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Abstract—The prominent advantages of photonics are high
bandwidth, low power and the possibility of better electromag-
netic interference immunity. As a result, photonics technology
is increasingly used in ubiquitous applications such as telecom-
munication, medicine, avionics and robotics. One of the main
critical requirements is to verify the corresponding functional
properties of these systems. In this perspective, we identify the
most widely used modeling techniques (e.g., transfer matrices,
difference equations and block diagrams) for the modeling and
analysis of photonic components. Considering the safety and cost
critical nature of the application domain, we discuss the potential
of using formal methods as a complementary analysis approach.
In particular, we propose a framework to formally specify
and verify the critical properties of complex photonic systems
within the sound core of a higher-order-logic theorem prover.
For illustration purposes, we present the formal specification
of a microring resonator based photonic filter along with the
verification of some important design properties such as spectral
power and filtering rejection ratio.

I. INTRODUCTION

Photonics is an extensive field of research which can be
referred to the technologies that deal with the manipulation
and application of light. Primary applications of photonics
have emerged in remote sensing [32], biomedical imaging [6],
communications [4], computing [25] and aerospace [23] to
name just a few. In particular, the use of photonics in short
distance communications offers the necessary improvements
in communication speed and power consumption. Photonics
has the potential to meet the future computing requirements
by interconnecting thousands of computing nodes with Ter-
abits/second links with an ultimate goal of Exaflops/second
[25]. Recently developed silicon photonics platforms open the
door for massive production of photonic devices using existing
CMOS fabrication technology [20]. As a result, the cost of
practical transmission systems has been significantly reduced,
playing a pivotal role in the acceptance of photonics integration
in diverse engineering systems.

The short time-to-market and cost associated with the
fabrication process, make it impractical to analyze the influ-
ence of design parameters on the properties of the devices
by successive fabrication. Moreover, the characterization of
prototypes is also a time consuming process and does not
unveil all of the internal behaviors of the device under test,
since all properties cannot be directly measured. Therefore, it
is indispensable to build detailed mathematical models which

further can be used for the exhaustive analysis to understand
the device operations and the dependence of device parameters.
One natural step is to identify some fundamental building-
blocks which are most widely used in practical photonic
systems. For example, microring resonators [12] and Mach-
Zehnder interferometer [27] can be considered as the core of
almost all optical integrated circuits. In the optics literature,
different researchers have proposed different models of the
same photonic components ranging from the detailed physical
equations to the more abstracted ones involving fewer param-
eters. Consequently, overall system models are analyzed using
well-known modeling approaches such as control systems
theory [17], signal processing [4] and dynamical system theory
[15] as shown in Figure 1.

Fig. 1: Modeling Approaches for Photonic Systems

The control systems theory provides a mathematically
robust set of tools for photonic system design, analysis, and
control. For example, cascading photonic components requires
to consider the feedback mechanism. Similarly, phtonic signal
processing can be conveniently modelled using the notion of
difference equations (i.e., as a feedback recurrence relation).
Finally, mathematical modeling of linear photonic systems
involves linear algebraic representation and can be efficiently
analyzed using the dynamical systems theory. However, control
theoretic and signal processing based modeling can be applied
at nearly any point in the system hierarchy, whether at the
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device, subsystem, or overall network level. Each of these three
modeling approaches provides the basis to analyze abstract
properties of photonic systems (Figure 1). For example, control
theoretic block diagram representations [17] can be used to
derive overall power and crosstalk effects. The system stability
and resonance can be analyzed using signal processing tech-
niques [4]. Similarly, spectral properties such as transmissivity
and reflectivity of light-waves can be described using the
matrix modeling of individual photonic components [15].

