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Abstract. One of the most important concepts in probability theory is
that of the expectation of a random variable, which basically summarizes
the distribution of the random variable in a single number. In this pa-
per, we develop the basic techniques for analyzing the expected values of
discrete random variables in the HOL theorem prover. We first present
a formalization of the expectation function for discrete random variables
and based on this definition, the expectation properties of three com-
monly used discrete random variables are verified. Then, we utilize the
definition of expectation in HOL to verify the linearity of expectation
property, a useful characteristic to analyze the expected values of proba-
bilistic systems involving multiple random variables. To demonstrate the
usefulness of our approach, we verify the expected value of the Coupon
Collector’s problem within the HOL theorem prover.

1 Introduction

Probabilistic techniques are increasingly being used in the design and analysis of
software and hardware systems, with applications ranging from combinatorial op-
timization and machine learning to communication networks and security proto-
cols. The concept of a random variable plays a key role in probabilistic analysis.
The sources of randomness associated with the system under test are modeled as
random variables and then the performance issues are judged based on the prop-
erties of the associated random variables. One of the most important properties of
random variables is their expectation or expected value. The expectation basically
provides the average of a random variable, where each of the possible outcomes of
this random variable is weighted according to its probability.

Conventional simulation techniques are not capable of conducting the prob-
abilistic analysis in a very efficient way. In fact, simulation based techniques
require enormous amounts of numerical computations to generate meaningful
results and can never guarantee exact answers. On the contrary, formal meth-
ods are capable of providing exact answers in this domain, if the probabilistic
behavior can be modeled using a formalized semantics and we have the means
to reason about probabilistic properties within a formalized framework.

Hurd’s PhD thesis [9] is a pioneering work in regards to the modeling of prob-
abilistic behavior in higher-order-logic. It presents an extensive foundational
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development of probability, based on the mathematical measure theory, in the
higher-order-logic (HOL) theorem prover. This formalization allows us to manip-
ulate random variables and reason about their corresponding probability distri-
bution properties in HOL. The probability distribution properties of a random
variable, such as the Probability Mass Function (PMF), completely characterize
the behavior of their respective random variables. It is frequently desirable to
summarize the distribution of a random variable by its average or expected value
rather than an entire function. For example, we are more interested in finding
out the expected value of the runtime of an algorithm for an NP-hard problem,
rather than the probability of the event that the algorithm succeeds within a
certain number of steps.

In this paper, we develop the basic techniques for analyzing the expected
values of discrete random variables in the HOL theorem prover. To the best
of our knowledge, this is a novelty that has not been presented in the open
literature so far. We chose HOL for this purpose in order to build upon the
verification framework proposed in [9]. Discrete random variables, such as the
Uniform, Bernoulli, Binomial and Geometric, are widely used in a number of
probabilistic analysis applications, e.g., analyzing the expected performances of
algorithms [13] and efficiency of cryptographic protocols [12], etc. Most of these
random variables are also natural-valued, i.e., they take on values only in the
natural numbers, N = {0, 1, 2, · · ·}. In order to speed up the formalization and
verification process and to be able to target real life applications, we are going
to concentrate in this paper on formalizing the expectation for this specific class
of discrete random variables.

We first present a formal definition of expectation for natural-valued discrete
random variables. This definition allows us to prove expectation properties for
individual discrete random variables in HOL. To target the verification of ex-
pected values of probabilistic systems involving multiple random variables, we
utilize our formal definition of expectation to prove the linearity of expectation
property [10]. By this property, the expectation of the sum of random variables
equals the sum of their individual expectations

