design selector. Considering an approximate design
with two inputs, of n-bit each, where the exact result is (P )
and the approximate result is (P ′), some of the error metrics
of the approximate result include [17]:
• Error Distance (ED): The arithmetic difference between

the exact output and the approximate output for a given
input. ED can be given by:

ED = |P − P ′| (1)

• Mean Error Distance (MED): The average of ED values
for a set of outputs obtained by applying a set of inputs,
which is obtained as:

MED =
1

22n

22n∑
i=1

|EDi| (2)

• Mean Square Error (MSE): It is defined as the average
of the squared ED values:

MSE =
1

22n

22n∑
i=1

|Pi − P ′i |
2
=

1

22n

22n∑
i=1

|EDi|2 (3)

• Peak Signal-to-Noise Ratio (PSNR): The peak signal-to-
noise ratio is a fidelity metric used to measure the quality
of the output images, and given by:

PSNR = 10 ∗ log10(
22n

MSE
) (4)

Any of these metrics could be used to evaluate the quality
of approximation results based on the application. However,
in this work, we use PSNR in building the DT-based model,
which is applied to image and audio processing applications.

3- Quantization of Training Data: In order to evaluate
average error metrics, e.g., mean square error (MSE), peak
signal to noise ratio (PSNR) and normalized mean error
distance (NMED), a set of consecutive applied inputs should
be grouped together as a single cluster. For that, we propose
to consider 256 inputs as a single cluster. Thus, the training
data has 224x20 = 3.35x108 instances rather than 4.29x109.



Table I: Design Characteristics of the 16-bit Approximate
Library, including Power, Area, Delay and Power-Area-Delay
Product (PADP)

Design Degree Dynamic
Power(mW)

Area
(Slice)

Area
(LUT)

Delay
(ns) PADP Priority

AMA1 D1 290 166 552 18.297 3809.80 19
AMA1 D2 259 165 536 18.472 3353.76 17
AMA1 D3 230 151 487 13.620 1998.6 11
AMA1 D4 52 53 115 7.547 65.93 3
AMA2 D1 318 165 504 18.479 3931.26 20
AMA2 D2 300 153 483 18.690 3560.45 18
AMA2 D3 289 148 473 18.329 3289.49 15
AMA2 D4 98 80 207 8.221 231.22 5
AMA3 D1 309 156 451 17.796 3337.87 16
AMA3 D2 292 147 467 18.876 3204.95 14
AMA3 D3 271 133 415 17.134 2544.54 13
AMA3 D4 93 38 63 7.330 68.85 4
AMA4 D1 268 143 439 15.109 2356.64 12
AMA4 D2 249 128 423 14.434 1980.33 10
AMA4 D3 222 128 413 14.366 1725.39 8
AMA4 D4 32 27 34 6.787 13.25 1
AMA5 D1 287 128 413 14.366 1725.39 8
AMA5 D2 270 99 312 13.989 1552.36 7
AMA5 D3 241 93 255 13.343 1119.05 6
AMA5 D4 74 23 24 6.046 21.03 2
Exact - 473 183 603 19.008 7066.76 -

4- Pre-processing of Training Data: Data pre-processing is
an often neglected but a significant step in the data mining
process [18]. Building an efficient machine learning-based
model utilizing 3.35x108 training instances would be visionary
where we intend to design a model with low implementation
overhead, i.e., area, power and execution time. Thus, we
perform a multi-criteria data processing based on the char-
acteristics of our approximate library.

Table I shows the synthesis results, i.e., area, power and
delay, of the 20 approximate designs. Based on that, they are
prioritized based on their Power-Area-Delay Product (PADP).
The design with (Type=AMA4, Degree=D4) has the minimum
PADP which is 0.18% of the value of the exact multiplier
design. Thus, it has the highest priority which is 1. On the
other hand, the design with (Type=AMA2, Degree=D1) has
the maximum PADP which is 55.63% of the value of the exact
multiplier design. Thus, it has the least priority which is 20.
Such design prioritization is indispensable for the proposed
data pre-processing to reduce the size of the training data to
be manageable.