Traditionally, the design of photonic systems based on the
above mentioned modeling approaches has been done using
the paper-and-pencil proof methods. In particular, physical
equations characterizing optical systems (or components) are
transformed to control theoretic block diagrams, difference
equations or transfer matrices. However, the analysis of com-
plex photonic systems using paper-and-pencil based proofs is
error-prone, particularly for the case when a large number
of components and interconnections are used in the optical
circuits. Moreover, most of the underlying assumptions are not
specified explicitly which may lead to faulty system designs.
Many examples of erroneous paper-and-pencil based proofs are
available in the open literature of optics (e.g., the work reported
in [5] was later corrected in [19]). In recent times, high-speed
computing resources are actively used to perform simulation
based analysis using numerical algorithms [18], [12]. Be-
sides the huge memory and computational time requirements,
simulation cannot provide perfectly accurate results [8] due
to the discritization of continuous parameters and round-off
errors. Moreover, the algorithms behind these methods are not
rigorous and sound. The above mentioned inaccuracy problems
of traditional analysis methods are impeding their usage in
designing safety-critical photonic systems, where minor bugs
can lead to fatal consequences both in terms of monetary loss
and risk to human life. In particular, it is more important in the
applications where failures directly lead to safety issues such as
in aerospace as compared to telecommunication where failures
can lead to safety problems through some secondary events.
An example of such a critical application is Boeing F/A-18E,
for which the mission management system is linked using a
photonic network [31].

Formal methods [33] are computer based reasoning tech-
niques which allow accurate and precise analysis and thus have
the potential to overcome the limitations of accuracy, found in
traditional approaches. The main idea behind formal methods
based analysis of systems is to develop a mathematical model
for the given system and analyze this model using computer-
based mathematical reasoning, which in turn increases the
chances for catching subtle but critical design errors that are
often ignored by traditional techniques. The two major formal
methods techniques are model checking and theorem proving
(a brief overview of other formal methods techniques can be
found in [2]). Model checking [3] is an automated verification
technique for systems that can be expressed as finite-state
machines. On the other hand, higher-order logic theorem prov-
ing [9] is an interactive verification technique, but it is more
flexible and can handle a variety of systems. Nowadays, the use
of formal methods for high risk and safety-critical systems is
recommended in many different standards like the general IEC
61508 [14] and DO178-B [24] for aviation. Ever increasing
applications of photonics in safety-critical systems suggest
considering the application of formal methods in this field

as well. Due to the involvement of multivariate analysis and
complex-valued parameters, model checking cannot be used
to analyze hardware aspects of photonic systems. However,
higher-order logic theorem proving can be applied in photonics
due to its higher expressibility and the availability of well
developed theorem provers (e.g., HOL Light [7]). In fact
some preliminary work have been reported about the potential
to analyze optical systems. The pioneering work about the
formal analysis of optical waveguides has been reported in
[10]. In [28], a preliminary infrastructure has been developed
in the HOL Light theorem prover to verify some fundamental
properties (e.g., ray confinement or stability) of optical systems
based on ray optics. A more recent work about quantum
formalization of coherent light has been reported in [16]. All
of these papers describe the low level modeling of optical
components which is not of great interest in the context of
integrated photonic systems.

In this paper, we propose a formal framework to facilitate
the formal specification and verification of widely used inte-
grated photonic systems. Mainly we build upon our previous
work [30] about the transfer matrix modeling of photonic
components to widen the scope of formal methods based
analysis of photonic systems. In particular, we describe the
integration of generic block-diagram modeling [11] and Z-
transform [29] based analysis of difference equations to ana-
lyze basic photonic components with arbitrary parameters. An
exciting feature of the proposed framework is the reusability
which is an important metric to evaluate industrial implications
of any analysis tool. Finally, for illustration purposes, we
describe the control theoretic modeling of a photonic microring
resonator along with the verification of its important properties
such as spectral power and rejection ratio.

The rest of the paper is organized as follows: We provide a
brief overview of theorem proving and the HOL Light theorem
prover in Section II. Our proposed formal analysis framework
is described in Section III along with the highlights of the
higher-order logic formalization of transfer matrices, difference
equations and block diagrams. We describe the analysis of
a photonic microring resonator as an illustrative practical
application in Section IV. Finally, Section V concludes the
paper.