Ex[
n∑

i=1

Xi] =
n∑

i=1

Ex[Xi] (1)

where Ex denotes the expectation function. The linearity of expectation is one
of the most important properties of expectation as it allows us to verify the
expectation properties of random behaviors involving multiple random variables
without going into the complex verification of their joint probability distribu-
tion properties. Thus, its verification is a significant step towards using the HOL
theorem prover as a successful probabilistic analysis framework. In order to il-
lustrate the practical effectiveness of the formalization presented in this paper,
we analyze the expectation of the Coupon Collector’s problem [13], a well know
commercially used algorithm, within the HOL theorem prover. We first formalize
the Coupon Collector’s problem as a probabilistic algorithm using the summa-
tion of a list of Geometric random variables. Then, the linearity of expectation
property is used to verify its corresponding expected value.
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The rest of the paper is organized as follows: Section 2 gives a review of the
related work. In Section 3, we summarize a general methodology for modeling
and verification of probabilistic algorithms in the HOL theorem prover. Then, we
present the formalization of the expectation function for natural-valued discrete
random variables along with the verification of expectation properties of a few
commonly used discrete distributions in Section 4. The results are found to
be in good agreement with existing theoretical paper-and-pencil counterparts.
Section 5 presents the verification of the linearity of expectation property. The
analysis of the Coupon Collector’s problem is presented in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

Nȩdzusiak [14] and Bialas [2] were among the first ones to formalize some prob-
ability theory in higher-order-logic. Hurd [9] extended their work and developed
a framework for the verification of probabilistic algorithms in HOL. He demon-
strated the practical effectiveness of his formal framework by successfully ver-
ifying the sampling algorithms for four discrete probability distributions, some
optimal procedures for generating dice rolls from coin flips, the symmetric sim-
ple random walk and the Miller-Rabin primality test based on the corresponding
probability distribution properties. Building upon Hurd’s formalization frame-
work, we have been able to successfully verify the sampling algorithms of a few
continuous random variables [7] and the classical cumulative distribution func-
tion properties [8], which play a vital role in verifying arbitrary probabilistic
properties of both discrete and continuous random variables. The current paper
also builds upon Hurd’s framework and presents an infrastructure that can be
used to verify expectation properties of natural-valued discrete random vari-
ables within a higher-order-logic theorem prover.

Richter [15] formalized a significant portion of the Lebesgue integration theory
in higher-order-logic using Isabelle/Isar. In his PhD thesis, Richter linked the
Lebesgue integration theory to probabilistic algorithms, developing upon Hurd’s
[9] framework, and presented the formalization of the first moment method. Due
to its strong mathematical foundations, the Lebesgue integration theory can be
used to formalize the expectation of most of the discrete and continuous random
variables. Though, one of the limitations of this approach is the underlying com-
plexity of the verification using interactive higher-order-logic theorem proving.
It is not a straightforward task to pick a random variable and verify its expec-
tation property using the formalized Lebesgue integration theory. Similarly, the
analysis of probabilistic systems that involve multiple random variables becomes
more difficult. On the other hand, our formalization approach for the expecta-
tion function, is capable of handling these kind of problems for discrete random
variables, as will be demonstrated in Sections 4 and 6 of this paper, but is limited
to discrete random variables only.

Expectation is one of the most useful tools in probabilistic analysis and there-
fore its evaluation with automated formal verification has also been explored in
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the probabilistic model checking community [1,16]. For instance, some proba-
bilistic model checkers, such as PRISM [11] and VESTA [17], offer the capabil-
ity of verifying expected values in a semi-formal manner. In the PRISM model
checker, the basic idea is to augment probabilistic models with cost or rewards:
real values associated with certain states or transitions of the model. This way,
the expected value properties, related to these rewards, can be analyzed by
PRISM. It is important to note that the meaning ascribed to these properties
is, of course, dependent on the definitions of the rewards themselves and thus
there is a significant risk of verifying false properties. On the other hand, there is
no such risk involved in verifying the expectation properties using the proposed
theorem proving based approach due to its inherent soundness.

Probabilistic model checking is capable of providing exact solutions to prob-
abilistic properties in an automated way though; however, it is also limited to
systems that can only be expressed as a probabilistic finite state machine. In
contrast, the theorem proving based probabilistic verification is an interactive
approach but is capable of handling all kinds of probabilistic systems includ-
ing the unbounded ones. Another major limitation of the probabilistic model
checking approach is the state space explosion [3], which is not an issue with the
proposed theorem proving based probabilistic analysis approach.

3 Verifying Probabilistic Algorithms in HOL

This section presents the methodology, initially proposed in [9], for the formaliza-
tion of probabilistic algorithms, which in turn can be used to represent random
variables as well. The intent is to introduce the main ideas along with some
notation that is going to be used in the next sections.