For every distinctive applied input, we examine the proposed
approximate designs to reduce their generated training data
based on their accuracy and priority. The pre-processing
includes the following steps:

• Discard a training instance if there exists a design with
the same or better accuracy and have a higher priority.
This reduction keeps 26.89% of the training instances.

• Eliminate training instances with very high accuracy,
e.g., PSNR > 70dB, if there exists another instance
with higher priority given that its PSNR > 70dB. This
reduction combined with the previous one accumulatively
conserves 16.93% of the training instances.

• Remove training instances with very low accuracy, e.g.,
PSNR ≤ 15dB, which is not acceptable in real applica-
tions. Thus, the cumulative reduced training data includes
9.64% of the original data.

Table II: The Number of Training Instances of each Approx-
imate Design after Pre-processing

AMA1 AMA2 AMA3 AMA4 AMA5
Degree1 264 12,677 7 441,404 1,859,393
Degree2 0 0 0 29,437 315,541
Degree3 0 0 0 75,752 16,761,883
Degree4 0 1,315,321 1,493,624 4,987,277 2,230,190

The remaining data includes ≈ 3.24 x 107 instances which
are used to build the proposed decision tree-based design
selector. Table II shows the number of training instances which
remains after reduction, for each approximate design.

5- Building Decision Tree-based Model: Such model func-
tions as a design selector which enables design adaptation
based on the applied inputs, where error distribution is input-
dependent [19]. In [8], we designed and evaluated various
machine learning (ML) models based on several algorithms,
i.e., linear regression (LM), decision tree (DT), random forest
(RF) and neural network (NN), developed in the statistical
computing language R [20]. These models represent the design
selector for our adaptive design. Then, for an 8-bit approx-
imate array multipliers, we implemented and evaluated two
versions of the design selector, based on decision tree and
neural network models. We discarded the linear regression and
random forest models since they have no performance benefits
over decision tree and neural network.

The built models have been evaluated for their accuracy and
execution time. Also, we evaluated their power, area, delay,
frequency and energy since hardware implementation of the
work is also considered besides the software implementation.
Based on the obtained results, the execution time of NN-based
model is 1.31X higher than the DT, while its average accuracy
is 98% of the accuracy achieved by the DT-based model. Other
design metrics, including power, slice look-up table (LUTs),
occupied slices, period and energy have a magnitude of
8.6X, 13.93X, 11.74X, 1.81 and 13.6X, respectively, compared
to the DT-based model. Surprisingly, in our case, the DT-
based model is better than the NN-based model in all design
characteristics including accuracy and execution time.

Since DT has proven superiority, in this work, for 16-bit ap-
proximate array multipliers, we implement and evaluate design
selector based on decision tree model, utilizing judiciously re-
duced training data. We use MATLAB’s Classification Learner
Toolbox [21] to build a decision tree-based model with an
accuracy of 83.9%. For the prediction, a response from the
decision tree is achieved with a minimum of 5 nodes and
a maximum of 9 nodes as shown in Figure 2. The simple
structure of the generated tree creates a negligible overhead
compared to the quality and performance achieved by the
proposed design. The full textual description of the generated
decision tree model can be found on https://github.com/hvg-
concordia/DTAAA. Next, we evaluate the model performance
based on audio and image blending applications.

IV. RESULTS AND DISCUSSION

This section evaluates the effectiveness of the proposed adap-
tive approximate design to assure output quality. It includes
the DT-based design selector within the library of 16-bit



Figure 2: The Structure of the Constructed DT-Model

Figure 3: Sequence Used to Sample Audio Files

approximate multipliers. Multimedia services are classified as
error-tolerant applications, while having a great impact on the
computer industry, e.g., video gaming and video streaming. We
implement audio and image blending based on the multiplica-
tion mode, where we monitor the results to measure its final
quality. For that, we perform 2x109 and 12x106 multiplication
operations for audio and image samples, respectively. We
execute the experimental work for a wide variation in the target
PSNR as well as the number of samples, which vary from 1
sample to the maximum possible value i.e., 2n. For every run,
the samples are averaged out and then passed to the DT-model
along with target PSNR for design prediction.