II. HIGHER-ORDER LOGIC-THEOREM PROVING

Theorem proving is concerned with the construction of
mathematical theorems by a computer program using axioms
and hypotheses. Theorem proving systems are widely used
in software and hardware verification. For example hardware
designers can prove different properties of a digital circuit
by using some predicates to model the circuits. Similarly,
a mathematician can prove the transitivity of real numbers
using the axioms of real number theory. The language of these
mathematical theorems or conjectures is logic, e.g., proposi-
tional logic, first-order logic or higher-order logic, depending
upon the expressibility requirement, for example, the use of
higher-order logic is advantageous over first-order logic in
terms of the availability of additional quantifiers and its high
expressiveness.

A theorem prover is a software in which mathematical
theories can be expressed with as much accuracy as pencil-
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and-paper, but with the precise control of the computer which
ensures that no mathematical mistake is involved. Concretely,
mathematical expressions (and not just equations) can be input
in the system which is able to understand its precise semantics,
and thus ascertain that no incorrect reasoning is applied. As
an example, a theorem prover will not allow to conclude
that “x

x = 1” unless it is first proved that x ̸= 0. No
computer algebra system will take care of such a subtlety
when simplifying some equation. This purely deductive aspect
provides the guarantee that every sentence proved in the
system is true (in particular, there is no approximation like in
computer algebra systems). When a mathematical or physical
theory is expressed inside a theorem prover, we say that
it is formalized. There are two types of provers: automatic
and interactive. In an interactive theorem prover, significant
user-computer interaction is required while automatic theorem
provers can perform different proof tasks automatically. The
main downside of automatic theorem provers is the lack of
expressiveness of the underlying logic, which limits their usage
in domains where complicated mathematics is involved (e.g.,
multivariate calculus).

HOL Light [7] is an interactive theorem proving environ-
ment for the construction of mathematical proofs in higher-
order logic. A theorem is a formalized statement that may be
an axiom or could be deduced from already verified theorems
by an inference rule. A theorem consists of a finite set Ω of
Boolean terms called the assumptions and a Boolean term S
called the conclusion. For example, “∀x.x ̸= 0 ⇒ x

x = 1”
represents a theorem in HOL Light. A HOL Light theory
consists of a set of types, constants, definitions, axioms and
theorems. HOL theories are organized in a hierarchical fashion
and theories can inherit the types, constants, definitions and
theorems of other theories as their parents. In the development
of the framework, presented in this paper, we make use of
the HOL Light theories of Boolean variables, real numbers,
transcendental functions and multivariate analysis. In fact,
one of the primary motivations of selecting the HOL Light
theorem prover for our work was to benefit from these built-in
mathematical theories. The proofs in HOL Light are based
on the concept of a tactic that breaks goals into simple
subgoals. There are many automatic proof procedures and
proof assistants available in HOL Light which help the user
in verifying the decidable parts of the proof automatically.

III. PROPOSED FRAMEWORK TO VERIFY PHOTONIC
SYSTEMS

Our main goal is to build a framework which allows the
systematic modeling and verification of basic photonic compo-
nents and systems. An overview of the proposed framework is
shown in Figure 2. The inputs to the proposed framework are
the physical description of photonic systems and the specifica-
tion of the desired properties. The first step is to represent the
physical description of the given system in higher-order logic.
It mainly requires the formal representation of the underlying
physical (electromagnetic) equations, difference equations (re-
currence relation among input and output) or block diagrams,
depending on the types of photonic components. Essentially,
it involves some new type definitions of photonic components
and some functions that simplify the manipulation of the