The probabilistic algorithms can be formalized in higher-order logic by think-
ing of them as deterministic functions with access to an infinite Boolean se-
quence B

∞; a source of infinite random bits [9]. These deterministic functions
make random choices based on the result of popping the top most bit in the
infinite Boolean sequence and may pop as many random bits as they need for
their computation. When the algorithms terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by other
programs. Thus, a probabilistic algorithm which takes a parameter of type α
and ranges over values of type β can be represented in HOL by the function

F : α → B∞ → β × B∞

For example, a Bernoulli(1
2 ) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs can
also be expressed in the more general state-transforming monad where states are
infinite Boolean sequences.
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� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = let (x,s’)← f(s) ∈ g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition,
and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s,stl s).
The work in [9] also presents some formalization of the mathematical measure

theory in HOL, which can be used to define a probability function P from sets
of infinite Boolean sequences to real numbers between 0 and 1. The domain
of P is the set E of events of the probability. Both P and E are defined using
the Carathéodory’s Extension theorem [18], which ensures that E is a σ-algebra:
closed under complements and countable unions. The formalized P and E can
be used to prove probabilistic properties for probabilistic programs such as

� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} rep-
resents a set of all x that satisfy the condition C in HOL.

The measurability and independence of a probabilistic function are important
concepts in probability theory. A property indep, called strong function indepen-
dence, is introduced in [9] such that if f ∈ indep, then f will be both measurable
and independent. It has been shown in [9] that a function is guaranteed to pre-
serve strong function independence, if it accesses the infinite Boolean sequence
using only the unit, bind and sdest primitives. All reasonable probabilistic
programs preserve strong function independence, and these extra properties are
a great aid to verification.

The above mentioned methodology has been successfully used to verify the
sampling algorithms of a few discrete random variables based on the corre-
sponding probability distribution properties [9]. In the current paper, we further
strengthen this particular higher-order-logic probabilistic analysis approach by
presenting the formalization of an expectation function, which can be utilized
to verify expectation properties for discrete random variables.

4 Expectation for Discrete Distributions

There are mainly two approaches that can be used to formalize the expected
value of a random variable in a higher-order-logic theorem prover [10]. Since a
random variable is a real-valued function defined on the sample space, S, we
can formalize expectation in terms of the probability space (S, F, P ), where F is
the sigma field of subsets of S, and P is the probability measure. This approach
leads to the theory of abstract Lebesgue integration. Richter [15] formalized
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a significant portion of the Lebesgue integration theory in higher-order-logic.
Richter’s formalization paves the way to manipulate expected values in a higher-
order-logic theorem prover but leads to a very complex verification task when it
comes to verifying expectation properties of probabilistic systems that involve
multiple random variables.

An alternate approach for formalizing the expectation of a random variable
is based on the fact that the probability distribution of a random variable X ,
defined on the real line, can be expressed in terms of the distribution function of
X . As a consequence, the expected value of a natural-valued discrete random
variable can be defined by referring to the distribution of the probability mass
on the real line as follows

Ex[X ] =
∞∑

i=0

iPr(X = i) (2)

where Pr denotes the probability. The above definition only holds if the summa-
tion, carried over all possible values of X , is convergent, i.e.,

∑∞
i=0 |i|Pr(X = i)

< ∞.
We are going to follow the second approach. This decision not only simplifies

the formalization task of expectation for discrete random variables considerably,
when compared to the approach involving Lebesgue integration, but also aids
in the verification of expectation properties of probabilistic systems that involve
multiple random variables in a straight forward manner. The expected value
of the natural-valued discrete random variables, given in Equation 2, can be
formalized in HOL follows

Definition 1. Expectation of natural-valued Discrete Random Variables
� ∀ X. expec X = suminf (λn. n P{s | fst(X s) = n})

where suminf represents the HOL formalization of the infinite summation of a
real sequence [6]. The function expec accepts the random variable X with data
type B∞ → (natural × B∞), and returns a real number.