1- Audio Processing: Sounds are propagating waves that
could be saved in a binary format with a depth of 16-bit.
Such high number of bits per sample would be able to cover
a wide range of amplitudes with enhanced quality. We use
a database of WAV sound files which are available at [22].
For each used file, we perform data sampling where Figure 3
shows the sequence of sampling when an audio processing test
is conducted. Audio files are sampled in such a way to cover
a wide time-line of the audio while ensuring that the samples
are equidistant from each other. Figure 4 shows the obtained
PSNR for executing audio blending where the TOQ varies
from 15dB to 70dB. For each run, the number of samples, i.e.,
2n, varies from n=0 to n=17. Generally, all selected designs
have a satisfying final output quality compared to the TOQ.
Thus, the proposed methodology can assure the final output
quality. Moreover, we notice a clear variation in the obtained
output quality for a various number of samples and their
corresponding evaluation overhead.

2- Image Processing: Images are managed in a similar
fashion while being represented with three channels, i.e., Red,

Figure 4: TOQ versus Obtained Output Quality for Adaptive
Audio Blending

Green and Blue (RGB), of the same size, i.e., the number
of pixels. Each pixel has a binary representation with the
number of bits defining different unique colors, e.g., 16-bit red
channel means 216 unique red colors. For image processing
the sequence of sampling is shown in Figure 5, where the
sampling sequence would double the number of samples every
run. Figure 6 shows the obtained PSNR for executing image
blending where the TOQ varies from 15dB to 70dB. For
each run, the number of samples, i.e., 2n, varies from n=0
to n=12. Generally, all selected designs have a satisfying final
output quality compare to the TOQ, except the case when n=0,
i.e., one sample taken from each channel. Thus, the proposed
methodology can assure the final output quality, with a clear
variation in the obtained output quality for a various number of
samples. Similar to audio processing, image processing shows
that on average a higher number of samples would result in
either similar or inferior output quality. For instance, for a
target PSNR of 57dB to 60dB, n=12 resulted in a PSNR of
almost 64dB. On the other hand, with the same parameters
held in position, n=5 resulted in a much better PSNR of almost
93dB. Figure 7 shows an example of images that we used in
the blending operation.

Figure 5: Sequence Used to Sample Images

The obtained results show that the achieved PSNR is higher
than the TOQ because of the pre-processing step discussed in
Section III, which resulted in keeping designs that have better
quality while targeting the lowest PADP. Thus, image and



Figure 6: TOQ versus Obtained Output Quality for Adaptive
Image Blending

audio blending could be used together for full-video blending.
The designs we use have only 4 degrees of approximation.
However, additional degrees might be discovered and added
to the decision tree model so that the library would become
more significant and better results might be achieved.

V. CONCLUSION

The emerging approximate computing paradigm reduces
energy consumption and execution time of error-resilient ap-
plications by sacrificing the quality constraints. For a static
approximate design, when the input data varies, the associated
error magnitude varies accordingly, and thus it may reach
unacceptable levels for some inputs for a static design. In
this work, targeting approximate programs, we proposed and
implemented a novel fine-grained input-based adaptive design
based on decision tree models, which only use 10% of the
generated training data, that have the highest priority. The
proposed approach applies to both hardware and software
designs, where we were able to satisfy the TOQ with negligible
energy and delay overhead most of the time. Our ongoing
work seeks to expand the approximate library to encompass
other approximation techniques. For follow up work, we are
targeting a full hardware implementation of our proposed
system with different error-resilient applications.
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