corresponding difference equations and block diagrams which
consists of arbitrary values of the parameters (e.g., coupling
constants, etc.). This step also requires the formalization of
some predicates ensuring that the constructed formal model
indeed represents a real system. The next step is to build the
necessary machinery to conveniently analyze phtonic system
models (i.e., physical equations, difference equations or block
diagram) as described in the previous step. We can divide this
step into three tasks: 1) Derivation of the transfer matrix (if
possible) for all individual components and compose them
to form the system model described in the form of field
equations; 2) Formalizing the Z-transform which is a foremost
requirement to analyze difference equations; 3) Formalizing
the transfer function based on the block diagram representa-
tion of the photonic system. Note that this process requires
theories of lists, complex numbers and multivariate analysis
which are already available in HOL Light. Building upon
these steps, the next requirement is to derive some generic
properties of the photonic systems. For example, it is quite
handy to prove theorems describing total transmissivity or
reflectivity of light at input and output ports, or total power
and rejection ratio of a photonic processor. Finally, we develop
a library of frequently used optical components such as pho-
tonic mircoring resonators. This library greatly facilitates the
formalization of new photonic systems which are composed
of these components as shown in Figure 2. The output of
the proposed framework is the formal proof that certifies that
the system implementation meets its specification. Moreover,
theorem proving based verification provides valuable insights
and corner cases, in case a given property cannot be proved.

Next we present the foundational concepts of our HOL
Light formalization related to the different steps of the pro-
posed framework.

A. Physical Modeling and Formalization of Transfer Matrices

One of the primary analytical approaches to model pho-
tonic systems is to explicitly write the electromagnetic field
equations for each component of the corresponding system.
Then these equations are transformed into a vector-matrix
model relating input and output fields. This approach is widely
known as the transfer matrix modeling method [26] and offers
the benefit of using complex-linear algebra for the analysis
of complicated photonic systems. In the photonics literature,
different fundamental components have been considered as
a building block of integrated photonics (e.g., microring
resonators and Mach-Zehnder interferometer [27]). However,
in this paper, we consider the transfer matrix modeling of
microring resonators due to their widespread usage as optical
filters, optical switches, optical transistors and biosensors [12].
Photonic microresonators confine light in a closed structure
by the process of total internal reflection to achieve desired
functionalities such as light amplification and frequency se-
lection. A single microring resonator can be characterized by
its reflectivity (r), transmissivity (t), cavity length (Lc), power
attenuation (α), wavelength λ, and effective waveguide index
(neff ) as shown in Figure 3.

In order to facilitate the formal reasoning process, we
represent a microring resonators as a new type definition in
HOL Light as follows:
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Fig. 2: Formal Framework to Verify Photonic Systems

Definition 1 (Microring Resonator (MRR)):
new_type_abbrev "mrr =

R × R × R × R× R × R"

Here, the type mrr is a composition of six real numbers
(r,t,Lc,α,λ,neff ) which are necessary parameters to model a
single resonator as described above.

Fig. 3: Schematic Structure of Miroring Resonator

If a single ring is coupled to two bus waveguides, then
the configuration represents a four-port structure as shown in
Figure 3(ii), where a,b,c,d are the input, throughput, dropped
and the added electromagnetic fields, respectively. We define a
resonator structure by an enumerated data type in HOL Light
as follows:

Definition 2 (Microring Resonator Structure):
define_type "mrr_structure =

two_port | four_port"

Next, we define what is the valid behavior of a MRR
in terms of the relation between resonator parameters
(r,t,Lc,α,λ,neff ) and field parameters (a,b,c,d) at the input

and the output. For the one-port MRR (Figure 3(i)), it is
necessary to explicitly define the relation between fields inside
and outside the resonator. On the other hand, it is sufficient
to model the physical behavior using the two input and two
output fields in case of a four-port MRR (Figure 3(ii)) [15].
Then the predicate is defined by case analysis on the MRR
structure:

Definition 3 (Valid Behavior in MRR Structures):
⊢(is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc,α,λ, neff):mrr four_port ⇔
let δ = ( 2∗πλ ) ∗ neff ∗ Lc and τ = exp(−α∗Lc

2 ) in

let R = − r∗(1−τ∗exp(−j∗δ))
1−r2∗τ∗exp(−j∗δ) and

T = − t2∗
√

(τ)∗exp(− j∗δ
2 )

1−r2∗τ∗exp(−j∗δ) in

d = 1
R ∗ c − T

R ∗ a ∧ b = T
R ∗ c + R2−T2

R ∗ a)∧
(is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc,α,λ, neff):mrr two_port ⇔
c = − 1

j∗t ∗ (a+ r ∗ b) ∧ d = 1
j∗t ∗ (r ∗ a+ b))

Here, is_valid_behavior_in_mrr takes the four
fields parameters (a, b, c, d ∈ C), a microring resonator
(r, t, Lc,α,λ, neff) and mrr_structure, and returns the
relation among these parameters. Note that j represents an
imaginary unit and j2 = −1. The parameter δ represents the
frequency-dependent phase shift, τ represents the waveguide
loss effect, T and R represent the output field in the backward
direction and forward direction, respectively.

The transfer matrix modeling [26] is the most widely used
approach to analytically model MRRs [2]. The main charac-
teristics of this technique are to decompose photonic circuits
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in the form of series of MRRs and then analyzing different
behaviors using complex matrix algebra. Now, equipped with
the above formal definitions (Definitions 1-3), we verify the
transfer matrix relation of MRRs in case of two-port and four-
port structures [15].

Theorem 1 ( MRR Matrix for Two-Port Structure):
⊢ ∀a b c d r t Lc α λ neff.

is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc,α,λ, neff):mrr two_port =⇒
[
c
d

]
= 1

j∗t

[
−1 −r
r 1

]
**

[
a
b

]

On the similar lines, we have also derived the matrix
model of MRR in case of four port structure. Morover, a
comprehensive formalization to compose multiple resonators
in a 2-D structure, for the verification of transmissivity and
refelectivity of light radiations, have also been developed and
more details can be found in [30].

B. Difference Equations and Formalization of Z-Transform

The most fundamental concept behind the signal processing
capabilities of photonic components is multiple and temporal
interference of delayed optical signals. By controlling the am-
plitudes and the phase of the interfered signals, the information
in the form of optical signal can be processed. A schematic
representation of an arbitrary photonics circuit is shown in
Figure 4. The input optical signal is launched on the left
side and split into multiple waveguides. The individual optical
signal experiences equally different time delays represented
by Z−1. The amplitude and phase changes are represented by
coefficients αi and βi. These signals are combined to generate
the output signal at the output port. A difference equation char-
acterizes the behavior of a particular phenomena over a period
of time. Such equations are widely used to mathematically
model complex dynamics of discrete-time systems. Indeed, a
difference equation can capture the dynamics of the circuit
representation described in Figure 4, as follows:

y[n] =
M∑

i=1

αiy[n− i] +
N∑

i=0

βix[n− i] (1)

where αi and βi are input and output coefficients. The output
y[n] is a linear combination of the previous M output samples,
the present input x[n] and N previous input samples. In case
of a time-invariant filter, αi and βi are considered constants
(either complex (C) or real (R)) to obtain the output re-
sponse according to the given specifications. Z-transform [22]
provides a mechanism to map discrete-time signals over the
complex plane, i.e., the z-domain. This transform is a powerful
tool to solve linear difference equations by transforming them
into algebraic operations in z-domain.