Next, we build upon the above definition of expectation to verify the expecta-
tion properties of Uniform(n), Bernoulli(p) and Geometric(p) random variables
in HOL. These random variables have been chosen in such a way that each one
of them ranges over a different kind of set, in order to illustrate the generality
of our definition of expectation.

4.1 Uniform(n) Random Variable

The Uniform(n) random variable assigns equal probability to each element in the
set {0, 1, · · · , (n − 1)} and thus ranges over a finite number of natural numbers.
A sampling algorithm for the Uniform(n) can be found in [9], which has been
proven correct by verifying the corresponding PMF property in HOL.

� ∀ n m. m < n ⇒ P{s | fst(prob unif n s) = m} = 1
n
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where prob unif represents the higher-order-logic function for the Uniform(n)
random variable. The first step towards the verification of the expectation prop-
erty of discrete random variables that range over a finite number of natural
numbers, say k, is to transform the infinite summation of Definition 1 to a finite
summation over k values. This can be done in the case of the Uniform(n) ran-
dom variable by using the above PMF property to prove the fact, for all values
of n greater than 0, that the Uniform(n) random variable never acquires a value
greater than or equal to n.

� ∀ n m. (suc n) ≤ m ⇒ P{s | fst(prob unif (suc n) s) = m} = 0

This property allows us to rewrite the infinite summation of Definition 1,
for the case of the Uniform(n) random variable, in terms of a finite summation
over n values using the HOL theory of limit of a real sequence. The expectation
property can be proved now by induction over the variable n and simplifying the
subgoals using some basic finite summation properties from the HOL theory of
real numbers along with the PMF of the Uniform(n) random variable.

Theorem 1. Expectation of Uniform(n) Random Variable
� ∀ n. expec (λs. prob unif (suc n) s) = n

2

4.2 Bernoulli(p) Random Variable

Bernoulli(p) random variable models an experiment with two outcomes; success
and failure, whereas the parameter p represents the probability of success. A
sampling algorithm of the Bernoulli(p) random variable has been formalized
in [9] as the function prob bern such that it returns True with probability
p and False otherwise. It has also been verified to be correct by proving the
corresponding PMF property in HOL.

� ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P{s | fst(prob bern p s)} = p

The Bernoulli(p) random variable ranges over 2 values of Boolean data type.
The expectation property of these kind of discrete random variables, which range
over a finite number of values of a different data type than natural numbers, can
be verified by mapping them to the natural line. In the case of Bernoulli(p) ran-
dom variable, we redefined the function prob bern such that it returns natural
numbers 1 and 0 instead of the Boolean quantities True and False respectively,
i.e., the range of the random variable was changed from Boolean data type to
natural data type. It is important to note that this redefinition does not change
the distribution properties of the given random variable. Now, the verification
of the expectation can be handled using the same procedure used for the case of
random variables that range over a finite number of natural numbers. In the case
of Bernoulli(p) random variable, we were able replace the infinite summation of
Definition 1 with the summation of the first two values of the corresponding real
sequence using the HOL theory of limit of a real sequence. This substitution
along with the PMF property of the Bernoulli(p) random variable and some
properties from the HOL theories of real and natural numbers allowed us to
verify the expectation of the Bernoulli(p) in HOL.
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Theorem 2. Expectation of Bernoulli(p) Random Variable
� ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bernN p s) = p

where the function prob bernN represents the Bernoulli(p) random variable that
ranges over the natural numbers 0 and 1.

4.3 Geometric(p) Random Variable

Geometric(p) random variable can be defined as the index of the first success in
an infinite sequence of Bernoulli(p) trials [4]. Therefore, the Geometric(p) distri-
bution may be sampled by extracting random bits from the function prob bern,
explained in the previous section, and stopping as soon as the first False is
encountered and returning the number of trials performed till this point. Thus,
the Geometric(p) random variable ranges over a countably infinite number of
natural numbers. This fact makes it different from other random variables that
we have considered so far.

Based on the above sampling algorithm, we modeled the Geometric(p) random
variable using the probabilistic while loop [9] in HOL as follows

Definition 2. A Sampling Algorithm for Geometric(p) Distribution
� ∀ p s. prob geom iter p s = bind (prob bern (1-p))

(λb. unit (b, suc (snd s)))
� ∀ p. prob geom loop p =

prob while fst (prob geom iter p)
� ∀ p. prob geom p = bind (bind (unit (T, 1))

(prob geom loop p)) (λs. unit (snd s - 1))

It is important to note that p, which represents the probability of success for
the Geometric(p) or the probability of obtaining False from the Bernoulli(p)
random variable, cannot be assigned a value equal to 0 as this will lead to a
non-terminating while loop. We verified that the function prob geom preserves
strong function independence using the HOL theories on probability. This result
may be used along with the probability and set theories in HOL to verify the
PMF property of the Geometric(p) random variable.

� ∀ n p. 0 < p ∧ p ≤ 1 ⇒
P{s | fst(prob geom p s) = (suc n)} = p(1 − p)n

The expectation of Geometric(p) random variable can now be verified by first
plugging the above PMF value into the definition of expectation and then using
the following summation identity

∞∑

n=1

nxn−1 =
1

(1 − x)2
(3)

where 0 ≤ x < 1. The proof task for this summation identity was quite involved
and the HOL theories of limit of a real sequence, real and natural numbers were
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mainly used. The verified expectation property of Geometric(p) random variable
in HOL is give below.

Theorem 3. Expectation of Geometric(p) Random Variable
� ∀ n p. 0 < p ∧ p ≤ 1 ⇒

expec (λs. prob geom p s) = 1
p

5 Verification of Linearity of Expectation Property

We split the verification of linearity of expectation property in two major steps.
Firstly, we verify the property for two discrete random variables and then extend
the results by induction to prove the general case.

5.1 Two Random Variables

The linearity of expectation property can be defined for any two discrete random
variables X and Y , according to Equation 1, as follows

Ex[X + Y ] = Ex[X ] + Ex[Y ] (4)

To prove the above relationship in HOL, we proceed by first defining a function
that models the summation of two random variables.

Definition 3. Summation of Two Random Variables
� ∀ X Y. sum two rv X Y =

bind X (λa. bind Y (λb. unit (a + b)))

It is important to note that the above definition implicitly ensures that the call
of the random variable Y is independent of the result of the random variable X .
This is true because the infinite Boolean sequence that is used for the compu-
tation of Y is the remaining portion of the infinite Boolean sequence that has
been used for the computation of X . This characteristic led us to prove that the
function sum two rv preserves strong function independence, which is the most
significant property in terms of verifying properties on probabilistic functions.

Theorem 4. sum two rv Preserves Strong Function Independence
� ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ⇒

(sum two rv X Y) ∈ indep fn

Now the linearity of expectation property for two discrete random variables can
be stated using the sum two rv function as follows.

Theorem 5. Linearity of Expectation for Two Discrete Random Variables
� ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧

summable (λn. n P{s | fst(X s) = n}) ∧
summable (λn. n P{s | fst(Y s) = n}) ⇒
expec (sum two rv X Y) = expec X + expec Y
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Proof: Rewriting the LHS with the definition of the functions sum two rv and
expec and removing the monad notation, we obtain the following expression.

lim
k→∞

(
k∑

n=0

n P{s | fst(X s) + fst(Y (snd(X s))) = n})

The set in the above expression can be expressed as the countable union of a
sequence of events using the HOL theory of sets.

lim
k→∞

(
k∑

n=0

n P

⋃

i≤n

{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n − i)})

As all events in this sequence are mutually exclusive, the additive probability
law given in the HOL theory of probability, can be used to simplify the expression
as follows

lim
k→∞

(
k∑

n=0

n
n+1∑

i=0

P{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n − i)})

Using the HOL theories of limit of a real sequence, real and natural number,
the above expression can be rewritten as follows

lim
k→∞

(
k∑

a=0

k∑

b=0

(a + b) P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})

Rearranging the terms based on summation properties given in the HOL the-
ory of real numbers, we obtain the following expression.

lim
k→∞

(
k∑

a=0

k∑

b=0

a P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)}) +

lim
k→∞

(
k∑

b=0

k∑

a=0

b P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})

The two terms in the above expression can now be proved to be equal to the
expectation of random variables X and Y respectively, using Theorem 4 and
HOL theory of probability, sets, real and and natural numbers. �

5.2 n Random Variables

The linearity of expectation property for two discrete random variables, verified
in Theorem 5, can now be generalized to verify the linearity of expectation
property for n discrete random variables, given in Equation 1, using induction
techniques.