Mathematically, Z-transform can be defined as a function
series as follows:

X(z) =
∞∑

n=0

f [n]z−n (2)

where f [n] is a complex-valued function (f : N → R) and
the series is defined for those z ∈ C for which the series is

Fig. 4: Schematic Representation of Photonic Signal
Processing Component

convergent. The application of Z-transform properties of time
delay and advance results in the following transformation of
difference representation of input as follows:

Z(
M∑

i=0

αix[n− i]) z = X(z)
M∑

i=0

αiz
−n (3)

We formalize the difference equation as follows:

Definition 4 (Difference Equation):
⊢ ∀ N α_lst f x.
difference_eq M α_lst f x =∑M

t=0 (λt. EL t α_lst * f (x - t))

The function difference eq accepts the order (M) of the
difference equation, a list of coefficients α lst, a causal
function f and the variable x. It utilizes the function EL i L,
which returns the ith element of a list L, to generate the
difference equation corresponding to the given parameters.
Now, we can formalize the Z-transform function (Equation 2)
in HOL Light, as follows:

Definition 5 (Z-Transform):
⊢ ∀ f z. z_transform f z =

infsum (from 0) (λ n. f n * z−n)

where the z transform function accepts two parameters: a
function f : N → C and a complex variable z : C. It returns
a complex number which represents the Z-transform of f
according to Equation (2).

We verified a number of properties of Z-transform such as
linearity, time scaling, differentiation, time advance and time
delay which can be used to transform difference equations
into z-domain and help to obtain the analytical solution.
For the sake of conciseness, we do not provide these veri-
fication details in this paper and more detailed presentation
and discussion about these properties can be found in [29].
However, we present an important property which describes
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the transformation of difference equation into its corresponding
z-domain representation, as follows:

Theorem 2 (Z-Transform of Difference Equation):
⊢ ∀ M α_lst f x. z ∈ ROC f ∧ z ̸= Cx(&0) ∧

(is_causal f m) =⇒
z_transform (λx.
difference_eq M α_lst f x) z =
(z_transform f z) *
(
∑M

i=0 (λ n. EL n α_lst * z−n))

where ROC represents the region of convergence which pro-
vides the set of all the values for which z-transform converges.

C. Block Diagrams and Formalization of Transfer Functions

Dynamics of many engineering systems can be represented
by the graphical representation of interconnected modules of
those systems. Block diagram [21] modeling is a graphical
method to describe the overall behaviour of a control system.
All subsystems (or components) are represented as blocks,
representing the relation among the input and output signals.
These blocks can be arranged in various ways depending
on the physical description of the underlying system. When
multiple subsystems are connected such that the output of one
subsystem serves as the input to the next, these subsystems
are said to be in cascade form as shown in Figure 5 (a).
On the other hand, parallel subsystems have a common input
and their outputs are summed together (Figure 5 (b)). The
feedback mechanism can be represented using feeding the
output signals back to the input of the system (Figure 5 (c)).
Inspired by the generic nature of the block diagram method,
many researchers have used them to model practical photonic
systems, e,g., photonic filters [4]. The main idea is to model
the complicated subsystems of photonic systems as blocks
which further can be reduced using the simplification rules
as described in Figure 5. Generally, the reduced model is
called the transfer function which represents the mathematical
relation among the output and input of the system. Based on
the transfer function, many critical properties of the system
can be verified such as stability (bounded-input and bounded-
output), power spectrum and delay dynamics of the system.

We next provide some formal definitions corresponding to
the basic building blocks of control systems given in Figure
5. The availability of these definitions provide the foundations
to formalize the block diagrams of any control system. The
transfer function of two subsystems connected in series (or
cascaded configuration) can be formalized as:

Definition 6 (Series Connection):
⊢ ∀ Xi. series [X1; X2;...; XN] =

∏N
i=1 Xi

where the function series accepts a list of complex numbers,
which represent the transfer functions of individual subsys-
tems, and recursively returns their product.

The summation junction is an addition module that adds
the transfer functions of all the incoming branches.

Definition 7 (Summing Junction):
⊢ ∀ Xi. sum_j [X1; X2;...; XN] =

∑N
i=1 Xi

Next, we define the feedback function as follows:

Definition 8 (Feedback):
⊢ ∀ X Y. feedback X Y =

series [X;
∑∞

k=0 branch X Y k]

where the function feedback accepts the forward path
transfer function X and the feedback path transfer function
Y and returns the net transfer function by forming the series
network of the summation of all the possible infinite branches
and the final forward path transfer function.

Fig. 5: Some Block Diagram Simplification Rules

In order to provide the reasoning support for the above
mentioned definitions, and thus minimize human interaction
during the formal verification of the overall transfer function,
we prove the following theorems.

Theorem 3 (Feedback Simplification):
⊢ ∀ X Y. ∥X * Y∥ < 1 =⇒

feedback X Y =
X

1− X ∗ Y
where ∥ . ∥ represents the complex norm which is available in
the multivariate analysis libraries of HOL Light.

Theorem 4 (Feedback Loop Simplification Rule):
⊢ ∀ X Y Z. ∥X * Y∥ + ∥X * Z∥ < 1 ∧

∥X * Y∥ < 1 =⇒
feedback X (sum_j (pickoff 1 [Y;Z])) =
feedback (feedback X Y) Z

where the function pickoff represents a submodule con-
nected to a parallel branch of the submodules. Similarly, more
helping theorems about the simplification of block diagrams
and equivalences among different structure have been verified,
where more details can be found in [1].

IV. APPLICATION: SPECTRAL RESPONSE OF A PHOTONIC
MICRORING RESONATOR

The spectral response describes the sensitivity of the pho-
tonic components to the optical radiation of different wave-
lengths. Generally, the spectral response of photonic compo-
nents can be analyzed by constructing an equivalent control
theoretic model of the photonic components. The main task is

567



to compute the ratio of the output and input field intensities,
which is equivalent to the transfer function of block diagram
representation of that photonic system. We consider the four
port configuration of the MRR which consists of one ring and
two waveguides linked using the directional couplers [13]. The
description of the couplers and waveguides that make up the
microresonator can be combined into a full model in the form
of a block diagram as shown in Figure 6.

Fig. 6: Control Theoretic Model of an MRR

The four ports of the resonator are named as input, through,
add and drop. The spectral response of this resonator model
can be divided into two parts: 1) The drop response, which
signifies the power fraction of the light that is transferred by
the resonator from the In port to the Drop port as a function of
the wavelength of this light; 2) The through response, which
signifies the power fraction of the light that is extracted by the
resonator from the In port to the Through port. The explicit
path description of the drop and through response is shown
in Figures 7(a) and 7(b), respectively. Next, we only consider
the drop response and present the formal modeling and the
verification of its power and rejection ratio.

Definition 9 (MRR Drop Response):
⊢ ∀ phi xr k1 k2 u1 u2.
mrr_drop_response phi xr k1 k2 u1 u2 =
series[-j*k1;
feedback ((exp(-j*phi/2))*sqrt (xr))
(series [u1;
exp(-j* phi/2)*(sqrt (xr)); u2]);
-j*k2]

where the function mrr_drop_response takes six param-
eters of the MRR and returns a complex value describing the
block diagram representation as shown in Figure 7(a).

The power of the drop response can be defined as the
magnitude (square of the complex norm) of the transfer
function as follows:

Definition 10 (MRR Drop Response Power):
⊢ ∀ phi xr k1 k2 u1 u2.
drop_response_power phi xr k1 k2 u1 u2 =
∥mrr_drop_response phi xr k1 k2 u1 u2∥2

One of the most important parameters in photonic filter
design is the rejection ratio which quantifies the ability to

reject unwanted signals. The filter rejection ratio of a microring
resonator can be defined as the ratio of the power that is trans-
ferred on resonance (phi = 2π) and the power that is transferred
by the resonator when it is completely off resonance (phi = π).
We formally encode this description in HOL Light as follows:

Definition 11 (Rejection Ratio):
⊢ ∀ xr k1 k2 u1 u2.
rejection_ratio xr k1 k2 u1 u2 =
10*log *
drop_response_power 2*π xr k1 k2 u1 u2
drop_response_power π xr k1 k2 u1 u2

where rejection ratio is defined in decibel (DB) units which
is a logarithmic scale used to express the ratios of two
physical quantities. Our next task is to formally derive generic

Fig. 7: The Drop Response of MRR

expressions for the above mentioned properties. As a first step,
we verify the equivalent transfer function of the drop response
as follows:

Theorem 5 (Transfer Function):
⊢ ∀ phi xr k1 k2 u1 u2.
0 < xr ∧ ∥xr * u1 * u2∥ < 1 =⇒
mrr_drop_response phi xr k1 k2 u1 u2 =

-(k1*k2)*exp(-j* phi/ 2) * sqrt (xr)
1 - u1*u2*exp(-j* phi) * xr

where both assumptions are required to evaluate the feedback
loops. We prove the above result using Theorems 3 and 4. We
next utilize Theorem 5 to verify the analytical result for the
MRR power and rejection ratio.

Theorem 6 (Drop Response Power Verification):
⊢ ∀ phi xr k1 k2 u1 u2.
0 < xr ∧ ∥xr * u1 * u2∥ < 1 =⇒
drop_response_power phi xr k1 k2 u1 u2 =

(k1*k2)2*xr

(1-u1*u2*xr)2+4*k1*k2*cexp(-phi)*sin
2(phi/2)

Theorem 7 (Rejection Ratio):
⊢ ∀ xr k1 k2 u1 u2.
0 < xr ∧ ∥xr * u1 * u2∥ < 1 =⇒
rejection_ratio xr k1 k2 u1 u2 =

10*log*
(1 + u1*u2*xr)2

(1 - u1*u2*xr)2

This completes our formal verification of the spectral
response of an MRR which is widely used for the industrial in-
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tegrated photonics applications. The power and rejection ratio
expressions have been verified under the general parameters
of the MRR structure (e.g., u1, u2, etc.) which is not possible
in the case of simulation [13], where these properties can
only be verified for particular values. Note that the analysis
presented in this paper is only for one MRR, however, our
formalization is generic and can be applied for cascaded
applications where N resonators are arranged in series, in
parallel or in a mixed configuration [13]. Another benefit
of the theorem proving based approach is to unveil all the
hidden assumptions required to verify the desired property of
the system which are often ignored by paper-and-pencil based
proofs. For example, both assumptions mentioned in Theorems
5, 6 and 7 are not mentioned in [13]. We have identified similar
critical missing assumptions during the formal verification of
2-D MRR based filters reported in [30]. Considering the safety-
critical applications of photonic systems, such an analysis can
be very dangerous and thus may lead to fatal consequences.
On the other hand, theorem proving can be used to validate
paper-and-pencil based proofs and certify the results obtained
by simulation. However, theorem proving is not popular in
photonics industry due to several factors such as unfamiliarity
of formal methods by physicists and the high cost of using
formal methods. We believe that the work reported in this
paper can be considered as a one step towards the long term
goal of reducing the gap among photonics and formal methods
communities. Moreover, continuous work in this direction
can result in more formalized libraries and verified photonic
components which can ultimately ease the process of adapting
theorem proving in the fastest growing high-tech photonics
industries worldwide.

V. CONCLUSION

In this paper, we discussed the emergence of photonics and
its impact on industrial applications. In particular, we provided
a brief overview of different modeling approaches (e.g., trans-
fer matrices, signal processing and control theory) used for
various integrated photonic components and systems. We also
described the fundamental formalizations of transfer matrices,
difference equations and block diagrams and how they can be
applied to photonics. Lastly, we demonstrated the potential use
of our proposed framework by the formal verification of some
properties (i.e., spectral power and rejection ratio) of a widely
used photonic microring resonator.
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