The first step in this regard is to define a function, similar to sum two rv,
which models the summation of a list of n random variables.
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Definition 4. Summation of n Random Variables
� (sum rv lst [] = unit 0) ∧
∀ h t. (sum rv lst (h::t) =

bind h (λa. bind (sum rv lst t)
λb. unit (a + b)))

Next, we prove that the function sum rv lst preserves strong function indepen-
dence, if all random variables in the given list preserve it. This property can be
verified using the fact that the function sum rv lst accesses the infinite Boolean
sequence using the unit and bind primitives only.

Theorem 6. sum rv lst Preserves Strong Function Independence
� ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn) ⇒

(sum rv lst L) ∈ indep fn

The predicate mem in the above definition returns True if its first argument is
an element of the list that it accepts as the second argument.

Using induction on the list argument L of the function sum rv lst and sim-
plifying the subgoals using Theorem 5, we proved, in HOL, that the expected
value of the random variable modeled by the function sum rv lst exists if the
expectation of all individual elements of its list argument exists. Here, by the
existence of the expectation we mean that the infinite summation in the expec-
tation definition converges.

Theorem 7. The Expectation of sum rv lst Exists
� ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn ∧

summable (λn. n P{s | fst(R s) = n})) ⇒
summable (λn. n P{s | fst(sum rv lst L s) = n})

The linearity of expectation property for n discrete random variables can be
provednow by applying induction on the list argument of the function sum rv lst,
and simplifying the subgoals using Theorems 5, 6 and 7.

Theorem 8. Linearity of Expectation for n Discrete Random Variables
� ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn ∧

summable (λn. n P{s | fst(R s) = n})) ⇒
expec (sum rv lst L) = sum (0, length L)

(λn. expec (el (length L - (n+1)) L))

where the function length returns the length of its list argument and the func-
tion el accepts a natural number, say n, and a list and returns the nth element
of the given list. The term (sum(m,n) f), in the above theorem, models the
summation of n values, corresponding to the arguments m+n−1, · · · , m+1, m,
of the real sequence f . Thus, the left-hand-side of Theorem 8 represents the
expectation of the summation of a list, L, of random variables. Whereas, the
right-hand-side represents the summation of the expectations of all elements in
the same list, L, of random variables.
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6 Coupon Collector’s Problem

The Coupon Collector’s problem [13] is motivated by “collect all n coupons and
win” contests. Assuming that a coupon is drawn independently and uniformly at
random from n possibilities, how many times do we need to draw new coupons
until we find them all? This simple problem arises in many different scenarios.
For example, suppose that packets are sent in a stream from source to destination
host along a fixed path of routers. It is often the case that the destination host
would like to know all routers that the stream of data has passed through. This
may be done by appending the identification of each router to the packet header
but this is not a practical solution as usually we do not have this much room
available. An alternate way of meeting this requirement is to store the identifi-
cation of only one router, uniformly selected at random between all routers on
the path, in each packet header. Then, from the point of view of the destination
host, determining all routers on the path is like a Coupon Collector’s problem.

Our goal is to verify, using HOL, that the expected value of acquiring all n
coupons is nH(n), where H(n) is the harmonic number equal to the summation∑n

i=1 1/i. The first step in this regard is to model the Coupon Collector’s prob-
lem as a probabilistic algorithm in higher-order-logic. Let X be the number of
trials until at least one of every type of coupon is obtained. Now, if Xi is the
number of trials required to obtain the ith coupon, while we had already acquired
i − 1 different coupons, then clearly X =

∑n
i=1 Xi. The advantage of breaking

the random variable X into the sum of n random variables X1, X2 · · · , Xn is
that each Xi can be modeled as a Geometric random variable, which enables
us to represent the Coupon Collector’s problem as a sum of Geometric random
variables. Furthermore, the expectation of this probabilistic algorithm can now
be verified using the linearity of expectation property.

We modeled the Coupon Collector’s problem in HOL by identifying the
coupons with unique natural numbers, such that the first coupon acquired by
the coupon collector is identified as number 0 and after that each different kind of
a coupon acquired with subsequent numbers in numerological order. The coupon
collector saves these coupons in a list of natural numbers. The following function
accepts the number of different coupons acquired by the coupon collector and
generates the corresponding coupon collector’s list.

Definition 5. Coupon Collector’s List
� (coupon lst 0 = []) ∧
∀ n. (coupon lst (suc n) = n :: (coupon lst n))

The next step is to define a list of Geometric random variables which would
model the Xi’s mentioned above. It is important to note that the probability
of success for each one of these Geometric random variables is different from
one another and depends on the number of different coupons acquired so far.
Since, every coupon is drawn independently and uniformly at random from the n
possibilities and the coupons are identified with natural numbers, we can use the
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Uniform(n) random variable to model each trial of acquiring a coupon. Now we
can define the probability of success for a particular Geometric random variable
as the probability of the event when the Uniform(n) random variable generates
a new value, i.e., a value that is not already present in the coupon collector’s list.
Using this probability of success, the following function generates the required
list of Geometric random variables.

Definition 6. Geometric Variable List for Coupon Collector’s Problem
� ∀ n. (geom rv lst [] n = [prob geom 1]) ∧
∀ h t. (geom rv lst (h::t) n =

(prob geom
(P{s | ¬(mem (fst(prob unif n s)) (h::t))})
:: (geom rv lst t n)))

where the functions prob geom and prob unif model the Geometric(p) and
Uniform(n) random variables, respectively, which are given in Section 4. The
function geom rv lst accepts two arguments; a list of natural numbers, which
represents the coupon collector’s list and a natural number, which represents
the total number of coupons. It returns, a list of Geometric random variables
that can be added up to model the coupon collecting process of the already
acquired coupons in the given list. The base case in the above recursive defini-
tion corresponds to the condition when the coupon collector does not have any
coupon and thus the probability of success, i.e., the probability of acquiring a
new coupon, is 1.

Using the above definitions along with the function sum rv lst, given in Defi-
nition 4, the Coupon Collector’s problem can be represented now by the following
probabilistic algorithm in HOL.

Definition 7. Probabilistic Algorithm for Coupon Collector’s Problem
� ∀ n. (coupon collector (suc n) =

sum rv lst (geo rv lst (coupon lst n) (suc n))

The function coupon collector accepts a natural number, say k, which rep-
resents the total number of different coupons that are required to be collected
and has to be greater than 0. It returns the summation of k Geometric random
variables that are used to model the coupon collecting process of acquiring k
coupons. The expectation property of the Coupon Collector’s problem can now
be stated using the function coupon collector and the function sum, which can
be used to express the summation of n values, corresponding to the arguments
m + n − 1, · · · , m + 1, m, of the real sequence f as sum(m,n) f.

Theorem 9. Expectation of Coupon Collector’s Problem
� ∀ n. expec (coupon collector (suc n)) =

(suc n) (sum (0,(suc n)) (λi. 1/(suc i)))

Proof: The PMF property of the Uniform(n) random variable along with the
HOL theories of sets and probability can be used to verify the following proba-
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bilistic quantity

∀ n. P{s | ¬(mem (fst(prob unif (n + 1) s)) L)} = 1 − length L

(n + 1)

for all lists of natural numbers, L, such that all the elements in L are less than
(n+1) and none of them appears more than once. The coupon collector’s list,
modeled by the function coupon lst, satisfies both of these characteristics for a
given argument n. Therefore, the probability of succuss for a Geometric random
variable that models the acquiring process of a new coupon when the coupon
collectors list is exactly equal to L, in the probabilistic algorithm for the Coupon
Collector’s problem for (n+1) coupons, is 1 − length L

(n+1) . The expectation of such
a Geometric random variable can be verified to be equal to

n + 1
(n + 1) − (length L)

by the expectation property of Geometric(p) random variables, given in
Theorem 3. Now, using the above result along with the linearity of expecta-
tion property and the strong function independence property of the Geometric
random variables, the expectation of the sum of the list of Geometric random
variables, given in the LHS of Theorem 9, can be expressed as the summation
of the individual expectations of the Geometric random variables as follows

n∑

i=0

(n + 1)
(n + 1) − i

The following summation identity, which can be proved using the HOL theory
of real and natural numbers, concludes the proof.

∀ n.

n∑

i=0

(n + 1)
(n + 1) − i

= (n+1)
n∑

i=0

1
(i + 1)

�

Theorem 9 can be used as a formal argument to support the claim that the
expected number of trials required to obtain all n coupons is n

∑n
i=1 1/i. Also, it

is worth mentioning that it was due to the linearity of expectation property that
the complex task of verifying the expectation property of the Coupon Collector’s
problem, which involves multiple random variables, was simply proved using the
expectation property of a single Geometric(p) random variable.

7 Conclusions

In this paper, we presented some techniques for verifying the expectation prop-
erties of discrete random variables in HOL. Due to the formal nature of the
models and the inherent soundness of the theorem proving systems, the analy-
sis is guaranteed to provide exact answers, a novelty, which is not supported by
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most of the existing probabilistic analysis tools. This feature makes the proposed
approach very useful for the performance and reliability optimization of safety
critical and highly sensitive engineering and scientific applications.

We presented the formalization of expectation for natural-valued discrete
random variables. This definition was used to verify the expected values of
Uniform(n), Bernoulli(p) and Geometric(p) random variables. These random
variables are used extensively in the field of probabilistic analysis and thus their
expectation properties can be reused in a number of different domains. Building
upon our formal definition of expectation, we also verified a generalized version
of the linearity of expectation property in HOL. In order to illustrate the prac-
tical effectiveness of our work, we presented the verification of the expectation
property for the Coupon Collector’s problem. To the best of our knowledge, this
is the first time that the Coupon Collector problem has been analyzed within a
mechanized theorem prover and the results are found to be in good agreement
with existing theoretical paper-and-pencil counterparts.

The HOL theories presented in this paper can be used to verify the expectation
properties of a number of other natural-valued random variables, e.g., Binomial,
Logarithmic and Poisson [10] and commercial computation problems, such as the
Chinese Appetizer and the Hat-Check problems [5]. A potential case study is to
analyze the two versions of the Quicksort [13] and demonstrate the distinction
between the analysis of randomized algorithms and probabilistic analysis of de-
terministic algorithms within the HOL theorem prover. As a next step towards a
complete framework for the verification of randomized algorithms, we need to for-
malize the concepts of variance and higher moments. These bounds are the major
tool for estimating the failure probability of algorithms. We can build upon the
definition of expectation given in this paper to formalize these concepts within
the HOL theorem prover. A very interesting future work could be to link the for-
mal definition of expectation, presented in this paper, with the higher-order-logic
formalization of Lebesgue integration theory [15], which would further strengthen
the soundness of the definitions presented in this paper.

For our verification, we utilized the HOL theories of Boolean algebra, sets, lists,
natural and real numbers, limit of a real sequence and probability. Our results
can therefore be regarded as a useful indicator of the state-of-the-art in theo-
rem proving. Based on this experience, we can say that formalizing mathematics
in a mechanical system is a tedious work that requires deep understanding of
both mathematical concepts and theorem-proving. The HOL automated reason-
ers aid somewhat in the proof process by automatically verifying some of the
first-order-logic goals but most of the times we had to guide the tool by provid-
ing the appropriate rewriting and simplification rules. On the other hand, we
found theorem-proving very helpful in book keeping. Another major advantage
of theorem proving is that once the proof of a theorem is established, due to the
inherent soundness of the approach, it is guaranteed to be valid and the proof can
be readily accessed, contrary to the case of paper-pencil proofs where we have to
explore the enormous amount of mathematical literature to find proofs. Thus, it
can be concluded that theorem-proving is a tedious but promising field, which
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can help mathematicians to cope with the explosion in mathematical knowledge
and to save mathematical concepts from corruption. Also, there are areas, such
as security critical software, in military or medicine applications for example,
where theorem-proving will soon become a dire need.
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